广西省2018年高考文科数学试题及答案汇总(word版)

合集下载

(完整版)2018年高考文科数学(全国I卷)试题及答案,推荐文档

(完整版)2018年高考文科数学(全国I卷)试题及答案,推荐文档

2an n
,即 bn1
2bn
,又 b1
1 ,所以 {bn} 是首项为 1 ,公比为
2
的等比数列.
(3)由(2)可得
an n
2n1 ,所以 an
n 2n1 .
18.解:
(1)由已知可得, BAC 90 , BA AC .
又 BA AD ,所以 AB 平面 ACD .
又 AB 平面 ABC ,
文科数学试题 第 3 页(共 10 页)
19.(12 分)
某家庭记录了未使用节水龙头 50 天的日用水量数据(单位: m3 )和使用了节水龙头 50 天的日用水量数据, 得到频数分布表如下:
未使用节水龙头 50 天的日用水量频数分布表
日用水量 [0,0.1) [0.1,0.2 [0.2,0.3 [0.3,0.4 [0.4,0.5 [0.5,0.6 [0.6,0.7
2
2
(2)当 l 与 x 轴垂直时,AB 为 MN 的垂直平分线,所以 ABM ABN .
当 l 与 x 轴不垂直时,设 l 的方程为 y k(x 2) (k 0) , M (x1, y1) , N (x2 , y2 ) ,则 x1 0, x2 0 .

y k(x
y
2
2x
2),

ky 2
则 | a b |
1 A.
5
5 B.
5
25 C.
5
D. 1
12.设函数
f
(x)
2x ,
1,
x ≤ 0, 则满足 f (x 1) f (2x) 的 x 的取值范围是 x 0,
A. (, 1]
B. (0,)
C. (1, 0)

2018年高考真题——文数(新课标卷)Word版 含答案

2018年高考真题——文数(新课标卷)Word版 含答案

绝密*启用前2018年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷<选择题)和第Ⅱ卷(非选择题>两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

b5E2RGbCAP2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.p1EanqFDPw3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x|x2-x-2<0},B={x|-1<x<1},则<A)A错误!B <B)B错误!A <C)A=B <D)A∩B= DXDiTa9E3d<2)复数z=错误!的共轭复数是<A)2+i <B)2-i <C)-1+i <D)-1-i3、在一组样本数据<x1,y1),<x2,y2),…,<xn,yn)<n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点<xi,yi)(i=1,2,…,n>都在直线y=错误!x+1上,则这组样本数据的样本相关系数为 RTCrpUDGiT<A)-1 <B)0 <C)错误! <D)1<4)设F1、F2是椭圆E:错误!+错误!=1(a>b>0>的左、右焦点,P 为直线x=错误!上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为< )5PCzVD7HxA<A)错误! <B)错误! <C)错误! <D)错误! jLBHrnAILg5、已知正三角形ABC的顶点A(1,1>,B(1,3>,顶点C在第一象限,若点<x,y)在△ABC内部,则z=-x+y的取值范围是xHAQX74J0X<A)(1-错误!,2> <B)(0,2> <C)(错误!-1,2> <D)(0,1+错误!>LDAYtRyKfE<6)如果执行右边的程序框图,输入正整数N(N≥2>和实数a1,a2,…,aN,输出A,B,则<A)A+B为a1,a2,…,aN的和<B)错误!为a1,a2,…,aN的算术平均数<C)A和B分别是a1,a2,…,aN中最大的数和最小的数<D)A和B分别是a1,a2,…,aN中最小的数和最大的数Zzz6ZB2Ltk<7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为<A)6<B)9<C)12<D)18(8>平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为错误!,则此球的体积为 dvzfvkwMI1<A)错误!π<B)4错误!π<C)4错误!π<D)6错误!πrqyn14ZNXI<9)已知ω>0,0<φ<π,直线x=错误!和x=错误!是函数f(x>=sin(ωx+φ>图像的两条相邻的对称轴,则φ=EmxvxOtOco<A)错误! <B)错误! <C)错误! <D)错误! SixE2yXPq5<10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4错误!,则C的实轴长为6ewMyirQFL<A)错误! <B)2错误! <C)4 <D)8kavU42VRUs(11>当0<x≤错误!时,4x<logax,则a的取值范围是<A)(0,错误!> <B)(错误!,1> <C)(1,错误!> <D)(错误!,2>y6v3ALoS89<12)数列{an}满足an+1+(-1>n an=2n-1,则{an}的前60项和为<A)3690 <B)3660 <C)1845 <D)1830M2ub6vSTnP第Ⅱ卷本卷包括必考题和选考题两部分。

