PID控制系统的Simulink仿真分析
课程设计专家PID控制系统simulink仿真

课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
simulink仿真pid案例

simulink仿真pid案例摘要:I.引言- 介绍Simulink软件和PID控制器II.PID控制器原理- PID控制器的基本原理和组成部分- PID控制器在工程中的应用III.Simulink仿真PID案例- 建立PID控制器模型- 设定参数并进行仿真- 分析仿真结果IV.结论- 总结Simulink仿真PID案例的重要性和应用价值正文:I.引言Simulink是一款由MathWorks公司开发的用于模拟和仿真的软件,它可以用于各种领域,如控制系统、信号处理、通信等。
PID控制器是控制系统中常用的一种控制器,它具有结构简单、可靠性高等特点,被广泛应用于工业控制中。
本文将通过一个具体的Simulink仿真PID案例,介绍如何使用Simulink进行PID控制器的仿真。
II.PID控制器原理PID控制器是一种比例-积分-微分(Proportional-Integral-Derivative)控制器,它通过计算控制误差的比例、积分和微分值,得到控制器的输出。
PID控制器由比例单元、积分单元和微分单元三部分组成,其中比例单元用于放大控制误差,积分单元用于消除系统的稳态误差,微分单元用于预测控制误差的变化趋势。
PID控制器在工程中有着广泛的应用,如温度控制、流量控制、位置控制等。
通过调整PID控制器的参数,可以实现对系统的稳定性和响应速度的调节。
III.Simulink仿真PID案例为了演示如何使用Simulink进行PID控制器的仿真,我们建立一个简单的PID控制器模型。
首先,打开Simulink软件,从工具栏中选择“新建模型”,创建一个新的模型。
接下来,从Simulink库中添加以下模块:一个输入模块(用于接收控制信号)、一个比例单元模块、一个积分单元模块和一个微分单元模块。
然后,将这四个模块按照PID控制器的结构连接起来,形成一个完整的PID控制器模型。
在建立好PID控制器模型后,我们需要设定一些参数,如比例系数、积分时间和微分时间等。
matlab simulink pid参数设定技巧

matlab simulink pid参数设定技巧
在Simulink中进行PID参数设定时,可以采用以下技巧:
1. 使用PID自动调节工具箱:Simulink提供了PID自动调节工具箱,可以根据系统的特性自动计算PID参数。
使用该工具
箱可以简化参数设定过程,提高调节效果。
2. 使用试控制法:试控制法是一种通过观察系统响应来调节PID参数的方法。
可以通过设置比例增益Kp,观察系统的响
应特性,根据实际需求调整Kp的大小。
3. 逐步调节参数:可以通过逐步调节参数的方式获取最佳结果。
首先调节比例增益Kp,观察系统响应;然后调节积分时间Ti,观察系统稳态误差;最后调节微分时间Td,观察系统对变化
的响应。
4. 增加反馈路径:在PID控制器中增加反馈路径,可以减小
系统误差。
可以使用仿真结果和实验数据来进行参数调整,并优化PID参数。
5. 使用频域分析:通过分析系统的频域特性,可以更好地调节PID参数。
可以使用Bode图来观察系统的稳定性和幅频响应
特性,调整PID参数以获得更好的控制效果。
6. 考虑系统时间常数:系统的时间常数是影响PID参数设定
的重要因素之一。
根据具体的系统响应特性,合理选择PID
参数的大小和调整范围。
7. 进行参数整定实验:通过设计合适的实验,观察系统响应,可以更准确地确定PID参数。
可以通过改变输入信号的大小、频率等,观察系统的稳态误差、超调量等指标,调整PID参
数以达到设计要求。
Simulink中系统PID控制调节解析

PID控制实现
PID控制实现:
简单仿真系统
PID控制实现:
1)离散时间域 2)考虑硬件条件 3)控制算法生成代码
1.打开PID Controller,点击Discretetime切换到离散域,Sample time根据 实际硬件的采样时间更改
2.同样采用Tune..调节离散域下新的最 优PID参数,系统从原来不稳定变成稳 定
Simulink中系统 PID控制调节
天津科技大学:机械工程肖志鹏
主要内容
• • • •
查看系统响应 动态调节系统响应 PID控制参数调优 PID控制实现
查看系统响应
查看Simulink仿真系统响 应:
简单仿真系统
查看Simulink仿真系统响应:
1.在模型分析的节点选择线性 分析点
2.从菜单栏->Analysis->Control Design->Linear Analysis...打开线性分 析窗口
动态调节Simulink系统响 应:
