新北师大版轴对称与坐标变化(优质课)
《轴对称与坐标变化》公开课教学PPT课件【北师大版八年级数学上册】

M
o
x
①点P(a,b)到 x 轴的距离是 b ②点P(a,b)到 y 轴的距离是 a
③点P(a,b)与坐标原点的距离是 a2 b2
横坐标的绝对值
三、巩固新知
1. 点A(2,- 3)关于 x 轴对称的点的坐标是 (2,3) .
2. 点B( - 2,1)关于 y 轴对称的点的坐标是 (2,1) .
3. 点(4,3)与点(4,- 3)的关系是( B )
四、归纳小结
轴对称与坐标变换
关于坐标轴对称
作图——关于轴对称变化
再见
(0,0) (5,-4) (3,0) (5,-1)
(5, 1)
(3,0) (4, 2) (0,0)
二、合作交流,探究新知
1. 关于 y 轴对称的两个图形上点的坐标特征:
(x , y)
(-x , y)
2. 关于 x 轴对称的两个图形上点的坐标特征:
(x , y)
(x , -y)
3. 关于原点轴对称的两个图形上点的坐标特征:
(x,y) (x,-y)
二、合作交流,探究新知
y 5 4
3 2 1 0 12345678 x –1
–2 –3ቤተ መጻሕፍቲ ባይዱ–4
–5
将各坐标的纵坐标都 乘以-1,横坐标保 持不变,则图形怎么 变化? 与原图形关于 x 轴对称
坐标变化为:
(0,0) (5,4)
(3,0)
(5,1)
(5,-1)
(3,0) (4,-2) (0,0)
2. 在右边的坐标系内,任取一点,做出这 个点关于 y 轴对称的点,看看两个点的坐 标有什么样的位置关系,说说其中的道理. 3. 做出这个点关于 x 轴对称呢?
二、合作交流,探究新知
北师大版数学八年级上册3《轴对称与坐标变化》说课稿3

北师大版数学八年级上册3《轴对称与坐标变化》说课稿3一. 教材分析北师大版数学八年级上册3《轴对称与坐标变化》这一节的内容是在学生已经学习了平面直角坐标系、坐标与图形的性质等知识的基础上进行教授的。
本节课主要介绍了轴对称的概念,以及坐标变化中的平移和旋转。
通过本节课的学习,使学生能够理解轴对称的性质,掌握坐标变化的方法,提高学生的空间想象能力和解决问题的能力。
二. 学情分析在进入八年级的学生中,大部分学生对平面直角坐标系和坐标与图形的性质已经有了初步的认识和了解。
但是,对于轴对称的概念,以及坐标变化中的平移和旋转,部分学生可能还存在着一定的困惑。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学。
三. 说教学目标1.知识与技能目标:使学生理解轴对称的概念,掌握坐标变化的方法,提高学生的空间想象能力和解决问题的能力。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的动手操作能力和团队协作能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受数学与生活实际的联系。
四. 说教学重难点1.教学重点:轴对称的概念,坐标变化的方法。
2.教学难点:轴对称的性质,坐标变化的计算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等教学方法,引导学生主动探究,提高学生的学习效果。
2.教学手段:利用多媒体课件、教具模型等教学手段,直观展示轴对称和坐标变化的过程,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的对称现象,引导学生思考对称的概念,从而引出轴对称的概念。
2.探究:引导学生通过观察、操作、思考、交流等方式,探索轴对称的性质,以及坐标变化的方法。
3.讲解:对轴对称的性质和坐标变化的计算进行详细的讲解,让学生深刻理解并掌握知识。
4.练习:设计一些具有代表性的练习题,让学生进行练习,巩固所学知识。
5.总结:对本节课的主要内容进行总结,加深学生对知识的理解。
3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

所以根据关于坐标轴对称的点的坐标特征
可得A′(-3,-1),B′(-1,0),C′(-2,1),A″(3,1),
B″(1,0),C″(2,-1).
1-1.如图,在平面直角坐标系中,每个小正方形的边 知1-练 长均为 1.
(1)点 A 在第__四__ 象限, 它的坐标是_(3_,__-__2_)__ ;
(1)若点A,B关于x轴对称,求a,b的值; 解:因为点A,B关于x轴对称, 所以2a+b=2b-1,5+a-a+b=0, 解得a=-3,b=-5.