2018年高考数学试题及答案word版

2018年高考数学试题及答案word版

2018年高考数学试题及答案word版一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2等于多少?A. 1B. 2C. 3D. 4答案:B2. 已知向量a = (1, 2),向量b = (3, 4),向量a与向量b的点积为多少?A. 5B. 6C. 7D. 8答案:C3. 在一个等差数列中,首项为3,公差为2,第10项的值是多少?A. 23B. 24C. 25D. 26答案:A4. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 3答案:A5. 一个圆的半径为5,圆心到直线x + y - 7 = 0的距离为多少?A. 3B. 4C. 5D. 6答案:B6. 若复数z = 1 + i,则|z|等于多少?A. √2B. 2C. √3D. 3答案:A7. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。

A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^3 - 3x^2答案:A8. 已知双曲线方程为x^2/9 - y^2/16 = 1,其渐近线方程为多少?A. y = ±(4/3)xB. y = ±(3/4)xC. y = ±(4/3)x + 1D. y = ±(3/4)x + 1答案:A9. 已知正方体的体积为8,求其表面积。

A. 12B. 16C. 24D. 32答案:C10. 已知函数f(x) = ln(x),求f'(1)。

A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求第5项的值。

答案:48612. 已知三角形的三边长分别为3, 4, 5,求其面积。

答案:613. 已知函数f(x) = x^2 - 6x + 8,求其对称轴方程。

2018年高考文科数学(全国I卷)试题及参考答案

2018年高考文科数学(全国I卷)试题及参考答案

2018年高考文科数学(全国I卷)试题及参考答案2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生必须在答题卡上填写自己的姓名和准考证号。

2.回答选择题时,在每个小题的四个选项中,只有一个是正确的。

选出答案后,用铅笔在答题卡上对应题目的答案标号上涂黑。

如需更改,用橡皮擦干净后再涂上其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

1.已知集合A={0,2},B={-2,-1,0,1,2},则A的补集为D={-2,-1,1}。

2.设z=1-i+2i,则|z|=|1+i|=√2.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图。

由饼图可知,新农村建设后,种植收入增加了一倍,其他收入增加了一倍以上,养殖收入增加了一倍,养殖收入和第三产业收入的总和超过了经济收入的一半。

因此,结论A不正确。

4.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1的一个焦点为(2,0),则C的离心率为e=√(a^2-b^2)/a=√3/2.5.已知圆柱的上、下底面的中心分别为O1、O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为S=4πr^2+4rH=2πr(2r+H)=32.6.设函数f(x)=x^3+(a-1)x^2+ax。

若f(x)为奇函数,则f(-x)=-f(x),即a=0.在点(0,0)处,曲线y=f(x)的斜率为f'(0)=0,因此切线方程为y=0.7.在△ABC中,AD为BC边上的中线,E为AD的中点,则EB=AB-AC/2.8.已知函数f(x)=2cos^2x-sin^2x+2,则f(x)的最小正周期为π,最大值为3.9.某圆柱的高为2,底面周长为16.已知圆柱表面上的点M在正视图上的对应点为A,点N在左视图上的对应点为B。

2018年广西高考数学试卷文科全国新课标ⅲ学生版

2018年广西高考数学试卷文科全国新课标ⅲ学生版

2018年广西高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018?新课标Ⅲ)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5分)(2018?新课标Ⅲ)(1+i)(2﹣i)=()A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i3.(5分)(2018?新课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()..BA.C.D)(sinα=4.(5分)(2018?新课标Ⅲ)若,则cos2α=.﹣.﹣A.B.CD ,既新课标Ⅲ)若某群体中的成员只用现金支付的概率为2018?0.4555.(分)()0.15用现金支付也用非现金支付的概率为,则不用现金支付的概率为(0.7C0.4B0.3A...D0.6.的最小正周期为()=)(2018?新课标Ⅲ)函数f(x分)6.(5 CA..B.πD.2π7.(5分)(2018?新课标Ⅲ)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)8.(5分)(2018?新课标Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点22=2上,则△ABP面积的取值范围是() +y)P在圆(x﹣2A.[2,6]B.[4,8]C.[,3]D.[2,3]42+2的图象大致为(x新课标Ⅲ)函数y=﹣ +x)2018?分)(9.5(.A.B.C.D)的离心>0,b>05分)(2018?新课标Ⅲ)已知双曲线C=1(a10.())到C的渐近线的距离为(率为,则点(4,0BA..2C.2D.(5).若cb,C的对边分别为a,新课标Ⅲ)△分)(2018?ABC的内角A,B,11.△ABC的面积为,则C=(.B.DCA..的球的球面上四是同一个半径为4C,D新课标Ⅲ)设分)(2018?A,B,12.(5体积的最大值为﹣ABC,则三棱锥D点,△ABC为等边三角形且面积为9)(.54DC.24B.18A.12分。