12.完成后关闭窗口,会提示是否保存测 试数据。注意:调节模型中的PID系数是 11.在窗口树状图选择SISO Design Task, 一个变量,如何直接关闭模型数据就不会 保存下来,一定要保存得到的数据 在Compensator Editor页,点击Update Simulink Block Parameters更新参数
谢谢观赏
水平有限如有错误欢迎指正
参考资料:
/products/simulink
积分饱和简介
所谓积分饱和现象是指若系统存在一个方向的偏差, PID控制器的输出由于积分作用的不断累加而加大, 从而导致u(k)达到极限位置。此后若控制器输出继续 增大,u(k)也不会再增大,即系统输出超出正常运行 范围而进入了饱和区。一旦出现反向偏差,u(k)逐渐 从饱和区退出。进入饱和区愈深则退饱和时间愈长。 此段时间内,执行机构仍停留在极限位置而不能随着 偏差反向立即做出相应的改变,这时系统就像失去控 制一样,造成控制性能恶化。这种现象称为积分饱和 现象或积分失控现象。
Simulink仿真之PID控制

5.3 PID控制器参数整定 PID控制器参数整定
PID控制器参数整定的方法很多,概括起来有两大类: (1)理论计算整定法 主要依据系统的数学模型,经过理论计算确定控制器参数。 这种方法所得到的计算数据未必可以直接使用,还必须通 过工程实际进行调整和修改。 (2)工程整定方法 主要有Ziegler-Nichols整定法、临界比例度法、衰减曲线 法。这三种方法各有特点,其共同点都是通过试验,然后 按照工程经验公式对控制器参数进行整定。但无论采用哪 一种方法所得到的控制器参数,都需要在实际运行中进行 最后调整与完善。 工程整定法的基本特点是:不需要事先知道过程的数学模 型,直接在过程控制系统中进行现场整定;方法简单,计 算简便,易于掌握。
t 0
PID控制器具有以下优点: (1)原理简单,使用方便。 (2)适应性强。 (3)鲁棒性强,即其控制 品质对被控制对象特性的变 化不太敏感。
5.2 PID控制算法 PID控制算法
5.2.1 比例(P)控制
纯比例控制的作用和比例调节对系统性能的影响
5.2.2 比例积分(PI)控制 比例积分(PI)控制
第5章 PID控制 PID控制
5.1 PID控制概述 5.2 PID控制算法 5.3 PID控制器参数整定 5.4 本章小结 习题与思考
内容提要
本章描述PID控制的基本概念,介绍 PID控制算法以及PID参数整定等基 础知识,并通过大量的仿真实例讲 述PID参数整定。 通过本章,读者对PID控制的原理、 算法能有较为全面的认识,并熟练 通过仿真进行PID参数整定。
PI控制举例 PI控制举例
ห้องสมุดไป่ตู้
5.2.3 比例微分(PD)控制 比例微分(PD)控制
PD控制作用举例
课程设计专家PID控制系统simulink仿真

课程设计题目:专家PID控制系统仿真专家PID控制系统仿真摘要简单介绍了常规PID控制的优缺点和专家控制的基本原理,介绍了专家PID控制的系统结构,针对传递函数数学模型设计控制器。
基于MATLAB的simulink仿真软件进行应用实现,仿真和应用实现结果均表明,专家PID控制具有比常规PID更好的控制效果,且具有实现简单和专家规则容易获取的优点。
论文主要研究专家PID控制器的设计及应用,完成了以下工作:(1)介绍了专家PID控制和一般PID控制的原理。
(2)针对任务书给出的受控对象传递函数G(s)=523500/(s3+87.35s2+10470s) ,并且运用MATLAB实现了对两种PID控制器的设计及simulink仿真,且对两种PID控制器进行了比较。
(3)结果分析,总结。
仿真结果表明,专家PID控制采用多分段控制,其控制精度更好,且具有优越的抗扰性能。
关键词:专家PID,专家系统,MATLAB,simulink仿真Expert PID control system simulationAbstractThe advantages and disadvantages of conventional PID control and the basic principle of expert control are briefly introduced, and the structure of expert PID control system is introduced. Simulink simulation software based on MATLAB is implemented. The simulation and application results show that the expert PID control has better control effect than the conventional PID, and has the advantages of simple and easy to get.This paper mainly studies the design and application of the expert PID controller:(1) the principle of PID control and PID control is introduced in this paper.