试验温度对包装材料水蒸气透过率的影响分析

试验温度对包装材料水蒸气透过率的影响分析
试验温度对包装材料水蒸气透过率的影响分析

试验温度对包装材料水蒸气透过率的影响分析

摘要:试验温度是影响包装材料水蒸气透过率测试结果的重要因素,本文通过对不同温度下材料水蒸气透过率的测试,分析了试验温度对包材阻湿性的影响,并介绍了试验原理、设备C390水蒸气透过率测试系统参数及适用范围、试验过程等内容,为企业监控不同温度下材料的水蒸气透过率提供参考。关键词:水蒸气透过率、阻湿性、温度、水蒸气透过率测试系统、包装材料、红外传感器法

1、意义

水蒸气透过率是评价包装材料阻湿性的指标,是影响包装材料对所包装产品保护功能的重要因素,是防止产品出现受潮、发霉、结块等问题的重要屏障。影响包装材料水蒸气透过率的因素较多,如包装材质、厚度、材料内部结构及温度、湿度等环境条件等,一般来说,含铝箔、PVDC、镀铝膜、镀氧化物膜等材料包装的水蒸气透过率较低,同种材质包装厚度较厚者、结晶度、取向程度较高者其阻湿性较高,另外,包装材料不同的使用或存储环境同样会影响其水蒸气透过率,因此对于已经成型的包装材料来说,可通过对存储及流通环境的控制,使包装材料的阻湿性满足产品的保质要求。本文测试了不同试验温度下材料的水蒸气透过率,并分析材料的阻湿性随温度的变化情况。

2、试验依据

包装材料水蒸气透过率的测试方法有杯式法、电解传感器法、湿度传感器法、红外传感器法等,本次试验依据红外传感器法测试样品,所依据的标准为GB/T 26253-2010《塑料薄膜和薄片水蒸气透过率的测定红外检测器法》。

3、试验样品

本文以某企业生产的塑料薄膜为试验样品,分别测试其在25℃、90%RH与38℃、90%RH条件下的水蒸气透过率。

4、试验设备

本次试验所采用的试验设备为C390水蒸气透过率测试系统,该设备由济南兰光机电技术有限公司自主研发生产。

图1C390水蒸气透过率测试系统

4.1 试验原理

红外传感器法是以水分子定量吸收红外光为原理,通过测试红外光经过含有水分子的载气前后的衰减程度计算试样的水蒸气透过率。试验时,设备的试验腔被试样分隔成上、下两个测试腔,上腔为高湿侧,下腔为低湿侧,水蒸气会通过试样由上腔渗透至下腔,并被下腔中的载气氮气携带至红外传感器出进行测试,从而得到试样的水蒸气透过率。

4.2 设备参数

薄膜类试样测试面积为50 cm2时,测试范围0.05 ~ 40 g/(m2·24h),测试面积为7 cm2时,测试范围0.35 ~ 280 g/(m2·24h);容器类试样的测试范围为0.00025 ~ 0.2 g/(pkg·d);试验温度控制范围为15℃ ~ 55℃,控温精度为±0.2℃;湿度范围为5%RH ~ 90%RH、100%RH,控湿精度为±2%RH;人工、比例、循环三种试验模式为不同阻隔性质的材料提供了合适的检测方法;使用第二代三腔一体集成块,三个测试腔均可独立设计,试验过程互不干扰,试验结果独立显示。

4.3 适用范围

(1) 本设备适用于薄膜类、片材类、纸张、纸板及其复合材料类、容器类等包装件的水蒸气透过率的测试。其中薄膜类包括各种塑料薄膜、纸塑复合膜、镀铝膜、铝箔、铝箔复合膜、玻纤铝箔纸复合膜等;片材类包括各种工程塑料、橡胶、建材等片状材料,如PP片材、PVC片材、PVDC片材等;纸张、纸板及其复合材料类包括纸张、纸板等,如烟包镀铝纸、纸铝塑复合片材等;容器类包括塑料、橡胶、纸、纸塑复合、玻璃、金属等材料做成的瓶、袋、罐、盒、桶,如茶叶铝罐、可乐瓶、花生油桶、利乐包装、真空包装袋、金属包装袋、金属三片罐、塑料化妆品软管包装、牙膏软管包装、果冻杯等。

