轴对称和坐标变化

合集下载

八年级数学上册教学课件《轴对称与坐标变化》

八年级数学上册教学课件《轴对称与坐标变化》

2. 点(﹣1,2)关于原点的对称点坐标是( B )
A.(﹣1,﹣2) B.(1,﹣2)
C.(1,2)
D.(2,﹣1)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
1.如图,△ABC与△DFE关于y轴对称,已知A(-4,6), B(-6,2),E(2,1),则点D的坐标为( B ) A.(-6,4) B.(4,6) C.(-2,1) D.(6,2)
课堂检测
基础巩固题
3.3 轴对称与坐标变化
2.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论: ①A、B关于x轴对称; ②A、B关于y轴对称;③A、B关于原 点对称;④A、B之间的距离为4,其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
3.点(-4,9)与点(4,9)的关系是( C )
A.关于原点对称
B.关于x轴对称
C.关于y轴对称
D.不能构成对称关系
课堂检测
基础巩固题
3.3 轴对称与坐标变化
4.已知点P(2a-3,3),点A(-1,3b+2),
2
(1)如果点P与点A关于x轴对称,那么a+b= 3 ;
7
(2)如果点P与点A关于y轴对称,那么a+b= 3 .
课堂检测
能力提升题
3.3 轴对称与坐标变化
A: ( 1 , 2 ) B:( 5 , 1 ) C:( 3 , 4 )
A1:( 1 , 2) B1:( 5 , 1) C1:( 3 , 4 )
对应点的横 对应点的纵坐
坐标相同
标互为相反数
(3)如果点P(m,n)在△ABC内,那么它 在△A1B1C1内的对应点P1的坐标是 (m,-n) .

3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

3.3 轴对称与坐标变化(课件)北师大版数学八年级上册

所以根据关于坐标轴对称的点的坐标特征
可得A′(-3,-1),B′(-1,0),C′(-2,1),A″(3,1),
B″(1,0),C″(2,-1).
1-1.如图,在平面直角坐标系中,每个小正方形的边 知1-练 长均为 1.
(1)点 A 在第__四__ 象限, 它的坐标是_(3_,__-__2_)__ ;
(1)若点A,B关于x轴对称,求a,b的值; 解:因为点A,B关于x轴对称, 所以2a+b=2b-1,5+a-a+b=0, 解得a=-3,b=-5.
知2-练
(2)若点A,B关于y轴对称,求(4a+4b)2 025 的值. 解:因为点A,B关于y轴对称, 所以2a+b+2b-1=0,5+a=-a+b,
知1-讲
图示
知1-讲
特别提醒 当原图上所有点的横坐标不变,纵坐标乘
-1后,得到新图形上对应点的坐标,则新图形 与原图形上的每一组对应点都关于 x 轴对称, 所以新图形与原图形关于x轴对称;同理可得新 图形与原图形关于 y 轴对称的变化方式 .
知1-练
例1 [母题 教材P69习题T2 ]△ABC在平面直角坐标系中 的位置如图3-3-1所示,已知A,B,C三点在格点上, 请分别画出与△ABC关于x轴和y轴对称的图形,并 写出对称图形顶点的坐标.
A.1
B.-1
C.32 025
D.0
课堂小结
轴对称与坐标变化
画轴对称图形
对称轴 坐标轴
关键
关于坐标轴对称 坐标 变化
作对称点
关于x 轴对称
关于y 轴对称
称,横不变,纵相反;纵对称,纵不变,横相反. ◆关于坐标轴对称的点的坐标只有符号不同,其绝
对值相同.
知2-练
例2 已知点A(2a+b,5+a),B(2b-1,-a+b). (1)若点A,B关于x轴对称,求a,b的值; (2)若点A,B关于y轴对称,求(4a+4b)2 025 的值.