(完整版)2018年高考文科数学(全国I卷)试题及答案(可编辑修改word版)

(完整版)2018年高考文科数学(全国I卷)试题及答案(可编辑修改word版)

EB A. - 绝密★启用前注意事项:2018 年普通高等学校招生全国统一考试文科数学1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A = {0, 2} , B = {- 2,- 1, 0,1, 2} ,则 A B =A .{0, 2}B .{1, 2}C .{0}D .{-2, -1, 0,1, 2}2.设 z = 1 - i+ 2i ,则| z |=1 + iA. 0B. 1 2C .1D . 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半x 2 4. 已知椭圆C : a y 2+= 1 的一个焦点为(2, 0) ,则C 的离心率为 4 A.13B. 12C.2 2D. 2 235. 已知圆柱的上、下底面的中心分别为O 1 , O 2 ,过直线O 1O 2 的平面截该圆柱所得的截面是面积为8 的正方形,则该圆柱的表面积为 A .12 2πB.2π C. 8 2π D. 0π6. 设函数 f (x ) = x 3 + (a - 1)x 2 + ax . 若 f (x ) 为奇函数,则曲线 y = f (x ) 在点(0, 0) 处的切线方程为A. y = -2xB. y = -xC. y = 2xD. y = x 7. 在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则=3 1AB AC B . 1 - 3 AC 22AB4 4 4 4C . + AB 2 ⎨ ⎩ 3 1 AB ACD . 1 + 3AC4 44 48. 已知函数 f (x ) = 2 cos 2 x - sin 2 x + 2 ,则A. f (x ) 的最小正周期为π ,最大值为3B. f (x ) 的最小正周期为π ,最大值为 4C. f (x ) 的最小正周期为2π ,最大值为3D. f (x ) 的最小正周期为2π ,最大值为 49. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A. 2B. 2C. 3D. 210. 在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 2 , AC 1 与平面 BB 1C 1C 所成的角为30︒ ,则该长方体的体积为A. 8B. 6C. 8D. 8 11. 已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1, a ) , B (2, b ) ,且cos 2= 2,则3| a - b |=A.15B.5 5C. 2 55D .1⎧2-x , 12. 设函数 f (x ) = ⎨ ⎩1, x ≤ 0,x > 0, 则满足 f (x + 1) < f (2x ) 的 x 的取值范围是A . (-∞, -1]B . (0, +∞)C . (-1, 0)D . (-∞, 0)二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

(完整版)2018年高考文科数学试题及答案,推荐文档

(完整版)2018年高考文科数学试题及答案,推荐文档

9.某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在 正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则 在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为
A. 2 17 C. 3 【答案】B
B. 2 5 D.2
-3-
【难度】容易 【点评】本题在高考数学(文)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日
水量
频数
1
5Байду номын сангаас
13
10
16
(1)在答题卡上作出使用了节水龙头 50 天的日用水量数据的频率分布直方图:
0.5 ,0.6
5
(2)估计该家庭使用节水龙头后,日用水量小于 0.35 m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,同一组中的数据以这 组数据所在区间中点的值作代表.) 【答案】 (1)
(2)由已知可得,DC=CM=AB=3,DA= 3 2 .
又 BP DQ 2 DA ,所以 BP 2 2 . 3
作 QE⊥AC,垂足为 E,则 QE
A
1 DC . 3
由已知及(1)可得 DC⊥平面 ABC,所以 QE⊥平面 ABC,QE=1.
因此,三棱锥 Q ABP 的体积为
VQ ABP
1 QE 3
x2 4.已知椭圆 C : a2
y2 4
1
的一个焦点为
(2
,0)
,则
C
的离心率为
1 A. 3
1 B. 2
2 C. 2
22 D. 3
【答案】C 【难度】容易
【点评】本题考查椭圆的相关知识。在高一数学强化提高班下学期课程讲座 2,第三章《圆锥曲线与方程》

2018年全国统一高考数学试题(文)(Word版,含答案解析)

2018年全国统一高考数学试题(文)(Word版,含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西省2018年普通高等学校招生全国统一考试
全国三文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案
标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}
10
x x-≥
∣,B={012}
,,,则A B
⋂ =
A.{0}
B.{1}
C.{1,2}
D.{0,1,2}
2.(1+i)(2-i)=
A.-3-I
B.-3+I
C.3-I
D.3+i
3.中国古建筑借助棒卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头。