该设备还可扩展用于太阳能背板、液晶显示屏膜、医药泡罩、药品塑料瓶、无菌护创膜、汽车油箱、电池塑料外壳等特殊包装件水蒸气透过率的测试。

(2) 本设备符合GB/T 31355、ISO 15106-2、ASTM F1249、GB/T 26253、TAPPI T557、JIS K7129、YBB00092003。

5、试验过程

5.1 裁样

用专用取样品从待测试的薄膜样品表面裁取试样6片,放置在23±2℃、50±10%的环境下状态调节4 h。

5.2 25℃下水蒸气透过率测试

(1) 在设备3个测试腔周边涂抹一层真空油脂,取3片试样分别装夹到设备中。

(2) 设置试验条件(25℃、90%RH)、试样名称、试验模式等参数信息,点击试验选项,试验开始。打开气源,调节载气流量,使测试腔内的湿度达到设定值。试验结束后设备显示试样的水蒸气透过率值。

5.3 38℃下水蒸气透过率测试

除试验温度设置为38℃外,其余过程按照5.2中的步骤进行测试。

6、试验结果

25℃、90%RH条件下,所测试薄膜试样的水蒸气透过率分别为3.11 g/(m2·24h)、3.09 g/(m2·24h)、3.17 g/(m2·24h),平均值为3.12 g/(m2·24h);38℃、90%RH条件下,所测试薄膜试样的水蒸气透过率分别为6.91 g/(m2·24h)、6.86 g/(m2·24h)、6.83 g/(m2·24h),平均值为6.87 g/(m2·24h)。

7、结论

从试验过程可以看出,设备的操作简单,智能化程度高;从每种试验条件下的试验结果来看,各测试值间的偏差小,重复性好,且测试结果的精度高;由两种试验条件下测试结果的平均值可知,38℃条件下的水蒸气透过率明显高于25℃条件下的水蒸气透过率,即在25℃的环境中所测试薄膜样品的阻湿性较高。

Labthink兰光,专业致力于为包装、食品、医药、日化、印刷、胶粘剂、汽车、石化、生物、建筑及新能源等领域客户提供行业咨询、产品销售、售后服务、风险控制解决方案。Labthink兰光目前生产销售的设备百余款,检测仪器涉及包装材料的阻隔性能检测、厚度检测、物理机械性能检测、包装容器的密封性能检测等方面,致力于为客户提供全面、专业、精湛的包装安全解决方案,帮助客户从风险控制入手,提高企业质量安全意识,减少企业成本流失。Labthink兰光检测设备有:透氧测试仪、拉力实验机、蒸发残渣恒重仪、透光率雾度测定仪、薄膜厚度测定仪、透气度仪、透湿性测试仪、包装残氧测定仪、透气性测试仪、揉搓试验仪、汽车内饰雾化仪、摩擦系数测量仪、落镖冲击检测仪、光泽度仪、胶带剥离试验机、高温蒸煮锅、落球冲击试验仪、总迁移量检测仪、持粘性测定仪、水蒸气透过率仪、初粘性检测仪、摆锤冲击测试仪、耐磨测试仪、包装热封性测试仪、纸张撕裂度仪、剥离强度测试仪、纸张厚度测定仪、瓶盖扭矩测试仪、热合强度测定仪、纸箱抗压机、溶剂残留测定仪、标准对色灯箱、胶带保持力测试仪等。如需了解更多检测仪器的详细信息与操作方法,可直接登录济南兰光公司网站或致电咨询!济南兰光机电技术有限公司愿借此与行业中的企事业单位增进技术交流与合作。

