轴对称与坐标变化
八年级数学上册教学课件《轴对称与坐标变化》

2. 点(﹣1,2)关于原点的对称点坐标是( B )
A.(﹣1,﹣2) B.(1,﹣2)
C.(1,2)
D.(2,﹣1)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
1.如图,△ABC与△DFE关于y轴对称,已知A(-4,6), B(-6,2),E(2,1),则点D的坐标为( B ) A.(-6,4) B.(4,6) C.(-2,1) D.(6,2)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
2.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论: ①A、B关于x轴对称; ②A、B关于y轴对称;③A、B关于原 点对称;④A、B之间的距离为4,其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
3.点(-4,9)与点(4,9)的关系是( C )
A.关于原点对称
B.关于x轴对称
C.关于y轴对称
D.不能构成对称关系
课堂检测
基础巩固题
3.3 轴对称与坐标变化
4.已知点P(2a-3,3),点A(-1,3b+2),
2
(1)如果点P与点A关于x轴对称,那么a+b= 3 ;
7
(2)如果点P与点A关于y轴对称,那么a+b= 3 .
课堂检测
能力提升题
3.3 轴对称与坐标变化
A: ( 1 , 2 ) B:( 5 , 1 ) C:( 3 , 4 )
A1:( 1 , 2) B1:( 5 , 1) C1:( 3 , 4 )
对应点的横 对应点的纵坐
坐标相同
标互为相反数
(3)如果点P(m,n)在△ABC内,那么它 在△A1B1C1内的对应点P1的坐标是 (m,-n) .
3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

所以根据关于坐标轴对称的点的坐标特征
可得A′(-3,-1),B′(-1,0),C′(-2,1),A″(3,1),
B″(1,0),C″(2,-1).
1-1.如图,在平面直角坐标系中,每个小正方形的边 知1-练 长均为 1.
(1)点 A 在第__四__ 象限, 它的坐标是_(3_,__-__2_)__ ;
(1)若点A,B关于x轴对称,求a,b的值; 解:因为点A,B关于x轴对称, 所以2a+b=2b-1,5+a-a+b=0, 解得a=-3,b=-5.
知2-练
(2)若点A,B关于y轴对称,求(4a+4b)2 025 的值. 解:因为点A,B关于y轴对称, 所以2a+b+2b-1=0,5+a=-a+b,
知1-讲
图示
知1-讲
特别提醒 当原图上所有点的横坐标不变,纵坐标乘
-1后,得到新图形上对应点的坐标,则新图形 与原图形上的每一组对应点都关于 x 轴对称, 所以新图形与原图形关于x轴对称;同理可得新 图形与原图形关于 y 轴对称的变化方式 .
知1-练
例1 [母题 教材P69习题T2 ]△ABC在平面直角坐标系中 的位置如图3-3-1所示,已知A,B,C三点在格点上, 请分别画出与△ABC关于x轴和y轴对称的图形,并 写出对称图形顶点的坐标.
A.1
B.-1
C.32 025
D.0
课堂小结
轴对称与坐标变化
画轴对称图形
对称轴 坐标轴
关键
关于坐标轴对称 坐标 变化
作对称点
关于x 轴对称
关于y 轴对称
称,横不变,纵相反;纵对称,纵不变,横相反. ◆关于坐标轴对称的点的坐标只有符号不同,其绝
对值相同.
知2-练
例2 已知点A(2a+b,5+a),B(2b-1,-a+b). (1)若点A,B关于x轴对称,求a,b的值; (2)若点A,B关于y轴对称,求(4a+4b)2 025 的值.