轴对称与坐标变化

轴对称与坐标变化

轴对称与坐标变化【教学建议】 此处内容主要用于教师课堂的精讲,每个题目结合试题本身、答案和解析部分,教师有的放矢的进行讲授或与学生互动练习。

类型一 轴对称与坐标变化 【题干】设点P 的坐标是(a,b ) (1)关于x 轴对称的点的坐标为__________,简记为关于横轴对称,“横”不变“纵”变;(2)关于y 轴对称的点的坐标为_________,简记为关于纵轴对称,“纵”不变“横”变.【答案】(1)(a,-b ) (2)(-a,b )【解析】点关于坐标轴对称时的变化特点【题干】已知点P(2a-3,3),点A (-1,3b+2),(1)如果点P 与点A 关于x 轴对称,那么a+b= ;(2)如果点P 与点A 关于y 轴对称,那么a+b= .【答案】3732-,【解析】(1)已知点P(2a-3,3)和点A(-1,3b+2)关于x 轴对称 关于x 轴对称的点,横坐标相等,纵坐标互为相反数. 所以,2a-3= -1,-3=3b+2 所以,a=1,b =35-所以,a+b =32-(2)同理a+b=37【题干】4=,则点A (1,a )关于y 轴的对称点为B ,则点B 的坐标为___________. 【答案】(-1,-1) 或(-1,7) 【解析】4=,∴|a ﹣3|=4,三、例题精析 例题1例题2例题3∴a ﹣3=±4,∴a =7或﹣1,∴A (1,7)或(1,﹣1),∴点B (﹣1,7)或(﹣1,﹣1).故答案为(﹣1,﹣1) 或(﹣1,7).类型二 轴对称作图【题干】如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△111C B A ,并写出点1A 的坐标;(2)画出△111C B A 绕原点O 旋转180°后得到的△222C B A ,并写出点2A 的坐标.【答案】(1)图略A 1(2,—4)(2)图略A 2(—2,4)【解析】 由点对称作图形的轴对称 类型三 坐标系内的规律探究例5.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.例题1【答案】()4044,0【详解】解:由题意可知:正方形的边长为2,∵A (2,0),B (0,2),C (2,2),P 1(4,0),P 2(0,﹣4),P 3(﹣6,2),P 4(2,10),P 5(12,0),P 6(0,-12)…可发现点的位置是四个一循环,每旋转一次半径增加2,2021÷4=505……1,故点2021P 在x 轴正半轴,OP 的长度为2021×2+2=4044,即:P 2021的坐标是(4044,0),故答案为:(4044,0).类型四 平面直角坐标系综合问题例6.在平面直角坐标系中,已知点(6,510)−+M a a .(1)若点M 在y 轴上,求a 的值;(2)若点M 到x 轴的距离为5,求点M 的坐标;(3)若点M 在过点(2,4)A −且与y 轴平行的直线上,求点M 的坐标.【答案】(1)6a =;(2)点M 的坐标为(7,5)−或(9,5)−−;(3)点M 的坐标为(2,50)【详解】(1)∵M 点在y 轴上,∴a -6=0∴a =6;(2)∵M 点到x 轴的距离为5∴|5a +10|=5∴5a +10=±5解得:a =-3或a =-1故M 点坐标为(-9,-5)或(-7,5);(3)∵M 点在过点A (2,-4)且与y 轴平行的直线上∴a -6=2∴a =8∴M 点坐标为(2,50).类型五 轴对称与坐标变化作图例7.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标.【答案】(1)见解析;(2)见解析;P ()2,0【详解】(1)如图所示,111A B C △即为所求.2,0.(2)如图所示,点P即为所求,其坐标为()【题干】已知点P(2a-3,3),点A (-1,3b+2),(1)如果点P 与点A 关于x 轴对称,那么a+b= ;(2)如果点P 与点A 关于y 轴对称,那么a+b= .【题干】4=,则点A (1,a )关于y 轴的对称点为B ,则点B 的坐标为___________.类型二 轴对称作图【题干】如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△111C B A ,并写出点1A 的坐标;(2)画出△111C B A 绕原点O 旋转180°后得到的△222C B A ,并写出点2A 的坐标.类型三 坐标系内的规律探究例5.如图,四边形AOBC 是正方形,曲线123CPP P ⋅⋅⋅叫做“正方形的渐开线”,其中弧1CP ,弧12PP ,弧23P P ,弧34P P 的圆心依次按点A ,O ,B ,C 循环,点A 的坐标为()2,0,按此规律进行下去,则点2021P 的坐标为______.例题3例题1故答案为:(4044,0).类型四 平面直角坐标系综合问题例6.在平面直角坐标系中,已知点(6,510)−+M a a .(1)若点M 在y 轴上,求a 的值;(2)若点M 到x 轴的距离为5,求点M 的坐标;(3)若点M 在过点(2,4)A −且与y 轴平行的直线上,求点M 的坐标.类型五 轴对称与坐标变化作图例7.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)画出ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上求作一点P ,使PAB △的周长最小,并直接写出点P 的坐标.。