空气相对湿度与露点查询表

-5.595 -682 -872 -1061 -1250 -1440 -1729 -2119 -26 -5.095 -684 -773 -963 -1152 -1342 -1631 -1921 -14 -4.596 -585 -774 -861 -1053 -1343 -1533 -1823 -2213 -28 4 -41 -4.096 -586 -675 -865 -1055 -1245 -1435 -1725 -2116 -26 6 -36 -3.597 -486 -576 -766 -956 -1147 -1337 -1528 -2018 -248 -32 -3.097 -387 -578 -667 -858 -1048 -1239 -1530 -1820 -2311 -18 -2.598 -388 -478 -668 -858 -950 -1241 -1432 -1723 -2113 -26 1 -35 -2.098 -288 -479 -569 -760 -951 -1142 -1333 -1625 -2016 -24 3 -32 -1.599 -288 -380 -570 -662 -853 -1044 -1235 -1527 -1818 -23 6 -29 -1.099 -190 -381 -471 -663 -754 -946 -1137 -1429 -1721 -211- -26 -0.5100 -190 -281 -372 -564 -756 -847 -1139 -1331 -1623 -1913 -24 0.0100 091 -282 -273 -465 -657 -848 -1041 -1233 -1625 -1817 -22 0.5100 091 -183 -274 -466 -558 -760 -942 -1234 -1427 1619 -20 1.0100 191 083 -275 -366 -460 -652 -844 -1036 -1229 -1521 -19 1.5100 192 083 -175 -268 -461 -553 -745 -938 -1131 -1423 -17 2.0100 292 184 -175 -268 -361 -553 -647 -840 -932 -1325 -16 2.5100 292 184 176 -169 -362 -454 -647 -740 -933 -1227 -15 3.0100 392 284 176 -169 -262 -454 -548 -741 -834 -1128 -1422 -17 3.5100 392 185 177 070 -262 -355 -549 -641 -835 -1029 -1324 -16 4.0100 493 385 277 070 -163 -256 -449 -642 -836 -930 -1226 -15 4.5100 493 385 278 171 064 -257 -350 -544 -737 -831 -1126 -14 5.0100 593 486 378 272 065 -158 -351 -445 -638 -732 -1027 -1321 -16 5.5100 593 486 379 272 165 -159 -252 -446 -540 -733 -927 -1222 -1516 -18 6.0100 693 586 479 373 166 060 -253 -347 -541 -635 -829 -1123 -1417 -17 6.5100 693 586 479 373 267 160 -154 -248 -142 -636 -830 -1024 -1318 -16 7.0100 793 687 580 474 367 161 055 -149 -343 -537 -731 -926 -1120 -1414 -18 7.5100 793 687 580 474 368 262 156 -150 -244 -438 -633 -827 -1022 -1316 -17 8.0100 894 787 681 575 469 363 157 051 -245 -340 -534 -729 -923 -1218 -1512 -197 -25 8.5100 894 787 681 575 469 363 258 152 -146 -241 -435 -630 -825 -1119 -1313 -179 -23 4 -31 9.0100 994 888 781 676 570 464 358 153 047 -242 -336 -531 -726 -1021 -1216 -1611 -20 6 -27 9.5100 994 988 882 776 570 465 359 254 148 -143 -338 -432 -627 -922 -1117 -1412 -188 -24 10.0100 1094 988 882 777 671 565 460 354 149 044 -239 -334 -529 -724 -1019 -1314 -169 -21 5 -29 10.5100 1094 1088 982 877 771 566 461 355 250 045 -140 -335 -430 -625 -920 -1116 -1511 -19 6 -25 2 -38 11.0100 1194 1088 983 877 772 666 561 456 351 146 041 -236 -431 -526 -822 -1017 -1313 -178 -22 4 -31 11.5100 1194 1189 1083 978 872 767 662 457 352 247 042 -137 -332 -528 -723 -919 -1214 -1510 -19 5 -26 1 -43 12.0100 1294 1189 1083 978 873 768 663 557 453 348 143 038 -232 -429 -624 -820 -1016 -1311 -177 -23 3 -33 12.5100 1294 1289 1183 1078 973 868 763 658 453 349 244 039 -135 -330 -526 -721 -917 -1213 -159 -20 4 -27 13.0100 1395 1289 1184 1079 974 869 764 659 554 449 345 140 036 -231 -427 -623 -818 -1114 -1410 -18 6 -24 13.5100 1395 1389 1284 1179 1074 969 864 760 655 550 346 241 137 -132 -328 -524 -720 -916 -1211 -168 -21 14.0100 1495 1390 1284 1179 1074 970 865 760 656 551 446 342 138 033 -229 -425 -621 -817 -1113 -149 -18 14.5100 1495 1490 1384 1280 1175 1070 965 861 756 652 547 343 239 135 -130 -326 -522 -718 -914 -1211 -16 15.0100 1595 14 90 1385 1280 1275 1171 1066 961 857 652 548 444 340 136 031 -227 -424 -620 -816 -1112 -14 15.5100 1595 1590 1485 1380 1276 1171 1066 962 858 753 649 545 341 237 133 -129 -325 -521 -717 -913 -12 16.0100 1695 1590 1485 1381 1376 1271 1167 1062 958 854 750 546 441 337 134 030 -226 -422 -618 -815 -11 16.5100 1695 1690 1585 1481 1376 1272 1267 1063 9 59 855 750 646 542 438 235 131 -127 -323 -520 -716 -9 17.0100 1795 1690 1586 1581 1477 1372 1268 1164 1059 955 851 747 643 439 335 232 028 -224 -421 -617 -9 17.5100 1795 1791 1686 1581 1477 1373 1368 1264 1160 1056 952 748 644 540 436 233 129 -125 -322 -432 7 18.0100 1895 1791 1686 1682 1577 1473 1369 1265 1160 1056 952 849 745 641 537 334 230 027 -223 -331 6 18.5100 1895 1891 1786 1682 1578 1473 1469 1365 1261 1157 1053 949 846 642 638 435 331 228 -124 -230 5

