结构力学(第三章)-图乘法

合集下载

谈结构力学图乘法应用中复杂图形的图乘技巧

谈结构力学图乘法应用中复杂图形的图乘技巧

基金项目:辽宁工程技术大学应用创新型人才培养立项课题资助项目(YB083033)。 作者简介:孙庆巍,男,辽宁阜新人,硕士,j工宁工程技术大学建筑与工程学院讲师。
2009年第ll卷
孙庆巍
谈结构力学图乘法应用中复杂图形的图乘技巧
-27・
狰衄+狰—一弘
E岛一
图l圈乘法示意图
解法一:将原结构中的荷载分解,如图4。
算的求解过程,大大减少求解的计算量。
譬睑
【1)
相应地嗨图也分解为两个,见图5。

(b)
3复杂问题的图乘技巧
从图乘法公式可知,要想顺利采用图乘法求出 位移,必须要知道Mp的面积和形心位置,对于简单
图S
这时原来的Mi图与M,图进行图乘的过程转
变为丽。图分别与(a)、(b)的%图进行图乘再将结
果相加的过程。此时(a)弯矩图是标准的二次抛物 线,其面积公式与形心位置都已知,(b)弯矩图为三 角形,其面积公式与形心位置自然也已知,所以,将
求出原题中的位移。 总之,遇到复杂图形进行图乘时,均可参考上面 的思路,想办法把原来的复杂图形分解为可确定面
弘2

积与形心位置的标准图形,或将原结构的复杂荷载 分解为单一荷载分别与单位力作用下的M图进行

图乘再求和,这样,就可解决复杂图形的图乘问题。
图9
2∞9年第ll卷
孙庆巍
谈结构力学图乘法应用中复杂图形的图乘技巧
解法一:根据分段叠加法对AC段的M,图分
解,分解为直线(两端截面弯矩纵坐标的连线)与曲 线(AC段的简支梁形式在均布荷载作用下的弯矩 图)相叠加,见图9。
声 譬p 卜j譬仁爿 卜j)T红一) 一)孚p)
荷载形式 弯矩图 圈11

哈工大结构力学题库三章

哈工大结构力学题库三章

第三章 虚功原理和结构的位移一 判 断 题1. 已知P M ,Mk 图,用图乘法 求位移的结果为:(ω1у1+ω2у2)/(EI )。

( ) (X ) 题1图 题2图 题3图2. 图示结构中B 点挠度不等于零。

( )(√)3. 图示桁架中腹杆截面的大小对C 点的竖向位移影响。

( )(X )4. 求图示A 点竖向位移可用图乘法。

( )(X )题4图 题5图5. 图示梁的跨中挠度为零。

( )(√)6. 在位移互等定理中,可以建立线位移和角位移的互等关系:12δ=21ϕ。

这里12δ,21ϕ与只是数值相等而量纲不同。

( )(X )7. 三个刚片用不在同一直线上的三个虚铰两两相联,则所组成的体系是无多余约束的几何不变体系。

( )(√)8. 几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。

( )(X )9. 在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。

( )(√)10. 两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。

( )(√)11. 在非荷载因素(支座移动,温度变化,材料收缩等)作用下,静定结构不产生内力,但会有位移,且位移只与杆件相对刚度有关。

( )(X )12. 虚功中的力状态和位移状态是彼此独立无关的,这两个状态中的任一个都可看作是虚设的。

( )(√)13. 温度改变,支座位移,材料收缩和制造误差不会使静定结构产生内力,因而也不产生位移。

( )(X )14. 计算自由度W 小于等于零是体系几何不变的充要条件。

( )(X )15.若体系计算自由度W<0,则它一定是几何可变体系。

( )(X )16.平面几何不变体系的三个基本组成规则是可以相互沟通的。

( )(√)17.三刚片由三个单铰或任意六根链杆两两相联,体系必为几何不变。

( )(X )18.图示三铰刚架,EI 为常数,A 铰无竖向位移。

5结构力学图乘法.