《轴对称与坐标变化》位置与坐标

《轴对称与坐标变化》位置与坐标

伸缩变换
定义
伸缩变换是改变图形长度的变换。
操作方法
在平面直角坐标系中,伸缩变换可表示为 将x轴、y轴上的点分别乘以一个常数。
特点
伸缩变换不改变图形的形状和方向,只改 变图形的尺寸。
实例
将点(x,y)沿着x轴方向缩小为原来的1/a倍 得到点(ax,y),沿着y轴方向缩小为原来的 1/b倍得到点(x,by)。
挖掘轴对称与坐标变化在其他学科 和实际生活中的应用场景,拓展其 应用范围。
轴对称与坐标变化的应用拓展
物理学
深入研究轴对称与坐标变化在物理学中 的应用,如量子力学、相对论等领域,
推动理论物理的发展。
计算机科学
利用轴对称与坐标变化开发新的算法 和软件,提高计算机性能和智能化水
平。
工程学
将轴对称与坐标变化应用于机械设计 、建筑设计等领域,提高设计效率和 精度。
艺术作品中的实例分析
总结词
艺术作品中也常常利用轴对称和坐标变化来创造出美 丽和动人的艺术效果。
详细描述
在艺术作品中,轴对称和坐标变化也被广泛地应用。例 如,在绘画中,艺术家可以利用轴对称来创造出平衡和 和谐的艺术造型。同时,通过坐标的变化,艺术家可以 表现出不同的色彩和明暗变化,创造出更加丰富和动人 的艺术效果。在雕塑中,轴对称和坐标变化也被广泛应 用,例如人体雕塑中的人体结构就是典型的轴对称结构 ,而通过坐标的变化则可以表现出不同的人体形态和表 情。
性质
轴对称图形的对应线段相等,对应角相等,图形的形状和大小完全相同。
坐标变化的定义与性质
定义
在平面直角坐标系中,当图形的位置发生变化时,相应的坐 标也发生变化,这种变化称为坐标变化。
性质
坐标变化具有连续性和规律性,可以通过平移、旋转、缩放 等变换实现。

轴对称与坐标的变化x轴y轴

轴对称与坐标的变化x轴y轴

轴对称与坐标的变化x轴y轴轴对称是指一个图形或物体在某条直线上对称,即通过这条直线可以将图形或物体分为两部分,两部分完全重合。

在平面几何中,轴对称通常是指对称于x轴、y轴或其他直线的图形。

首先,我们来看x轴和y轴对称。

x轴是指平面上的一条水平直线,通常表示为y=0;y轴是指平面上的一条垂直直线,通常表示为x=0。

对于一个图形或物体来说,如果它关于x轴对称,那么它的上下两部分将完全重合;如果它关于y轴对称,那么它的左右两部分将完全重合。

以一个简单的矩形为例,如果矩形关于x轴对称,那么矩形的上下两边将是对称的,也就是上边与下边完全重合;如果矩形关于y轴对称,那么矩形的左右两边将是对称的,也就是左边与右边完全重合。