蒸汽温度与压力的关系

33 第4章 饱和蒸汽压力和温度关系实验 水蒸汽是人类在热机中应用最早的工质。虽然以后也应用燃气和其它工质,由于水蒸汽具有易于获得、有适宜的热力参数和不会污染环境等优点,至今仍是工业上广泛应用的的主要工质。他的物理性质较理想气体复杂的多,不能用简单的数学式来表达。本实验通过研究饱和蒸汽的压力与温度的关系加深对水蒸汽饱和状态的理解。 各种物质由液态转变为汽态的过程为汽化。 4.1实验目的 (1)通过观察饱和蒸汽压力和温度的关系,加深对饱和状态的理解。 (2)通过试验数据的整理,掌握饱和蒸汽P-T 关系图表的编制方法。 (3)学会温度计、压力表、调压器和大气压力计等仪表的使用方法。 4.2 实验装置 蒸汽发生器、压力表、温度计、可控数显温度仪和电流表等,如图4.1。 图4.1 饱和蒸汽温度、压力关系实验装置 1-压力表;2-排气阀;3-缓冲器;4-可视玻璃及蒸汽发生器;5-电源开关;6-电功率调节器;7-温度计;8-可控数显温度仪;9-电流表

34 4.3 实验方法与步骤 (1)熟悉实验装置及使用仪表的工作原理和性能。 (2)将电功率调节器调节至电流表零位,然后接通电源。 (3)调节电功率调节器并缓慢逐渐加大电流,待蒸汽压力升至一定值时,将电流降低0.2安培左右保温,待工况稳定后迅速记录下水蒸气的压力和温度。重复上述实验,在0~1.0MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 (4)实验完毕后,将调压指针旋回零位,并断开电源。 (6)记录室温和大气压力。 4.4 数据记录和整理 (1)数据记录和计算 实验 次数 饱和压力(MPa ) 饱和温度(℃) 误差 备注 压力表读数P ' 大气压力B 绝对压力B P P +'= 温度 计读 数t ' 理论值t t t t ' -=?(℃) %100??t t (%) 1 2 3 4 5 6 (2)绘制P-t 关系曲线 将实验结果点在坐标上,清除偏离点,绘制曲线。 图4.2 饱和水蒸汽压力和温度的关系式

ppmv与露点温度对照表

目录 一、概述--------------------------------------------------------(2) 二、测量原理--------------------------------------------------(2) 三、主要技术性能--------------------------------------------(3) 四、仪器结构--------------------------------------------------(3) 五、使用方法--------------------------------------------------(6) 六、维护工作--------------------------------------------------(7) 七、注意事项--------------------------------------------------(15) 八、仪器的成套性--------------------------------------------(16) 附表1 常用备件清单----------------------------------(17)附表2 ppm v与露点温度对照表---------------------(18)

一概述 该仪器用电解法测量气体样品中的水分,广泛用于造气、电力、石油化工、电子工业、热处理等部门作气体质量检测、监视干燥剂的干燥效果以及特殊保护器含水量检测等。被测气样可以是空气、惰性气体、烃类及其他不破坏五氧化二磷涂层及池体、不在电极上起聚合反应、不参与电解反应的气体。该仪器既可以作为实验室仪器,也可以用于生产流程,尤其适宜作连续测定。 二测量原理 该仪器用连续取样的方法,使气样流经一个特殊结构的电解池,其水分被作为吸湿剂的五氧化二磷膜层吸收,并被电解为氢气和氧气排出,而五氧化二磷得以再生。反应过程可表示为: P2O5+H2O=2HPO3--------------------------------------------------- (1) 2HPO3=H2↑+1/2O2↑+P2O5 -------------------------------------- (2) 合并(1)、(2)得: H2O=H2↑+1/2O2↑-----------------------------------------------------(3) 当吸收和电解达成平衡后,进入电解池的水分全部被五氧化二磷膜层吸收,并全部被电解。若已知环境温度、环境压力和气样流量,根据法拉第电解定律和气体推导出的电解电流与气样含水量之间的关系为: 0 04 0 3 10 TV P FU QPT I -? =--------------------------------------- (4) 式中:I——水的电解电流,μA U——气样含水量,ppm v(即体积比): Q——气样流量,mL/min; P——环境压力,Pa; To=273K; F=96485C; Po=101325Pa; T—环境的绝对温度,K; V o=22.4L/mol。 由(4)式可见,电解电流的大小正比于气样的含水量,因此通过测量水的电解电流来测量气样中的含水量。在标准大气压和20℃条件下,一理想气体以100mL/min的流量流经电解池,当气样含水量为1ppm v时,由(4)式计算出电解流量为13.4μA。该仪器以ppm v为计量单位,可直接读取气样中水分含量的ppm v值。