轴对称与坐标变化

轴对称与坐标变化【教学建议】 此处内容主要用于教师课堂的精讲,每个题目结合试题本身、答案和解析部分,教师有的放矢的进行讲授或与学生互动练习。
类型一 轴对称与坐标变化 【题干】设点P 的坐标是(a,b ) (1)关于x 轴对称的点的坐标为__________,简记为关于横轴对称,“横”不变“纵”变;(2)关于y 轴对称的点的坐标为_________,简记为关于纵轴对称,“纵”不变“横”变.【答案】(1)(a,-b ) (2)(-a,b )【解析】点关于坐标轴对称时的变化特点【题干】已知点P(2a-3,3),点A (-1,3b+2),(1)如果点P 与点A 关于x 轴对称,那么a+b= ;(2)如果点P 与点A 关于y 轴对称,那么a+b= .【答案】3732-,【解析】(1)已知点P(2a-3,3)和点A(-1,3b+2)关于x 轴对称 关于x 轴对称的点,横坐标相等,纵坐标互为相反数. 所以,2a-3= -1,-3=3b+2 所以,a=1,b =35-所以,a+b =32-(2)同理a+b=37【题干】4=,则点A (1,a )关于y 轴的对称点为B ,则点B 的坐标为___________. 【答案】(-1,-1) 或(-1,7) 【解析】4=,∴|a ﹣3|=4,三、例题精析 例题1例题2例题3∴a ﹣3=±4,∴a =7或﹣1,∴A (1,7)或(1,﹣1),∴点B (﹣1,7)或(﹣1,﹣1).故答案为(﹣1,﹣1) 或(﹣1,7).类型二 轴对称作图【题干】如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△111C B A ,并写出点1A 的坐标;(2)画出△111C B A 绕原点O 旋转180°后得到的△222C B A ,并写出点2A 的坐标.【答案】(1)图略A 1(2,—4)(2)图略A 2(—2,4)【解析】 由点对称作图形的轴对称 类型三 坐标系内的规律探究例5.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.例题1【答案】()4044,0【详解】解:由题意可知:正方形的边长为2,∵A (2,0),B (0,2),C (2,2),P 1(4,0),P 2(0,﹣4),P 3(﹣6,2),P 4(2,10),P 5(12,0),P 6(0,-12)…可发现点的位置是四个一循环,每旋转一次半径增加2,2021÷4=505……1,故点2021P 在x 轴正半轴,OP 的长度为2021×2+2=4044,即:P 2021的坐标是(4044,0),故答案为:(4044,0).类型四 平面直角坐标系综合问题例6.在平面直角坐标系中,已知点(6,510)−+M a a .(1)若点M 在y 轴上,求a 的值;(2)若点M 到x 轴的距离为5,求点M 的坐标;(3)若点M 在过点(2,4)A −且与y 轴平行的直线上,求点M 的坐标.【答案】(1)6a =;(2)点M 的坐标为(7,5)−或(9,5)−−;(3)点M 的坐标为(2,50)【详解】(1)∵M 点在y 轴上,∴a -6=0∴a =6;(2)∵M 点到x 轴的距离为5∴|5a +10|=5∴5a +10=±5解得:a =-3或a =-1故M 点坐标为(-9,-5)或(-7,5);(3)∵M 点在过点A (2,-4)且与y 轴平行的直线上∴a -6=2∴a =8∴M 点坐标为(2,50).类型五 轴对称与坐标变化作图例7.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标.【答案】(1)见解析;(2)见解析;P ()2,0【详解】(1)如图所示,111A B C △即为所求.2,0.(2)如图所示,点P即为所求,其坐标为()【题干】已知点P(2a-3,3),点A (-1,3b+2),(1)如果点P 与点A 关于x 轴对称,那么a+b= ;(2)如果点P 与点A 关于y 轴对称,那么a+b= .【题干】4=,则点A (1,a )关于y 轴的对称点为B ,则点B 的坐标为___________.类型二 轴对称作图【题干】如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△111C B A ,并写出点1A 的坐标;(2)画出△111C B A 绕原点O 旋转180°后得到的△222C B A ,并写出点2A 的坐标.类型三 坐标系内的规律探究例5.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.例题3例题1故答案为:(4044,0).类型四 平面直角坐标系综合问题例6.在平面直角坐标系中,已知点(6,510)−+M a a .(1)若点M 在y 轴上,求a 的值;(2)若点M 到x 轴的距离为5,求点M 的坐标;(3)若点M 在过点(2,4)A −且与y 轴平行的直线上,求点M 的坐标.类型五 轴对称与坐标变化作图例7.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标.。
轴对称与坐标变化-演示文稿PPT课件

–3
–4
(x,y) (0,0)
–5
2020年9月28日
(x,-y) (0,0)
(5,4) (5,-4)
(3,0) (3,0)
(5,1) (5,-1)
(5,-1) (5,1)
(3,0) (4,-2) (0,0)
7
(3,0) (4,2) (0,0)
归纳: 1.(x,y)和(-x,y)关于 y轴 对称
2.(x,y)和(x,-y)关于 x轴 对称
2020年9月28日
6
图中的鱼是将
y
5 与原图形关于x轴对称
坐标为:(0,0) (5,4) (3,0) (5,1)
4
(5,-1) (3,0) (4,-
2) (0,0)的点用
3
线段依次连接
2
而成的
将各坐标的纵坐
1
标都乘以-1,横
0 12345678
x 坐标保持不变,则
–1
图形怎么变化?