(2) the controlled object transfer function G (s) =523500/ (s3+87.35s2+10470s), and the use of MATLAB to achieve the design and Simulink simulation of two kinds of PID controller, and the comparison of two kinds of PID controller.(3) result analysis, summary.The simulation results show that the control accuracy of the expert PID control is better than that of the control.Key words:Expert PID , MA TLAB, expert system, Simulink, simulation目录摘要 (I)Abstract ..................................................................................................................................... I II 第一章引言 . (2)1.1 研究目的和意义 (2)1.2国内外研究现状和发展趋势 (3)第二章PID控制器综述 (3)2.1常规PID控制器概述 (3)2.2专家PID控制器 (4)第三章专家PID控制在MATLAB上的实现 (5)3.1简介 (5)3.2设计专家PID 控制器的实现方法 (5)3.3.专家PID控制器的S函数的M文件实现 (7)3.4专家PID控制器的simulink设计 (8)3.5专家PID控制和传统PID比较 (13)第四章结论 (14)4.1专家PID控制系统的优缺点及解决方案 (14)4.2最终陈述 (14)第一章引言近十几年,国内外对智能控制的理论研究和应用研究十分活跃,智能控制技术发展迅速,如专家控制、自适应控制、模糊控制等,现已成为工业过程控制的重要组成部分。
SIMULINK建模仿真PID控制

实验二PID调节器实验内容:SIMULINK建模仿真学生信息:自动化提交日期:2023年5月28日报告内容:PID调节器一、实验目的1.掌握仿真系统参数设置及子系统封装技术;2.分析PID调节器各参数对系统性能的影响。
二、实验设备1.计算机1台2.MATLAB 7.X软件1套。
三、实验原理说明1.建立新的simulink模块编辑界面,画出如图1所示的模块图。
对应的增益参数分别设为P和I,左击选中全部框图,右击菜单选择“creat subsystem”,变为图2。
图1:图2:2.右击图2中间的框图“Subsystem”,在右击的菜单中选择“Mask Subsystem”,出现下图。
先直接输入disp('PI调节器'),给待封装的子系统命名。
3.选择“Parameters”进行参数设置,点击按钮,添加参数,此参数必须与上文设置的参数对应,否则无效,如下图所示。
4.点击OK,完成子系统的封装。
双击PI调节器模块,出现参数设定对话框如下,可以进行参数调节。
四、实验步骤1.从continue模块集中拉出Derivative、Integrator以及从Math Operations模块集中拉出Gain模块,设计PID调节器,对PID调节器进行封装;2.建立Simulink原理图如下:3.双击PID调节器模块,调整调节器的各参数。
五、实验要求分析调节器各参数对系统性能的影响,撰写实验报告:1.P调节将PID调节器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例调节。
调整比例增益(P=0.5,2,5),观察响应曲线的变化。
图1 P=0.5时的阶跃信号及其响应图2 P=2时的阶跃信号及其响应图3 P=5时的阶跃信号及其响应P增大,系统在稳定时的静差减少。
2.PD调节调节器的功能改为比例微分调节,调整参数(P=2,D=0.1,0.5,2,5),观测系统的响应曲线。
图4 P=2,D=0.1时的阶跃信号及其响应图5 P=2,D=0.5时的阶跃信号及其响应图6 P=2,D=2时的阶跃信号及其响应图7 P=2,D=5时的阶跃信号及其响应D增大,系统将会快速收敛,同时系统静差会增大。