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 一、水的饱和蒸汽压与温度的关系 蒸汽压是一定外界条件下,液体中的液态分子会蒸发为气态分子,同时气态分子也会撞击液面回归液态。这是单组分系统发生的两相变化,一定时间后,即可达到平衡。平衡时,气态分子含量达到最大值,这些气态分子对液体产生的压强称为蒸气压。 水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。 一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速

度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥发。 二、水的饱和蒸汽压与温度对应表 水的饱和蒸汽压与温度对应表

三、水的饱和蒸汽压与温度的换算公式 当10℃≤T≤168℃时,采用安托尼方程计算:lgP=7.07406-(1657.46/(T+227.02)) 式中:P——水在T温度时的饱和蒸汽压,kPa; T——水的温度,℃ 四、水的饱和蒸汽压曲线

关于露点温度的计算方法

关于露点温度的计算方法 2010-10-25 16:37:42| 分类:工作| 标签:|字号大中小订阅 因为看到很多朋友发帖子,询问露点温度的计算方法,没有发现太确切的跟帖,现举例说明如下: 例如:23℃,RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱)

关于露点温度的计算方法(DOC)

关于露点温度的计算方法 例如:23℃,RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于

露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱) 室内空气露点查询表

水在不同温度下的饱和蒸气压

饱和蒸气压(s a t u r a t e d v a p o r p r e s s u r e) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C)

式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在1.333~199.98kPa范围内误差小。 编辑本段附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2)2508.76 氯化银AgCl1255~1442公式(2)185.58.179 三氯化铝AlCl370~190公式(2)11516.24 氧化铝Al2O31840~2200公式(2)54014.22 砷As440~815公式(2)13310.800 砷As800~860公式(2)47.16.692 三氧化二砷As2O3100~310公式(2)111.3512.127 三氧化二砷As2O3315~490公式(2)52.126.513 氩Ar-207.62~-189.19公式(2)7.81457.5741 金Au2315~2500公式(2)3859.853 三氯化硼BCl3……6.18811756.89214.0 钡Ba930~1130公式(2)35015.765 铋Bi1210~1420公式(2)2008.876 溴Br2……6.83298113.0228.0 碳C3880~4430公式(2)5409.596 二氧化碳CO2……9.641771284.07268.432 二硫化碳CS2-10~+1606.851451122.50236.46 一氧化碳CO-210~-1606.24020230.274260.0 四氯化碳CCl4……6.933901242.43230.0 钙Ca500~700公式(2)1959.697 钙960~1100公式(2)37016.240 镉Cd150~320.9公式(2)1098.564 镉500~840公式(2)99.97.897 氯Cl2……6.86773821.107240 二氧化氯ClO2-59~+11公式(2)27.267.893 钴Co2374公式(2)3097.571 铯Cs200~230公式(2)73.46.949 铜Cu2100~2310公式(2)46812.344 氯化亚铜Cu2Cl2878~1369公式(2)80.705.454 铁Fe2220~2450公式(2)3097.482

饱和蒸汽压力与温度的关系

当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其蒸汽称为干饱和蒸汽(也称饱和蒸汽)。 饱和蒸汽与过热蒸汽的区别:饱和蒸汽压力与温度有一一对应关系,如已知饱和蒸汽压力为0.5MPa,则温度为158℃,反之,已知饱和蒸汽温度为180℃,则压力必为0.9MPa,所以从压力与温度数据可以判断是否为饱和蒸汽、过热蒸汽。 饱和蒸汽温度1mpa以下160~170度左右 1mpa以上170~195度左右 过热蒸汽在2mpa以上就400度左右. 饱和蒸汽温度压力对照表