–2
坐标变化为:
A.1个 B.2个 C.3个
2020年9月28日
10
小结 归纳
1、关于y轴对称的两个点的坐标特征:
(x , y)
(-x , y)
2、关于x轴对称的两个点的坐标特征:
(x , y)
Hale Waihona Puke (x , -y)2020年9月28日
11
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
《轴对称与坐标变化》位置与坐标

伸缩变换
定义
伸缩变换是改变图形长度的变换。
操作方法
在平面直角坐标系中,伸缩变换可表示为 将x轴、y轴上的点分别乘以一个常数。
特点
伸缩变换不改变图形的形状和方向,只改 变图形的尺寸。
实例
将点(x,y)沿着x轴方向缩小为原来的1/a倍 得到点(ax,y),沿着y轴方向缩小为原来的 1/b倍得到点(x,by)。
挖掘轴对称与坐标变化在其他学科 和实际生活中的应用场景,拓展其 应用范围。
轴对称与坐标变化的应用拓展
物理学
深入研究轴对称与坐标变化在物理学中 的应用,如量子力学、相对论等领域,
推动理论物理的发展。
计算机科学
利用轴对称与坐标变化开发新的算法 和软件,提高计算机性能和智能化水
平。
工程学
将轴对称与坐标变化应用于机械设计 、建筑设计等领域,提高设计效率和 精度。
艺术作品中的实例分析
总结词
艺术作品中也常常利用轴对称和坐标变化来创造出美 丽和动人的艺术效果。
详细描述
在艺术作品中,轴对称和坐标变化也被广泛地应用。例 如,在绘画中,艺术家可以利用轴对称来创造出平衡和 和谐的艺术造型。同时,通过坐标的变化,艺术家可以 表现出不同的色彩和明暗变化,创造出更加丰富和动人 的艺术效果。在雕塑中,轴对称和坐标变化也被广泛应 用,例如人体雕塑中的人体结构就是典型的轴对称结构 ,而通过坐标的变化则可以表现出不同的人体形态和表 情。
性质
轴对称图形的对应线段相等,对应角相等,图形的形状和大小完全相同。
坐标变化的定义与性质
定义
在平面直角坐标系中,当图形的位置发生变化时,相应的坐 标也发生变化,这种变化称为坐标变化。
性质
坐标变化具有连续性和规律性,可以通过平移、旋转、缩放 等变换实现。
轴对称与坐标的变化x轴y轴

轴对称与坐标的变化x轴y轴轴对称是指一个图形或物体在某条直线上对称,即通过这条直线可以将图形或物体分为两部分,两部分完全重合。
在平面几何中,轴对称通常是指对称于x轴、y轴或其他直线的图形。
首先,我们来看x轴和y轴对称。
x轴是指平面上的一条水平直线,通常表示为y=0;y轴是指平面上的一条垂直直线,通常表示为x=0。
对于一个图形或物体来说,如果它关于x轴对称,那么它的上下两部分将完全重合;如果它关于y轴对称,那么它的左右两部分将完全重合。
以一个简单的矩形为例,如果矩形关于x轴对称,那么矩形的上下两边将是对称的,也就是上边与下边完全重合;如果矩形关于y轴对称,那么矩形的左右两边将是对称的,也就是左边与右边完全重合。
在平面几何中,轴对称可以用来判断图形的性质和解决一些几何问题。
比如,可以利用轴对称性质判断一个图形是否是对称图形,通过寻找对称轴可以更方便地对图形进行分析和计算。
除了x轴和y轴,平面上还可以存在其他直线作为对称轴。
这时,轴对称就是指图形或物体关于这条直线对称。
例如,对于圆形来说,它关于任何直径线都是对称的;对于正方形来说,它关于对角线也是对称的。
轴对称对于物体的设计和制作也有很大的作用。
在建筑设计中,常常利用轴对称原理来设计对称美观的建筑;在机械制造中,也常常利用轴对称来确保产品的理想性能。
在坐标系中,x轴和y轴分别是平面上两个互相垂直的轴线。
它们交叉的点被称为原点(0,0),x轴的正方向为向右,负方向为向左;y轴的正方向为向上,负方向为向下。
坐标系中其他点的坐标可以通过与x轴和y轴的交点距离和方向来表示。
在使用坐标系进行计算和分析时,轴对称可以帮助我们确定图形或物体的位置和特征。
通过观察图形关于x轴或y轴的对称性质,可以简化计算和分析的过程。
总之,轴对称和坐标的变化在几何中起着重要的作用。
轴对称可以帮助我们理解图形的性质和解决几何问题,而坐标系则为我们提供了一种方便的计算和分析工具。
通过深入理解轴对称和坐标的变化,我们可以更好地理解和应用几何学。
八年级数学北师大版上册 第3章《3.3 轴对称与坐标变化》教学设计 教案

课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。
1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。
三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。
② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。
反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。
3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一 点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余 三个点中存在两个点关于一条坐标轴对称,则原点是( B ) A.点A B.点B C.点C D.点D
7.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值 是( D ) A.-5 B.-3 C.3 D.1
即 22+52= 29.