在平面几何中,轴对称可以用来判断图形的性质和解决一些几何问题。

比如,可以利用轴对称性质判断一个图形是否是对称图形,通过寻找对称轴可以更方便地对图形进行分析和计算。

除了x轴和y轴,平面上还可以存在其他直线作为对称轴。

这时,轴对称就是指图形或物体关于这条直线对称。

例如,对于圆形来说,它关于任何直径线都是对称的;对于正方形来说,它关于对角线也是对称的。

轴对称对于物体的设计和制作也有很大的作用。

在建筑设计中,常常利用轴对称原理来设计对称美观的建筑;在机械制造中,也常常利用轴对称来确保产品的理想性能。

在坐标系中,x轴和y轴分别是平面上两个互相垂直的轴线。

它们交叉的点被称为原点(0,0),x轴的正方向为向右,负方向为向左;y轴的正方向为向上,负方向为向下。

坐标系中其他点的坐标可以通过与x轴和y轴的交点距离和方向来表示。

在使用坐标系进行计算和分析时,轴对称可以帮助我们确定图形或物体的位置和特征。

通过观察图形关于x轴或y轴的对称性质,可以简化计算和分析的过程。

总之,轴对称和坐标的变化在几何中起着重要的作用。

轴对称可以帮助我们理解图形的性质和解决几何问题,而坐标系则为我们提供了一种方便的计算和分析工具。

通过深入理解轴对称和坐标的变化,我们可以更好地理解和应用几何学。

轴对称与坐标变化PPT授课课件

轴对称与坐标变化PPT授课课件

能力提升练
18.《中华人民共和国环境噪声污染防治法》第四十六条 规定:使用家用电器、乐器或者进行其他家庭娱乐活 动时,应控制音量或者采取其他有效措施,避免对周 围居民造成环境噪声污染。 请你用所学的有关噪声的物理知识解读此规定:
(1)“控制音量”是采用什么方法来控制噪声污染的?控制的 是噪声的音调还是响度?
能力提升练
11.下面是生活中对声音特性的一些形容:(1)细声细气, (2)引吭高歌,(3)低沉语调,(4)高声喧哗;(5)尖叫。其 中形容声音音调的是____(3_)_(_5_)__;形容声音响度的是 ____(_1_)(_2_)_(4_)__。(均填序号)
能力提升练
17.[安徽淮南谢家集区期中]控制和减小噪声是当前人们 优化生活环境的一个重要课题。下列措施中不能直接 减弱噪声的是( B ) A.在居民区和学校周围植树 B.在城市主要道路两旁安装噪声监测仪 C.市区内禁止机动车鸣喇叭 D.在邻近居民区的高速公路上安装隔声屏障
点P(x,y)关于x轴对称的点的坐标为(x,-y);
感悟新知
知1-练
例1
(1)在平面直角坐标系中依次连接下列各点: (0, 0), (5, 4),(3, 0), (5, 1), (5, -1), (3, 0), (4, -2), (0, 0), 你得到了一个怎样的图案?
(2)将所得图案的各个“顶点”的纵坐标保持 不变,横坐标分别乘-1,依次连接这些 点,你会得到怎样的图案?这个图案与 原图案又有怎样的位置关系呢?
导引:根据关于坐标轴对称的点的坐标规律列出两个方程 求解即可.
感悟新知
解:(1)因为点A,B 关于x 轴对称,
知2-练
所以2a+b=2b-1,5+a-a+b=0,解得a= -3,b= -5.