压力MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 0.000 99.5 0.180 131.0 0.000 99.5 -0.072 65.0 0.005 101.0 0.185 131.5 -0.002 99.0 -0.074 64.0 0.010 102.0 0.190 132.0 -0.004 98.5 -0.076 63.0 0.015 103.5 0.195 132.5 -0.006 97.5 -0.078 62.0 0.020 104.5 0.200 133.5 -0.008 97.0 -0.08 60.0 0.025 105.5 0.210 134.5 -0.010 96.5 -0.081 59.0 0.030 107.0 0.220 135.5 -0.012 96.0 -0.082 57.5 0.035 108.0 0.230 136.5 -0.014 95.0 -0.083 56.0 0.040 109.0 0.240 137.5 -0.016 94.5 -0.084 55.0 0.045 110.0 0.250 139.0 -0.018 94.0 -0.085 53.5 0.050 111.0 0.260 139.5 -0.020 93.0 -0.086 52.0 0.055 112.0 0.270 140.5 -0.022 92.5 -0.087 50.0 0.060 113.0 0.280 141.5 -0.024 92.0 -0.088 48.5 0.065 114.0 0.290 142.5 -0.026 91.0 -0.089 47.0 0.070 115.0 0.300 143.5 -0.028 90.5 -0.090 45.5 0.075 115.5 0.310 144.5 -0.030 90.0 -0.091 43.5 0.080 116.5 0.320 145.0 -0.032 89.0 -0.092 41.5 0.085 118.0 0.330 146.0 -0.034 88.5 -0.093 39.0 0.090 119.0 0.340 147.0 -0.036 88.0 -0.094 35.5 0.095 119.5 0.350 147.5 -0.038 87.0 -0.095 32.5

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 蒸气压蒸气压指的是在液体(或者固体)的表面存在着该物质的蒸气,这些蒸气对液体表面产生的压强就是该液体的蒸气压。比如,水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥

发。 当气液或气固两相平衡时,气相中A物质的气压,就为液相或固相中A物质的饱和蒸气压,简称蒸气压。下面为影响因素: 1.对于放在真空容器中的液体,由于蒸发,液体分子不断进入气相,使气相压力变大,当两相平衡时气相压强就为该液体饱和蒸汽压,其也等于液相的外压;温度升高,液体分子能量更高,更易脱离液体的束缚进入气相,使饱和蒸气压变大。 2.但是一般液体都暴露在空气中,液相外压=蒸气压力+空气压力=101.325KPa),并假设空气不溶于这种液体,一般情况由于外压的增加,蒸气压变大(不过影响比较小) 3.一般讨论的蒸气压都为大量液体的蒸气压,但是当液体变为很小的液滴是,且液滴尺寸越小,由于表面张力而产生附加压力越大,而使蒸气压变高(这也是形成过热液体,过饱和溶液等亚稳态体系的原因)。所以蒸气压与温度,压力,物质特性,在表面化学中液面的曲率也有影响. 不同物质的蒸气压不同,下面总结给出水在不同温度下的饱和蒸气压:

饱和水蒸汽的压力与温度的关系的介绍

饱和水蒸汽的压力与温度的关系 ( 摘自仲元: "水和水蒸气热力性质图表" p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。 3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2 在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或 S=Q/P Q=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒) 6、通导: C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式: t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

10、罗茨泵的前级抽速: S=(0.1~0.2)S罗 (l/s) 11、漏率: Q漏=V(P2-P1)/(t2-t1) Q漏-系统漏率(mmHg·l/s) V-系统容积(l) P1-真空泵停止时系统中压强(mmHg) P2-真空室经过时间t后达到的压强(mmHg) t-压强从P1升到P2经过的时间(s) 12、粗抽泵的抽速选择: S=Q1/P预 (l/s) S=2.3V·lg(Pa/P预)/t S-机械泵有效抽速 Q1-真空系统漏气率(托·升/秒) P预-需要达到的预真空度(托) V-真空系统容积(升) t-达到P预时所需要的时间 Pa-大气压值(托) 13、前级泵抽速选择: 排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有: PnSg≥PgS 或Sg≥Pgs/Pn Sg-前级泵的有效抽速(l/s) Pn-主泵临界前级压强(最大排气压强)(l/s) Pg-真空室最高工作压强(托) S-主泵工作时在Pg时的有效抽速。(l/s) 14、扩散泵抽速计算公式: S=Q/P=(K·n)/(P·t)(升/秒) 式中:S-被试泵的抽气速率(l/s) n-滴管油柱上升格数(格) t-油柱上升n格所需要的时间(秒) P-在泵口附近测得的压强(托)