知2-练
(2)若点A,B关于y轴对称,求(4a+4b)2 025 的值. 解:因为点A,B关于y轴对称, 所以2a+b+2b-1=0,5+a=-a+b,
知1-讲
图示
知1-讲
特别提醒 当原图上所有点的横坐标不变,纵坐标乘
-1后,得到新图形上对应点的坐标,则新图形 与原图形上的每一组对应点都关于 x 轴对称, 所以新图形与原图形关于x轴对称;同理可得新 图形与原图形关于 y 轴对称的变化方式 .
知1-练
例1 [母题 教材P69习题T2 ]△ABC在平面直角坐标系中 的位置如图3-3-1所示,已知A,B,C三点在格点上, 请分别画出与△ABC关于x轴和y轴对称的图形,并 写出对称图形顶点的坐标.
A.1
B.-1
C.32 025
D.0
课堂小结
轴对称与坐标变化
画轴对称图形
对称轴 坐标轴
关键
关于坐标轴对称 坐标 变化
作对称点
关于x 轴对称
关于y 轴对称
称,横不变,纵相反;纵对称,纵不变,横相反. ◆关于坐标轴对称的点的坐标只有符号不同,其绝
对值相同.
知2-练
例2 已知点A(2a+b,5+a),B(2b-1,-a+b). (1)若点A,B关于x轴对称,求a,b的值; (2)若点A,B关于y轴对称,求(4a+4b)2 025 的值.
(名师整理)最新北师大版数学8年级上册第3章第3节《轴对称与坐标变化》市优质课一等奖课件

归纳:对于这类问题,只要先求出已
-2
知图形中的一些特殊点(如多边形
-3
的顶点)的对应点的坐标,描出并连
-4
接这些点,就可以得到这个图形的
轴对称图形。
学习了本课后,你有哪些收获和感想? 告诉大家好吗?
平面直角坐标系,要掌握以下三方面的内容: 1. 能够正确画出直角坐标系; 2. 能在直角坐标系中,根据坐标找出点,
标系中的两条鱼的 位置关系?
各点的横坐标保 x 持不变,纵坐标
变为相反数,所
–2
得图形与原图形
–3
关于X轴对称 坐标变化为:
–4
(x,y) (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
–5
(x,-y) (0,0) (5,-4) (3,0) (5,-1) (5, 1) (3,0) (4, 2) (0,0)
关于x轴对称的两点,它们的横坐标 不变 , 纵坐标 互为相反数_
D2
C2
B2
A2
规律小结:
1.关于x轴对称的两点,它们的横坐标 相同 ,纵坐 标互_为__相__反数
2.关于y轴对称的两点,它们的横坐标 互为相反数, 纵坐标 相同 。
小试牛刀1
你的荣誉也是小组的荣誉,加油!
1.说出下列各点关于X轴、Y轴对称的点的坐标
(-x,y) (0,0) (-5,4) (-3,0) (-5,1) (-5,-1) (-3,0) (-4-2) (0,0)
猜一猜,做一做
将所得图案的各个
y
5 与原图形关于x轴对称
顶点的横坐标保持 不变,纵坐标分别
4
乘-1,依次连接这
些点,你会得到怎
北师大版八年级上册数学 3.3 轴对称与坐标变化 优秀教案

北师大版八年级上册数学 3.3 轴对称与坐标变化优秀教案北师大版八年级上册数学3.3轴对称与坐标变化优秀教案3.3轴对称性和坐标变化写出对称点的坐标.1.探索图形坐标变化的过程;(要点)2。
理解并掌握图形坐标变化与图形轴对称性之间的关系。
(难点)分别作点a,b,c关于x轴、y解析:轴的对称点就足够了解:如图所示.点A1(1,4)、B1(3,1)、A2(-1,-4)、B2(-3,-1)和C相对于x轴和y轴对称点的坐标保持不变方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.探索点3:探索平面直角坐标系中的规律如图,已知a1(1,0),a2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),。
,那么点a2022的坐标是___一、情境导入在我们的生活中,对称是一种非常普遍的现象。
将图中所示轴对称的黄鹤楼图形置于平面直角坐标系中,其对称轴为坐标轴。
那么,图形上的对称坐标之间的关系是什么?试试看二、合作探究探测点1:关于x轴和y轴对称的点的坐标点a(2a-3,b)与点a′(4,a+2)关于X轴对称,找到a,B解析:此题应根据关于x轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.解决方案:从点a(2a-3,b)和点a'(4,a+2)关于x轴的对称性,我们知道2a-3=4,a+2=-b.711所以a=,b=-.22方法概述:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若a(x,y)与b(m,n)关于x轴对称,则有x=m,y=-n;若a(x,y)与b(m,n)关于y轴对称,则有x=-m,y=n.探索点2:绘图-轴对称变换如下图所示,△abc三个顶点的坐标签分别是a(-1,4)、B(-3,1)和C(0,0)。