巩固提升
1.在平面直角坐标系中,点A的坐标为(1,2).作点A关于x轴的对称 点,得到点A′,则点A′所在的象限是( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放 在平面直角坐标系中,如果图中点A的坐标为(-5,3),则其关于y轴 对称的点B的坐标为( A ) A.(5,3) B.(5,-3) C.(-5,-3) D.(3,5)
5.如图所示的点A,B,C,D,E中,哪两个点关于x轴对称?哪两个 点关于y轴对称?点C和点E关于x轴对称吗?为什么? 解:因为点A(-3,2),B(-3,-2),E(3,-2), 所以点A,B关于x轴对称,点B,E关于y轴对称. 因为点C(3,3),E(3,-2), 所以点C,E不关于x轴对称.
7.【空间观念、几何直观】△ABC在平面直角坐标系中的位置如图 所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别为A,B, C的对应点); 解:如图所示,△A′B′C′即为所求.
(2)直接写出A′,B′,C′三点的坐标; 解:A′,B′,C′三点的坐标分别为(2,3),(3,1),(-1,-2). (3)在y轴上找一点P,使得PA+PB最小,画出点P所在的位置(保留作 图痕迹,不写作法),并求出PA+PB的最小值. 解:如图所示,点 P 即为所求,PA+PB 的最小值为线段 A′B 的长,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
4 3 2 1 0 -1 -2 1 2 3 4 5 6 7 8 9 10
x
学生活动:
将下图中的各个点的横坐标保持不变,纵坐标分别加 1,所得的图案与原图案相比有什么变化?
y
4 3 2 1 0 -1 -2 1 2 3 4 5 6 7 8 9 10
(0,0) (5,4)
(0,0) (10,8)
y
8 7 6 5 4
(3,0)
(5,1) (5,-1) (3,0) (4,-2) (0,0)
(6,0)
(10,2) (10,-2) (6,0) (8,-4) (0,0)
.
2 1 0 -1 -2 -3 -4
3
1
2
3
4
5
6
. . . . .
7 8 9 10
x
来的
1 2
,那么所得图案会发生什么变化?
y
8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 1 2 3 4 5 6 7 8 9 10
x
例2、请将上图中的点(0,0),(5,4),(3,0), (5,1), (5, - 1) (3,0),(4,-2) ,(0,0) 做以下变换: (1)横坐标保持不变,纵坐标分别乘以-1,再将所得的 点用线段依次连接起来,所得的图案与原来的图案相比有 什么变化?
图形的压缩 横坐标不变, 纵坐标除以2
y
3 2 1
图形的伸长 横坐标不变, 纵坐标乘以2
y
3 2 1
x
-4 -3 -2 -1 0
1 2 -1 -2
3
4
x
-4 -3 -2 -1
0
1 -1 -2
2
3
4
x
(1) 两图形关于y轴成 纵坐标不变, 轴对称。 横坐标乘以 -1
y
3 2 1 -4 -3 -2 -1 0 1 2 -1 -2 3 4
3.3 轴对称与坐标变化(二)
授课教师:金祥付
授课时间:2013、10、23
授课班级:八(2)(6)
教学目标
压缩 之间的关系的探索过程,发展学生的形象思维能力和数 形结合能力。
知识目标:1. 经历图形坐标变化与图形的平移、轴对称、伸长、
2. 在同一直角坐标系中,感受图形上点的坐标变化 与图 形的变化(平移、轴对称、伸长、压缩)之间的关系。
能力目标:经历探究物体与图形的形状、大小、位置关系和变
换的 过程,及通过图形的平移、轴对称等,培养学生的探索能 力。
情感目标 1.通过有趣的图形的研究,激发学生对新知的好奇心
与求知欲,使他们能积极参与数学学习活动。 2.通过“变化的鱼”,让学生体验数学活动充满着探索 与创造。
问题 : 在平面直角坐标系中描出下列各点,并用
(2) 两图形关于x轴 横坐标不变, 成轴对称。 -1 纵坐标乘以
y
3 2 1
(3) 横坐标乘以 -1, 两图形关于坐标原 纵坐标乘以 -1 点成中心对称。
y
3 2 1
x
-4 -3 -2 -1 0
1 2 -1 -2
3
4
x
-4 -3 -2 -1 0
1 2 -1 -2
3
4
x
(4)
(5)
(6)
学生活动:
图形变为原来的a倍;
y
8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 1 2 3 4 5 6 7 8 9 10
y
8 7 6 5 4 3 2 1
x
0 -1 -2 -3 -4
1
2
3
4
5
6
7
8
9 10
x
(a>1)
(0<a<1)
5.纵坐标不变,横 坐标分别乘-1,所 得图形与原图形
6.横坐标不变,纵 坐标分别乘-1,所 得图形与原图形
(0,0) (5,4) (0,0) (10,4)
y
4 3
(3,0)
(5,1) (5,-1) (3,0) (4,-2)
(6,0)
(10,1) (10,-1) (6,0) (8,-2)
.