露点&相对湿度及测量

湿度露点测量原理 1. 湿度基础知识在许多物理、化学和生物学过程中,空气及其他气体中水蒸气的存在与否有着重要的影响。在很多工业领域内,湿度测量是关乎商业成本、产品质量、人身健康和安全的至关重要的因素之一。目前有很多不同的湿度表达方法,也有很多不同的湿度测量技术,因而很有必要了解规范的湿度术语和定义及成熟的湿度测量技术。 1.1 什么是湿度?湿度是在空气或其他气体中存在的水蒸气。水蒸气是水的气态形式,同其他各种气体一样,是透明的。在我们周围的环境中大约有1%的气体是水蒸气。 1.2 饱和水汽压、增强因子定义及计算公式 1.2.1 饱和水汽压定义我们知道,温度高的水会蒸发出水蒸气。同样,水在较低的温度下也可以释放出水蒸气。一定温度下,在水的表面和冰的表面,蒸发现象始终都是存在的。相反,冷凝也是一样存在的。当蒸发和冷凝的速度达到一致时,该体系就达到了动态平衡状态。空气或其他气体都有吸收水蒸气的能力,这种能力主要受温度的影响。总的来说,温度越高,吸收水蒸气的能力越强。在某个温度下,气体中所能包含的水蒸气的量达到最多时,就叫作“饱和”。 饱和水汽压是指水蒸气与水的凝聚相(水或冰)的单组分体系(界面为平面)处于热力学平衡状态时的水蒸气压力。简单的说,就是一定温度下水蒸气所能存在的最大压力。该压力仅仅是温度的函数。 1.2.2饱和水汽压计算公式目前饱和水汽压公式使用比较多的是Sonntag公式,其中包括纯水和纯冰面上的饱和水汽压公式,分别见公式1及公式2。 纯水面上的饱和水汽压公式: (公式1)其中: , 单位是 ,若以 表示,需将公式中的21.2409642用16.635794来代替。该公式的使用范围为173.15K≤T≤373.15K,当273.15K≤T≤373.15K时,不确定度为0.005%(k=2)。纯冰面上的饱和水汽压公式: (公式2) 其中: 单位为 , 单位是 ,若以 表示,需将公式中的29.32707用24.7219来代替。该公式的使用范围为173.15K≤T≤273.16K,当173.15K≤T≤223.15K时,不确定度为0.5%(k=2);223.15K≤T≤273.15K时,不确定度为0.3%(k=2)。1.2.3 饱和水汽压计算简化公式目前比较常用的是Magnus公式。 1.2.3.1 由温度计算饱和水汽压 水面上的饱和水汽压公式为: 公式(3)式中: 单位为 , 单位为℃。该公式的使用范围为-45℃≤t≤+60℃,不确定度≤0.6%(k=2)。冰面上的饱和水汽压公式为: 公式(4)式中: 单位为 , 单位为℃。该公式的使用范围为-65℃≤t≤+0.01℃,不确定度≤1.0%(k=2)。 1.2.3.2 由饱和水汽压计算温度由饱和水汽压计算露点温度:

关于蒸汽的潜热

关于蒸汽的潜热 关于蒸汽的潜热 最近发现一个问题:饱和蒸汽压力越高,其潜热越小,比如2公斤饱和蒸汽的潜热是KG,而5公斤饱和蒸汽的潜热是KG,10公斤饱和蒸汽的是 2005KJ/KG,20公斤饱和蒸汽的是1892KJ/KG,请问各位海友,为什么蒸汽的压力越高,饱和蒸汽的潜热越小呢,最好能用理论解释,谢谢~ 应该从分子状态考虑,将水分子看作是实际气体,因为压强变大时体积减小,根据分子碰撞理论。分子之间的碰撞会加剧,从而增加了分子的活跃度,使水分子较压强较小时更加容易逃逸,换句话说就是吸收的热量较少即汽化潜热变小。 随着压力的升高,蒸汽的饱和温度升高,蒸汽(水)分子的动能相应增加,从外界获得较少的热量,就可以使蒸汽分子具有脱离相邻分子间引力的能量,所以随着压力的升高,汽化潜热减少。 1kg饱和液体定压汽化为饱和蒸汽所需的热量称为汽化潜热,汽化过程的压力越高,汽化潜热的数值越小。一般把汽化潜热中转变为内能的部分称为内汽化潜热,把用于对外做功的部分称为外汽化潜热。 饱和的状态很重要~ 压力越高,液体达到饱和需要的热量是越多的,但是在饱和的基础上,压力高的饱和液体更容易汽化,需要的潜热越小。 这就是为什么在热力学中要引入"焓"的概念的原因之一. 建议用焓的概念分别描述饱和水与饱和水蒸气,再描述潜**较容易理解~“在相同温度下,过热水的潜热远大于蒸汽的潜热。”这句话对吗, 同种物质在温度相同、方向相反的相变过程中所吸入或放出的潜热,其量值必相等过热水与水蒸汽同为水,在温度相同时由液变汽或汽变液,吸放的热量应该相等,即潜热相等 楼主的意思是相同温度的过热水蒸汽与饱和水蒸气潜热比较吗,如果是这样“在相同温度下,过热水的潜热远大于蒸汽的潜热。”这句话就对了。因为过热水汽先放热冷却达到饱和状态时才会释放潜热,而此饱和温度对应潜热必大于原过热温度下水汽潜热值。仔细分析,条件不确定。 常识:常压下水的比热与相变潜热大约相差500倍。 我觉得过热水要变成相同条件下的蒸汽,必须吸热,发生相变。所以相同条件下的蒸汽肯定比水的潜热大