5结构力学图乘法.
(1)常见图形面积和形心:
矩 形
a
l
A al
xc 1 l 2 xc 1 3l
xc 1 4l
3 xc 8 l
三角形
a
l
A 1 2 al A 1 3 al A 2 3 al
l
a
l
标准二次 抛物线
a
l
a
A 2 3 al
xc 1 l 2
(2) 梯形相乘
A1
A2
M M
i
K
dx A1 y1 A2 y 2
1 M M P dx EI

(M x tanα)

yc
xc x
M
x

图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路 运输学院的学生。
4、 注意事项
KP AP yc EI
还记得 吗?
(1)必须符合图乘法的适用条件; (2) 必须取自直线图形; (3)同侧弯矩图相乘为正,反之为负; (4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解; (5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
如果将AC段的 M P图如下图那样分块,就比 16 较麻烦。 4kN 4 2kN/m 8 M P图 4 A C C A 2m 4kN.m 例2 求 B, EI等于常数。 12kN.m 4kN C 4m
2kN/m
4kN.m 4m B 7kN
A
5kN
解: 作 M 图 M P 图,如下页图所示。
12
c
y2
d
M图
(3)一般形式的二次抛物线图形相乘 (4)曲线图形与折线图形相乘
M M
i
K

结构力学(王焕定第三版)教材习题第三章答案全解——哈工大老师提供

结构力学(王焕定第三版)教材习题第三章答案全解——哈工大老师提供

结构力学(王焕定第三版)教材习题答案全解第三章习题答案3-1 (a) 答:由图(a )、(b )可知结构对称(水平反力为零)荷载对称,因此内力对称。

所以可只对一半进行积分然后乘以 2 来得到位移。

如图示F P R (1−cos θ)M P = θ∈[0,π/2];M =R sin θ θ∈[0,π/2]2 代入位移计算公式可得M P M1 π2 M P M2 π2 F P R (1−cos θ)∆Bx = ∑∫ EId s = 2⋅ EI ∫0EI R d θ= EI ∫02 R sin θR d θ=F P R 3 =(→)2EI3-1 (b) 答: 如图(a )、(b )可建立如下荷载及单位弯矩方程EIBARRF P( a )1pR ∆Bx =∑∫ MEIM d s =∫0π2 MEI P M R d θ= q EI 4∫0π2(1−2cos θ+cos 2 θ)R d θqR 4 ⎡ θ 1⎤3π⎞ qR 4= EI ×⎢θ−2sin θ+ 2 + 4sin2θ⎥⎦0 =⎝⎜ 4 − 2⎠⎟ 2EI (→)2 ⎣3-2 答:作M P 图和单位力弯矩图如下图: 由此可得内力方程根据题意EI (x ) = EI (l + x )代入位移公式积分可得 2 2 P 0s i n ( ) d (1 c o s ) (1 c o s ) q M R q R M R θθ α α θθ − = = − = − ∫AqRBα θ1( a ) θ( b )ABlq 03 0 p 6 x q M M xl = = xP M 图2 0 6q l1lM 图 x5 83 82l 代入位移公式并积分(查积分表)可得M P M l 2 q0x4∆Bx =∑∫ EI d x =∫0 6EI(l + x) d x7q0l40.07 ql4= (ln 2−)× = (→)123EI EI3-3 答:分别作出荷载引起的轴力和单位力引起的轴力如下图所示:由此可得C 点的竖向为移为:F NP F N1F NP F N1 ∆Cy =∑∫EA d s=∑ EA l =65112.5 kN× ×6 m+2×(62.5 kN× ×5 m+125 kN× ×5 m+75 kN× ×6 m)= 88EA=8.485×10−4 m当求CD 和CE 杆之间的夹角改变使:施加如图所示单位广义力并求作出F N2 图,则F∆=∑∫ F NP EA F N2 ds =∑ NP EAF N2 l2×62.5 kN ×(−0.15)×5 m +(−112.5 kN)×0.25×6 m =EA=−1.4×10−4 rad( 夹角减小)3-4 (a)答:先作出M p和M 如右图所示。

结构力学第3章习题及参考答案

结构力学第3章习题及参考答案
3-4试求图示桁架C点竖向位移和CD杆与CE杆夹角的改变量。已知各杆截面相同,A=1.5×10-2m2,E=210 GPa。
解(1)C点的竖向位移
(2)CD杆与CE杆夹角的改变量
3-5图示桁架AB杆的 ,其他杆的 。试求B点水平位移。
解本题中,AB杆的应力-应变关系不是线性的,计算时要用单位荷载法最基本的公式。

3-9试求图示刚架在温度作用下产生的D点的水平位移。梁为高度h=0.8m的矩形截面梁,线膨胀系数为 =10-5 oC-1。

3-10图示桁架各杆温度上升t,已知线膨胀系数 。试求由此引起的K点竖向位移。(画出需要的图)

*3-11图示梁截面尺寸为b×h=0.2m×0.6m,EI为常数,线膨胀系数为 ,弹簧刚度系数k=48EI/l3(l=2m)。梁上侧温度上升10℃,下侧上升30℃,并有图示支座移动和荷载作用。试求C点的竖向位移。
解利用虚功互等定理。
1状态:1kN的外力及其引起的15个结点的已知位移。
2状态:15个结点上10kN/15的集中荷载及其引起的15个结点的未知位移。
1状态的外力在2状态位移上做的功为
2状态的外力在1状态位移上做的功为