使…对称△ ABC关于x轴和y轴解析:从各点的位置可以发现a1(1,0),a2(1,1),a3(-1,1),a4(-1,-1),a5(2,-1),a6(2,2),a7(-2,2),a8(-2,-2),a9(3,-2),a10(3,3),a11(-3,3),a12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2021=503×4+3,所以点a2021在第二象限,纵坐标和横坐标互为相反数,所以a2021的坐标为(-504,504).故填(-504,504).方法小结:解决这类问题的常用方法是通过对几个特例的研究总结出一般规律,然后根据一般规律探索特例三、板书设计。
3.3 轴对称与坐标变化2024-2025学年八年级数学上册同步教学课件(北师大版)

(2,6)
C2
B2
A2 (2,-6)
(4)在这个坐标系里画出小旗ABCD关于 原点的对称图形,它的各个“顶点”的 坐标与原来的点的坐标有什么关系?
(2,6)
A (2,6) B (5,4) C (2,4) A2 ( -2 , -6 ) B2 ( -5 , -4 ) C2 ( -2 , -4 )
(3)在这个坐标系里画出小旗ABCD关于x
轴的对称图形,它的各个“顶点”的坐标
与原来的点的坐标有什么关系?
先做出对称图形:
对应点横坐标相同, 纵坐标互为相反数.
步骤:①找各对应点位置;②连线
A (2,6) B (5,4) C (2,4) A2 ( 2 , -6 ) B2 ( 5 , -4 ) C2 ( 2 , -4 )
对应点横、纵互为相反数.
B2
C2
1.关于原点对称的图形:各顶点关于原点对称; 2.关于原点对称的点的坐标:对应点的横、纵 坐标互为相反数
A2 (-2,-6)
例2 在平面直角坐标系中依次 连接下列各点: ( 0 , 0 ),( 5 , 4 ),( 3 , 0 ),( 5 , 1 ),( 5 , -1 ),( 3 , 0 ),( 4 , -2 ), ( 0 , 0 ), 你得到了一个怎样的图案?
鱼
(1)将各坐标的纵坐标保持不变,横 坐标都乘以 -1,那么图形会怎么变 化呢? 坐标变化为:
(x,y) (5,4) (3,0) (5,1) (5,-1) (-x,y) (-5,4) (-3,0) (-5,1) (-5,-1)
答:与原图形关于 y 轴对称.
3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
北师大版数学八年级上册3.3轴对称与坐标变化优秀教学案例

二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的基本性质,如对称轴、对称点等。
(二)问题导向
在教学过程中,教师将采用问题导向法,引导学生提出问题、分析问题、解决问题。例如,在学习轴对称图形的坐标变化规律时,教师可以提出以下问题:“轴对称图形的坐标是如何变化的?”“你能找出轴对称变换中坐标的规律吗?”通过这些问题,激发学生的思考,促使他们在探究中掌握知识。
(三)小组合作
小组合作是本章节教学的重要环节。教师将根据学生的实际情况,合理分组,确保每个学生都能在小组中发挥自己的优势。在合作学习过程中,教师引导学生相互讨论、交流,共同完成学习任务。例如,在学习轴对称图形的坐标变化规律时,小组成员可以共同分析、总结规律,然后向全班同学分享他们的发现。
2.学生分小组讨论,共同探讨解决问题的方法。
3.各小组分享讨论成果,教师进行点评和指导。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结轴对称与坐标变化的知识点。
2.学生用自己的话复述轴对称图形的坐标变化规律,加深对知识的理解。
3.教师强调本节课的重点和难点,提醒学生注意在实际应用中灵活运用。
三、教学策略
(一)情景创设
为了让学生更好地理解轴对称与坐标变化的概念,教师将从生活实际出发,创设丰富多样的教学情景。例如,引入一些具有轴对称特点的建筑物、图案等,让学生在观察中感知轴对称的美。同时,通过多媒体展示一些动态的轴对称变换过程,激发学生的学习兴趣。此外,还可以设计一些实际操作活动,如让学生制作轴对称的剪纸作品,使他们在动手操作中加深对轴对称的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点(x, y)关于x轴对称的点的坐标为 (x, - y) ______.