水的饱和蒸汽压与温度对应表[1]

水的饱和蒸汽压与温度对应表 饱和蒸汽压力所对应的温度 压力/Mpa l/kg温度/℃汽化潜热 kJ/kg 汽化潜热 kca 0.1 99.634 2257.6 539.32 0.12 104.81 2243.9 536.05 0.14 109.318 2231.8 533.16 0.16 113.326 2220.9 530.55 0.18 116.941 2210.9 528.17 0.2 120.24 2201.7 525.97 0.25 127.444 2181.4 521.12 0.3 133.556 2163.7 516.89 0.35 138.891 2147.9 513.12 0.4 143.642 2133.6 509.7 0.5 151.867 2108.2 503.63 0.6 158.863 2086 498.33 0.7 164.983 2066 493.55 0.8 170.444 2047.7 489.18 0.9 175.389 2030.7 485.12 1 179.916 2014.8 481.32 1.1 184.1 1999.9 477.76 1.2 187.995 1985.7 474.37 1.3 191.644 197 2.1 471.12 1.4 195.078 1959.1 468.01 1.5 198.327 1946.6 465.03 1.6 201.41 1934.6 46 2.16 1.7 204.346 1923 459.39 1.8 207.151 1911.7 456.69 1.9 209.838 1900.7 454.06 2 212.417 1890 451.51 2.2 217.289 1869.4 446.58 2.4 221.829 1849.8 441.9 温度℃压力Kg/cm2 温度℃压力Kg/cm2 温度℃压力Kg/cm2 100 1.0332 118↓ 1.8995 136↓ 3.286 101 1.0707 119 1.9612 137 3.382 102 1.1092 120 2.0245 138 3.481 103 1.1489 121 2.0895 139 3.582 104 1.1898 122 2.1561 140 3.685 105 1.2318 123 2.2245 141 3.790 106 1.2751 124 2.2947 142 3.898 107 1.3196 125 2.3666 143 4.009 108 1.3654 126 2.4404 144 4.122 109 1.4125 127 2.5160 145 4.237

烟气酸露点温度的计算

酸露点温度的计算 〔南京凯华电力环保有限公司 崔云寿〕 1、 t dew =186+20logV H2O +26logV so2 t dew ——烟气的酸露点温度 V H20——烟气水蒸汽气体的百分比(%) V so2——烟气SO 2气体的百分比(%) 2、前苏联“锅炉机组热力计算标准法”(1973版) t p =KOH n sh t e S A zs +?05.11253 t p ——酸露点℃ s n ——燃料的折算硫分(%) αrh ——飞灰占总灰分的份额(%)查灰份分析 A n ——燃料分析的灰份(%) S n =1000 )(p h p Q s S p ——燃料的工作质硫份(%) O h p ——燃料的低位发热量(Kcal/kg) 公式中125是指与炉膛出口过量出气体为αT 有关的系数,原规定如下:当αT =1.4~1.5时为129 当αT =1.2时为121 注:50年代原全苏热工研究所(BTN)在试验数据基础上整理而成,适用于固、液、气燃料。我国目前包括各大锅炉

厂主要应用的计算公式。 3、日本“电力工业中心研究所 t p=20LgV so3+α 式中t p露点温度℃ V so3烟气中SO3体积份数% α——水分常数, 当水分为5%,α=184 当水分为10%,α=194 当水分为15%,α=201 4、美国CE公司露点计算公式是基于两种条件 a、燃料中的硫分燃烧后都生成SO2。 b、烟气中的SO2的2%含量(体积分数)转变为SO3 计算顺序是根据给定的燃料组成和空气过剩系数计算出烟气组成,然后根据烟气的总物质量求出SO2的体积系数,按照2%的转换率计算出SO3体积分数,按计算出的烟气中SO3和水蒸汽含量(体积分数)查曲线可得出露点温度。 这种方法应该也不错,但是比较麻烦,我国锅炉方面技术人员一般不采用这种方法计算。

相关文档
最新文档