2 1 0 -1 -2
1
2
3
4
5
. . . . .
6 7 8 9 10
x
(0,0)
(0,0)
(2)纵坐标保持不变,横坐标分别加3,再将所得的点 用线段依次连接起来,所得的图案与原来的图案相比有 什么变化?
线段依次连接起来。 (0,0),(5,4),(3,0),
(5,1), (5, - 1) (3,0),(4,-2),(0,0)
观察所得图形,你觉得它像什么?
y
-1 -2
. . . .. .
4 3 2 1 0 1 2 3 4 5
6
7
8
9
10
x
例1: 请将上图中的点(0,0),(5,4),(3,0), (5,1), (5, - 1) (3,0),(4,-2) ,(0,0) 做以下变换: (1)纵坐标保持不变,横坐标分别变为原来的2倍,再将 所得的点用线段依次连接起来,所得的图案与原来的图案 相比有什么变化?
x
课堂小结:
1.纵坐标不变,横坐 标分别增加(减少) a个单位时,图形 2.横坐标不变,纵坐 标分别增加(减少) a个单位时,图形
向右(向左)
平移 a个 单位;
y
4 3 2 1 0 -1 -2 1 2 3 4 5 6 7 8 9 10
向上(向下)
平移a个单位;
y
3 2 1
x
-4 -3 -2 -1 0
关于Y轴对称;
y
3 2 1 -4 -3 -2 -1 0 1 2 3 4 -1 -2
关于X轴对称;
y
3 2 1
x
-4 -3 -2 -1 0 1 2 3 4 -1 -2
x
7.横坐标与纵坐标都乘-1,所得图形与原 图形 关于 -2 -1 0 1 -1 -2 2 3 4
(0,0) (5,4)
(3,0)
(8,4) (6,0)
y
4 3 2 1 0 -1 -2 1 2
(3,0)
(5,1) (5,-1) (3,0) (4,-2)
(8,1)
(8,-1) (6,0) (7,-2) (3,0)
3
. . . .. .
4 5 6 7 8
9
10
x
(0,0)
议一议
如果纵坐标、横坐标分别变成原
1 2 -1 -2
3
4
x
3.纵坐标不变,横坐标分别变为原来的a(a>1) 倍,图形横向伸长为原来的a倍(a>1)
或图形横向缩短为原来的a倍(0<a<1)。
y
4 3 2 1 0 -1 -2 1 2 3 4 5 6 7 8 9 10
y
3 2 1
x
-4 -3 -2 -1 0
1 2 -1 -2
3
4
x
4.横坐标与纵坐标同时变为原来的a倍,
(0,0) (5,4) (3,0) (5,1) (0,0) (5,-4) (3,0) (5,-1)
y
(5,-1)
(3,0) (4,-2) (0,0)
(5,1)
(3,0) (4,2) (0,0)
-1 -2
.. . .. .
4 3 2 1 0 1 2 3 4 5
6
7
8
9
10
x
(2)纵坐标、横坐标分别变为原来的2倍,再将所得的点 用线段依次连接起来,所得的图案与原来的图案相比有什 么变化?
x
作业布置:
1. 课下阅读课本P68---69的内容; 2. P69习题第1,2,3,4 题; 3. 完成课时达标; 4. 完成课本第三章复习与回顾 的内 容.
感 谢 各 位 老 师 莅 临 指 导
创新探究
[探究课题] 寻求图形上点的坐标变化与图形的变化之 间的关系。
[活动目的] 经历图形坐标变化与图形的伸长、压缩、
平移、轴对称之间关系的探索过程。
y
3 2 1 -4 -3 -2 -1 0 1 -1 -2 2 3 4
x
图形的平移 横坐标不变, 纵坐标加1
y
3 2 1 -4 -3 -2 -1 0 1 2 -1 -2 3 4