点(x, y)关于y轴对称的点的坐标为 (- x, y) ______.
1、完成下表.
已知点 关于x轴的对称点 (2,-3) (-1,2) (-6,-5) (0,-1.6) (4,0) (2,3) (-2, 3) (-1,-2) (-6, 5) (0,1.6) (4,0)
关于y轴的对称点
(1, 2) (6, -5) (0, -1.6) (-4,0)
2.将一个点的纵坐标不变,横坐标乘以-1,得到的点与原来 的点的位置关系是 关于y轴对称 ;将一个点的横坐标不变, 纵坐标乘以-1,得到的点与原来的点的位置关系是关于x轴对称 ____ _
3、分别写出下列各点关于x轴和y轴对称的 点的坐标. (3,6) (-7,9) (6,-1) (-3.-5) (0,10) 4、根据下列点的坐标的变化,判断它们进 行了怎样的变换: ⑴ (-1,3) (-1,-3) ⑵ (-5,-4) (-5,4) ⑶ (3,4) (-3,4) ⑷ (1,0) (-1,0)
新知归纳
“关于坐标轴对称的点”的坐标特征: (1) 关于x轴对称的点的坐标:横同纵反;
合作交流
2.如图,以矩形ABCD的中心为原点建立平面直角 坐标系: (1)点A与点D有什么位 y 置关系?点B与点C呢? A D (3, 5) 点A与点D关于y (–3, 5) 轴对称,点B与点C 关于y轴对称; (2)关于y轴对称的点的 O x 坐标有什么特征? 关于y轴对称的点 B C 横坐标互为相反数, (3, –5) (–3, –5) 纵坐标相同。
例:已知△ABC的三个顶点的坐标分别为A (-3,5),B(- 4,1),C(-1,3),作出△ABC关 于y轴和x轴对称的图形。
A
·
c
C ··
B
·
5 4 3 2 1
A ·
′
′
B ·
′
-4 -3 -2 -1-10 -2 -3 -4
1 2 3 4 5
2、将平面直角坐标系内某个图形各个点的横坐标不变,纵 坐标都乘以-1,所得图形与原图形( A )
5、已知点P(2a+b,-3a)与点P’(8,b+2). 若点p与点p’关于x轴对称,则a=_____ b=_______. 若点p与点p’关于y轴对称,则a=_____ b=_______.
{ { b=4 2a+b=-8 a=6 { -3a=b+2{ b=-20
2a+b=8 3a=b+2 a=2
优质课
合作交流
1.如图,以矩形ABCD的中心为原点建立平面直角 坐标系: (1)点A与点B有什么位 y 置关系?点C与点D呢? A D (3, 5) 点A与点B关于x (–3, 5) 轴对称,点C与点D 关于x轴对称; (2)关于x轴对称的点的 O x 坐标有什么特征? 关于x轴对称的点 B C 横坐标相同,纵坐标 (3, –5) (–3, –5) 互为相反数。
4、已知点A(m+2,3)、B(-5,n+6)关 -3 于y轴对称,则m= 3 ,n=____
5、已知点Q(m,3),P(-5,n),根据以下要求确定m,n的值
(1)Q,P两点关于x轴对称; (2)Q,P两点关于y轴对称; (3)PQ∥x轴; (4)PQ∥y轴; 6、已知点A(2m+1,m-3)关于y轴的对称点 在第四象限,则m的取值范围 是 。
15
II
-3 - 4-4 -5 - 6-6
①
练习:
1、点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为
__________.
2、点M(a, -5)与点N(-2, b)关于x轴对称,则a=_____, b
=_____.