若如图摆放
的木构件与某一带卯眼的木构件咬合成长方体,
则咬合时带卯眼的木构件的俯视图可以是
A B
C. D.
4.若
1
3
sina=,则2
cos a =
A.8
9
B.
7
9
C.
7
9
- D.
8
9
-
5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3 B.0.4 C.0.6 D.0.7
6.函数2
tan 1tan x
f x x
=+()的最小正周期为 A.4∏ B.2

C.π
D.2π
7.下列函数中,其图像与函数y lnx =的图像关于直线x =I 对称的是
A.y=ln (1-x )
B.y=ln (2-x )
C.y=ln (1+x )
D.y=ln (2+x )
8.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点p 在圆(x-2)³+y ³=2上。

则∆ABP 面积的取值范围是
A.[2,6]
B.[4,8]
C.[ 2,3 2]
D.[2 2,3 2] 9.函数y=-x 6+x ²+2的图像大致为
A.
C.
D.
10.已知双曲线C :22
22x y a b
-=1(a>0,b>0)的离心率为2,则点(4,
0)到C 的渐近线的距离为
A.2
B.2
C.
32
2 D.22
11.∆ABC 的内角A ,B ,C ,的对边分别为a ,b ,c ,若∆ABC 的面积
为222a b c 4+-,则C=
A.2∏
B.3π
C.4π
D.6
π
12.设A,B,C,D是同一个半径为4的球的球面上四点,∆ABC为等边三角形且其面积为39,则三棱锥D-ABC体积的最大值为
A.123
B.183
C.243
D.543
二、填空题,本题共4小题,每小题5分,共20分。

13、已知向量a=(1,2),b=(2,-2),c=(1,r),若c//
(2a+b),则λ=___________。

14、某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样检查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是___________。

15、若变量x、y满足约束条件
230,
240,
20
x y
x y
x
++≥


--≥

⎪-≤

,则z=x+1
3
y的最大值是
______________。

16、已知函数f(x)=ln(2
1x
--x)+1,f(a)=4,则f(-a)
=______________。

三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤。

第17-21题为必考题,每个试题考生都必须作答,第22、23、题为
选靠题,考生根据要求作答。

(一)必考题:共60分。

17、(12分)
等比数列{a n}中,a2=1,a3=4a3。

(1)求{a n}的递项公式;
(2)记S m为{a n}的前n项和,若S m=63,求m。

18、(12分)
某工厂为提高生活效率,开展技术创新活动,提出了完成某项生产
任务的两种新的生产方式,为比较两种生产方式的效率,选取40名
工人,将他们随机分成两组,每组20人,第一组工人用第一种生产

式,第二组工人用第二种生产方式,根据工人完成生产任务的工作
时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表。

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:。

19.如图,矩形ABCD 所在平面与半圆弧 CD 所在平面垂直,M 是 CD
上异于C ,D 的点。

(1)证明:平面AMD ⊥平面BMC ;
(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由。

20.(12分)
已知斜率为k 的直线l 与椭圆C :2x 4 +2
y 3
=1
交于A ,B 两点,线段AB 的中点为M (1,m )(m>0)。

(1)证明:k<1
2

(2)设F 为C 的右焦点,P 为C 上一点,且FP +FA +FB
=0,证明:
2∣FP ∣=∣FA ∣+∣FB
∣。

21.(12分)
已知函数f (x )=22
ax 1
x c +-
(1)求曲线y=f (x )在点(0,-1)处的切线方程; (2)证明:当a ≥1时,f (x )+e ≥0。

(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多选,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy中,⊙O的参数方程为
x cos
y sin
θ
θ
=


=

(θ为参数),过点(0,-
2)且倾斜角为α的直线l与⊙O交于A、B两点。

(1)求α的取值范围;
(2)求AB中点P的轨迹的参数方程。

23.[选修4-5:不等式选讲](10分)
设函数f(x)=∣2x+1∣-∣x-1∣。

(1)画出y=f(x)的图像;
(2)当x∈[0,-∞)时,f(x)≤
ax+b,求a+b的最小值。

答案
单选题
1. C
2. D
3. A
4. B
5. B
6. B
7. A
8. A
9. D 10. D 11. C 12. B
填空题
13.
14.
15.
3 16.
简答题17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
解析
单选题
略略略略略略略略略略略略填空题
略略略略
简答题。

相关文档
最新文档