人教版五四制初二上册数学知识点归纳

人教版五四制初二上册数学知识点归纳

人教版五四制初二上册数学知识点归纳
人教版五四制初二上册数学知识点归纳主要包括以下几个方面:
1. 轴对称与坐标变化:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

2. 一次函数:函数的一般定义是,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y 是x的函数,其中x是自变量。

表示函数的方法一般有:列表法、关系式法和图象法。

特别的,若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,当b=0时,称y是x
的正比例函数。

正比例函数y=kx的图像是一条经过原点(0,0)的直线。

3. 角平分线:角平分线上的点到角的两边的距离相等。

这是角平分线的性质定理。

此外,角的内部到角的两边距离相等的点在角的平分线上。

这是角平分线的性质定理的逆定理。

请注意,这只是初二上册部分知识点,建议查阅教科书目录或咨询教师获取完整的知识点归纳。

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一 点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余 三个点中存在两个点关于一条坐标轴对称,则原点是( B ) A.点A B.点B C.点C D.点D
7.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值 是( D ) A.-5 B.-3 C.3 D.1
即 22+52= 29.
巩固提升
1.在平面直角坐标系中,点A的坐标为(1,2).作点A关于x轴的对称 点,得到点A′,则点A′所在的象限是( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放 在平面直角坐标系中,如果图中点A的坐标为(-5,3),则其关于y轴 对称的点B的坐标为( A ) A.(5,3) B.(5,-3) C.(-5,-3) D.(3,5)
5.如图所示的点A,B,C,D,E中,哪两个点关于x轴对称?哪两个 点关于y轴对称?点C和点E关于x轴对称吗?为什么? 解:因为点A(-3,2),B(-3,-2),E(3,-2), 所以点A,B关于x轴对称,点B,E关于y轴对称. 因为点C(3,3),E(3,-2), 所以点C,E不关于x轴对称.
7.【空间观念、几何直观】△ABC在平面直角坐标系中的位置如图 所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别为A,B, C的对应点); 解:如图所示,△A′B′C′即为所求.
(2)直接写出A′,B′,C′三点的坐标; 解:A′,B′,C′三点的坐标分别为(2,3),(3,1),(-1,-2). (3)在y轴上找一点P,使得PA+PB最小,画出点P所在的位置(保留作 图痕迹,不写作法),并求出PA+PB的最小值. 解:如图所示,点 P 即为所求,PA+PB 的最小值为线段 A′B 的长,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0) 并用线段依次 连接,看一看 是什么图案.
y
5
4
3 2
1
0 1 2 3 4 5 6 7 8 9 10 x
–1 –2 –3 –4
–5
y
两个图形关5 于y轴对称
将所得图案的 各个顶点的纵
4
坐标保持不变,
3
1、关于y轴对称的两个图形上点的坐标特征:
(x , y)
(-x , y)
2、关于x轴对称的两个图形上点的坐标特征:
(x , y)
(x , -y)
3、关于原点中心对称的两个图形上点的坐标 特征:
(x , y)
(-x , -y)
应用:
如图所示: 1、你能做出ABCD关于x轴对称 的图形吗?关于原点对称的图 呢?
D3
D2
B3
C3
C2
B2
A3
A2
拓展 练习
1.点 A(2,- 3)关 于 x 轴 对 称 的 点 的 坐 标
是( ) .
2.点 B( - 2,1)关 于 y 轴 对 称 的 点 的 坐
标 是( ).
3.点(4,3)与点(4,- 3)的关系是( ) .