3、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为 __________. 4、点M(a, -5)与点N(-2, b)关于y轴对称,则a=_____, b =_____.
3 b=
-4
2.如图,从图形I到图形II是进行了平 移还是轴对称?如果是轴对称,找出 对称轴;如果是平移,是怎样的平移? y 图形I到图形II是 I 进行了轴对称变 换,对称轴是x轴;
66 5 44 3 22 1 -7 -6
-5 -5 -4
-3 -2
-1 O -1 - 2-2
1
2
3
4
5 5
6
7
x
10
6、在平面直角坐标系中,写出所有与 (2,3) △ABC全等的△FED中,F点的坐标_ y 。
5
A(-2,3)
4 3 2
F(2,3)
1
B -3 -2 C
x D 2 3 E 5
0 -1
-2 -3
6、在平面直角坐标系中,写出所有与△ABC全 (2,3) 等的△FED中,F点的坐标_。 或(2,-3)
新知归纳
“关于原点对称的点”的坐标特征: 关于原点中心对称的点的坐标:横纵皆反。
3、“关于坐标轴对称的点”的坐标特征: (1) 关于x轴对称的点的坐标:横同纵反; (2) 关于y轴对称的点的坐标:横反纵同。 4、“关于原点对称的点”的坐标特征: 关于原点中心对称的点的坐标:横纵皆反。
归纳:关于y轴对称的点的坐标的特 点是: 横坐标互为相反数,纵坐标相等.
A 关于X轴对称. B 关于Y轴对称
C 关于原点对称
D 无法确定
A )
3、点A(-3,2)与点B(-3,-2)的关系是( A关于X轴对称 C关于原点对称
B关于Y轴对称 D以上各项都不对
4已知点M(3,-2),点N(a,b)是M点关于Y轴的对称点, 则 a= -3 b= -2 5、已知点P(a-1,5)和点Q(2,b-1)关于X轴对称,则 a=
D
2
3
E
5
x
-4
6、在平面直角坐标系中,写出所有与△ABC全等
(2,3)或(2,-3) 或(3,3) 或(3,-3) 的△FED中,F点的坐标_。 y 5 A(-2,3) 4 3 2 1 (3,3)
B
-3
-2
C
0 -1 -2 -3
D
2
3
E
5
x
-4
F(3,-3)
如图,利用关于坐标轴对称的点的坐标的特点,分别作出△ABC关于X轴和y 轴对称的图形。
5 4 3 C(-3,2) 2 B`(-1,1) 1 A(-4,1)
C``(3,2)
·
· A``(4,1) ·
4 5
-4 -3 -2 -1 0 1 2 3 -1 A`(-4,-1) B(-1,-1) B``(1,-1) -2 C`(-3,-2) -3 -4
新知归纳
“关于坐标轴对称的点”的坐标特征: (1) 关于x轴对称的点的坐标:横同纵反; (2) 关于y轴对称的点的坐标:横反纵同。
合作交流
3.如图,以矩形ABCD的中心为原点建立平面直角 坐标系: (1)点A与点C有什么位 y 置关系?点B与点D呢? A D (3, 5) 点A与点C关于原 (–3, 5) 点中心对称,点B与点 D关于原点中心对称; (2)关于原点中心对称的 O x 点的坐标有什么特征? 关于原点中心对称 B C 的点横坐标互为相反数, (3, –5) (–3, –5) 纵坐标互为相反数。
5 y A(-2,3) 4 3 2 1 (2,3)
B
-3
-2
C
0 -1 -2 -3
D
2
3
E
5
x
-4
F(2,-3)
6、在平面直角坐标系中,写出所有与△ABC全等 (2,3)或(2,-3) 或(3,3) 的△FED中,F点的坐标_。 y
5 A(-2,3) 4 3 2 1 F(3,3)
B
-3
-2
C
0 -1 -2 -3
练习: (简称:纵轴纵相等)
1、点P(-5, 6)与点Q关于y轴对称,则点Q (5,6) 的坐标为__________. 2、点M(a, -5)与点N(-2, b)关于y轴对称, 2 -5 则a=_____, b =_____.
小结:在平面直角坐标系中,关于x轴对 称的点横坐标相等,纵坐标互为相反数.关 于y轴对称的点横坐标互为相反数,纵坐标 相等.