控制系统建模与仿真基于MATLABSimulink的分析与实现

读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
实现
通过
仿真
技术
进行
分析
方法
分析
matlabsi mulink
仿真
系统
simulink
实现
介绍
工程
精彩摘录
精彩摘录
《控制系统建模与仿真基于MATLABSimulink的分析与实现》精彩摘录 随着科技的发展和社会的进步,控制系统在各个领域中的应用越来越广泛, 掌握控制系统的建模与仿真技术对于科学研究、工程实践等方面都具有重要意义。 而《控制系统建模与仿真基于MATLABSimulink的分析与实现》这本书,正是为满 足这一需求而编写的。
阅读感受
而真正让我感到震撼的是第4章到第8章的内容。作者利用MATLAB强大数据处 理、绘图函数和Simulink仿真工具,对被控对象模型进行了系统建模、分析、计 算、性能指标的优化及控制器设计。从时域、频域、根轨迹、非线性及状态空间 几个方面,完成了对系统性能指标的验证及控制系统设计。这其中的细节和深度, 都足以显示作者对这一领域的深入理解和实践经验。
目录分析
在“仿真技术”部分,目录涵盖了控制系统仿真的基本原理、仿真模型的建 立、参数设置以及仿真结果的分析等内容。还介绍了如何利用MATLABSimulink进 行仿真,使得读者能够快速上手这一强大的仿真工具。
目录分析
“应用实例”部分通过多个具体的案例,展示了如何将建模与仿真技术应用 于实际控制系统。这些案例既有简单的单输入单输出系统,也有复杂的非线性多 输入多输出系统,具有很高的实用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:MATLAB语言与控制系统仿真
实验项目:PID控制系统的Simulink仿真分析专业班级:
学号:
姓名:
指导教师:
日期:
机械工程实验教学中心
注:1、请实验学生及指导教师实验前做实验仪器设备使用登记;
2、请各位学生大致按照以下提纲撰写实验报告,可续页;
3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩;
4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。
一、实验目的和任务 1.掌握PID 控制规律及控制器实现。
2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。
二、实验原理和方法
在模拟控制系统中,控制器中最常用的控制规律是PID 控制。
PID 控制器是一
种线性控制器,它根据给定值与实际输出值构成控制偏差。
PID 控制规律写成传递
函数的形式为
s
K s Ki K s T s T K s U s E s G d p d i p ++=++==)1
1()()
()(
式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i
p
i K K
T =为积分时间常数;
p
d
d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下:
(1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产
生控制作用,以减少偏差。
(2)积分环节:主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积
分时间常数i T ,i T 越大,积分作用越弱,反之则越强。
(3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大
之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调
节时间。
三、实验使用仪器设备(名称、型号、技术参数等)
计算机、MATLAB 软件
四、实验内容(步骤)
1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。
2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在
Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的
传递函数构建出如下模型:
各模块如下:
Math Operations模块库中的Gain模块,它是增益。
拖到模型窗口中后,双击模块,在弹出的对话框中将‘Gain’分别改为‘Kp’、‘Ki’、‘Kd’,表示这三个增益系数。
Continuous模块库中的Integrator模块,它是积分模块;Derivative模块,它是微分模块。