A.关于原点对称 B.关于 x轴对称
C.关于 y轴对称 D.不能构成对称关系
4.点(m,- 1)和点(2,n)关于 x轴对称,则 mn等
于( )
A.- 2 B.2 C.1
D.- 1
5. 已知A、B两点的坐标分别是(-2,3)和(2,3), 则下面四个结论: ①A、B关于x轴对称;②A、B关于y轴对称;③A、B关 于原点对称;④A、B之间的距离为4,其中正确的有 ()
A.1个 B.2个 C.3个 D.4个
–1
将各坐标的纵
坐标与横坐标都
5x
乘以-1,图形 会变成什么样?
(x,y)
–2
–3
(0,0) (5,4) (3,0)
–4
(5,1)
(5,-1)
坐标变化为: (3,0) (4,-2) (0,0)
(-x,-y) (0,0) (-5,-4) –5(-3,0) (-5,-1) (-5, 1) (-3,0) (-4, 2) (0,0)
小结:一、知识小结
关于x轴对称的两个点的坐标:横坐标保 持相同,纵坐标互为相反数. 关于y轴对称的两个点的坐标:各点的纵 坐标保持相同,横坐标互为相反数. 关于原点对称的两个点的坐标:横、纵坐 标都互为相反数.
口诀记忆法 横轴横不变,纵轴纵不变
二、方法小结 1、作图 2、学习方法
作业布置
❖ 课本69页习题 3,4题 ❖ 创新导学 3.3轴对称与坐标变化
导入:
1.在如图所示的平面直角坐标系 中,第一、二象限内各有一面小 旗. 两面小旗之间有怎样的位置关系? 对应点A与 A1 的坐标又有什么 特点?其它对应的点也有这个特 点吗? 2.在这个坐标系里画出小旗 ABCD关于x轴的对称图形,它 的各个“顶点”的坐标与原来的
点的坐标有什么关系?
例:在直角坐 标系中描出以 下各点:
(-x,y) ( 0,0) (-5,4) (-3,0) (-5,1) (-5,-1) (-3,0) (-4,-2) ( 0,0)
1、关于y轴对称的两个图形上点的坐标特征:
(x ,y)
(-x , y)
猜一猜,做一做
y
5 与原图形关于x轴对称
4
3 2 1 0 12345678 –1 –2
将所得图案的各 个顶点的横坐标 保持不变,纵坐 标分别乘-1置于 图 横 变得 ? 的 关x形 坐 ,到 观 两 系轴: 标 纵怎 察 条 ?对各 保 坐样 坐 鱼称点 持 标的 标 的
第三章 位置与坐标
3. 轴对称与坐标变化
学习目标:
1、根据已知条件, 按要求画图,找 出图中变换的坐标. 2、感受在同一坐标系中图形中 点的坐标变化与图形变化之间的 关系. 3、学会形象思维能力、培养数 形结合的意识,并用来分析、解 决问题.
自学指导:
1、自学课本68到69页内容,并回答问题. 2、思考、完成做一做. 3、小组交流,解决议一议.
(x , y)
(-x , y)
2、关于x轴对称的两个图形上点的坐标特征:
(x , y)
(x , -y)
y
与原图形关于5 原点中心对称
4
3
图中的鱼是将坐 标为:(0,0) (5,4)
(3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)的 点用线段依次连接 而成的。
2
1 –5 –4 –3 –2 –1 0 1 2 3 4
互为相反数.
–3
坐标变化为:
( x,y) –(40,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
–5
(x,-y ) (0,0) (5,-4) (3,0) (5,-1) (5,1) (3,0) ( 4,2 ) (0,0)
、 1 关于y轴对称的两个图形上点的坐标特征:
横坐标分别乘-1,
2
依次连接这些
1
点,你会得到
怎关样于的y轴图对案称?的图
-5 -4
-3 -2
-1 0 –1
12
3
4 5 x 观形察:坐各标点系的中纵坐
的标两保条持鱼不的变位,横
–2
置坐关标系互?为相反数.
–3
–4
顶点坐标的变化:
(x,y) (0,0 ) (5,4) –(53,0) (5,1) (5,-1) (3,0) (4, -2) ( 0,0)
思考题:
❖ 将例题各个“顶点”中横坐标加2,“鱼” 发生了什么变化,纵坐标加2呢?
❖ 将例题各个“顶点”中横坐标乘2,“鱼” 发生了什么变化,纵坐标乘2呢?
❖ 将例题各个“顶点”中横、纵坐标都乘2, “鱼”发生了什么变化?
❖ 自己总结一下“鱼的变化”的规律
相关文档
最新文档