Math Operations模块库中的Add模块,它是加法模块,默认是两个输入相加,双击该模块,将‘List of Signs’框中的两个加号(++)后输入一个加号(+),这样就改为了三个加号,用来表示三个信号的叠加。
Ports & Subsystems模块库中的In1模块(输入端口模块)和Out1模块(输出端口模块)。
(2)将上述结构图封装成PID控制器。
①创建子系统。
选中上述结构图后再选择模型窗口菜单“Edit/Creat Subsystem”
②封装。
选中上述子系统模块,再选择模型窗口菜单“Edit/Mask Subsystem”
③根据需要,在封装编辑器对话框中进行一些封装设置,包括设置封装文本、对话框、图标等。
本次试验主要需进行以下几项设置:
Icon(图标)项:“Drawing commands”编辑框中输入“disp(‘PID’)”,如下
左图示:Parameters(参数)项:创建Kp,Ki,Kd三个参数,如下右图示:
至此,PID控制器便构建完成,它可以像Simulink自带的那些模块一样,进行拖拉,或用于创建其它系统。
3、搭建一单回路系统结构框图如下图所示:
所需模块及设置:Sources模块库中Step模块;Sinks模块库中的Scope模块;Commonly Used Blocks模块库中的Mux模块;Continuous模块库中的Zero-Pole模
块。
Step模块和Zero-Pole模块设置如下:
4、构建好一个系统模型后,就可以运行,观察仿真结果。
运行一个仿真的完整过程分成三个步骤:设置仿真参数、启动仿真和仿真结果分析。
选择菜单“Simulation/Confiuration Parameters”,可设置仿真时间与算法等参数,如下图示:其中默认算法是ode45(四/五阶龙格-库塔法),适用于大多数连续或离散系统。
5、双击PID模块,在弹出的对话框中可设置PID控制器的参数Kp,Ki,Kd:
设置好参数后,单击“Simulation/Start”运行仿真,双击Scope示波器观察输出结果,并进行仿真结果分析。
比较以下参数的结果:
(1)Kp=8.5,Ki=5.3,Kd=3.4
(2)Kp=6.7,Ki=2,Kd=2.5
(3)Kp=4.2,Ki=1.8,Kd=1.7
6、以Kp=8.5,Ki=5.3,Kd=3.4这组数据为基础,改变其中一个参数,固定其余两个,以此来分别讨论Kp,Ki,Kd的作用。
7、分析不同调节器下该系统的阶跃响应曲线
(1)P调节Kp=8
(2)PI调节Kp=5,Ki=2
(3)PD调节Kp=8.5,Kd=2.5 (4)PID调节Kp=7.5,Ki=5,Kd=3
程序及运行结果如下
(1)Kp=8.5,Ki=5.3,Kd=3.4
2)Kp=6.7,Ki=2,Kd=2.5
(3)Kp=4.2,Ki=1.8,Kd=1.7
6、以Kp=8.5,Ki=5.3,Kd=3.4这组数据为基础,改变其中一个参数,固定其余两个,以此来分别讨论Kp,Ki,Kd的作用。
先改变kp的值,其余两个不变,分为两组,第一组是kp的值小于8.5,第二组是kp的值大于8.5.此处的值都是任意取得,kp1=7.2.kp2=9.4
(1)Kp=7.2Ki=5.3,Kd=3.4
(2)Kp=9.4,Ki=5.3,Kd=3.4
改变ki的值,其余两个不变,分为两组,第一组是ki的值小于5.3,第二组是ki的值大于5.3.此处的值都是任意取得,ki1=4.7.ki2=6.1
(3)Kp=8.5,Ki=4.7,Kd=3.4
(4)Kp=8.5,Ki=6.1,Kd=3.4
改变kd的值,其余两个不变,分为两组,第一组是kd的值小于3.4,第二组是kd的值大于3.4.此处的值都是任意取得,kd1=2.6.kd2=4.7
(5)Kp=8.5,Ki=5.3,Kd=2.6
(6)Kp=8.5,Ki=5.3,Kd=4.7
7、分析不同调节器下该系统的阶跃响应曲线(1)P调节Kp=8
(2)PI调节Kp=5,Ki=2
(3)PD调节Kp=8.5,Kd=2.5
(4)PID调节Kp=7.5,Ki=5,Kd=3
五.结论
总结PID调节的基本特点
pid调节即为比例,积分,微分调节。
Kp为比例参数,主要是用于快速调节误差;
Ki为积分参数,主要是用于调节稳态时间;
Kd为微分参数,主要是用于预测误差趋势,提前修正误差。
随着kp,ki,kd减小,系统反应速度变慢,超调量逐渐减小,系统调整时间也在变小。
使kd变化其余两个值不变,可看出随着kd的增加,超调量变小,震荡次数变少,调整时间变短。
使kp变化其余两个值不变,可看出随着kp的增加震荡次数增加,调整时间变长,超调量变大。
使ki变化其余两个值不变,可看出随着ki 增加超调量变大,调整时间变长。
P调节,波动很大, pi调节比p调节稳定,pd调节不准确。
合时的取值可以使得PID调节快速,平稳,准确.。