3-6 (b)

3-6 (c)

3-6 (d)

3-6 (e)

3-6 (f)
解(1)相对水平位移
(2)相对竖向位移
对称结构在对称荷载作用下的反对称位移等于零。
(3)相对转角
3-6 (g)

3-6 (h)

3-7试求图示结构在支座位移下的指定位移。
3-7 (a)

3-7 (b)

3-8图示结构各杆件均为截面高度相同的矩形截面,内侧温度上升t,外侧不变。试求C点的竖向位移。线膨胀系数为 。

图乘法

图乘法
分析: 分析: 在直杆结构中总是直线。 M在直杆结构中总是直线。 满足上式推导中f(x)的条件 满足上式推导中f(x)的条件 f(x)
y0 o A
MM P 1 ∆ = ∑∫ ds = ωy 0 EI EI
武汉理工大学土木工程与建筑学院 结构力学教研室 李保德副教授
MM P 1 ds = ∑ ωy 0 ∆ = ∑∫ EI EI
1 1 2 ω 3 = × qL 2 8 3 y3 = L 4
C
B L/2
1 L 1 2 ω1 = × × qL 3 2 8
1 L 1 2 ω 2 = × × y2 = L 6
∆B =
1 (ω1 y1 + ω 2 y 2 + ω 3 y3 ) EI
41qL4 = 384 EI
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
3. 常见图形的面积和形心
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
注意: 注意:
标准抛物线
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
4. 图乘的一般方法
两图均是直线图形,y0可取其中的任一图形
ω
y0
y0
ω
武汉理工大学土木工程与建筑学院
武汉理工大学土木工程与建筑学院
C
B L/2
∆B =
1 ωM P y EI
1 1 2 PL3 = × L × PL × L = EI 2 3 EI
B
MP

1 ∆B = ωM y EI
1 1 2 PL3 = × L × L × PL = EI 2 3 EI
M
结构力学教研室
李保德副教授

结构力学-图乘法

结构力学-图乘法
1
NP
N
1
结构力学电子教案
第七章
静定结构位移计算
第23页
DP

M M P ds EI


F N FNP l EA
1 1 4 1 2 2 ( 2 2 8 ) 3 ( 2 2 2 ) 3 ( 3 2 0 . 5 ) 1 EI 4 1 2 2 1 ( 4 8 ) ( 4 8 ) ( 4 2 ) 1 2 EI 2 3 2 3 3 1 1 EA
Δ Cy
结构力学电子教案
第七章
静定结构位移计算
第17页
解 绘出实际状态及虚拟状态的 M P 、M 图。
72
2 16 8 4 2 16 8
20
4
MP图
y5 y 4 y 3
y1 y2
结构力学电子教案
第七章
静定结构位移计算
第18页
Cy

yc
EI

[( 4 20 )( 4 ) ( 4 4 )( 4 )] EI 2 3 3 2
B
xd
A
xc
B

A
M M P ds EI

tg EI
xc
yc
EI
结构力学电子教案
第七章
静定结构位移计算
第4页
B

A
M M P ds EI

tg EI
xc

yc
EI
由此可见,上述积分式等于一个弯矩图的面积 乘以其形 心处所对应的另一个直线弯矩图上的纵距 y c ,再除以EI。 这就是图形相乘法的计算公式,简称为图乘法。

《结构力学图乘法》PPT课件

《结构力学图乘法》PPT课件

EI
E1I1 E2 I 2 E3 I3
Ei Ii
对于等直杆有
Δ

1 EI
l M ( x)M ( x)dx
M(x)
MC
EI
ω
C
即 积分可用M(x)图的面积 ω 和与M(x)
xc
x
图形心C对应的 Mc 的乘积来代替
M(x)
当M图为正弯矩时,
Δ MC
EI
ω应代以正号. 当M图为负弯矩时, ω应代以负号.
(3)图 M 图 M P中至少有一个是直线
图形。
3、图乘法公式
KP
Ap yc EI
M M P ds EI
←杆轴为直线
M M P dx EI
←杆段EI为常数
1 EI
M M Pdx
(M x tan α)
1
EI x tan α M Pdx

tan α EI
注意
有时M(x)图为连续光滑曲线,而 M(x) 为折线,则应以 折线的转折点为界,把积分分成几段,逐段使用图乘法, 然后求其和.
例1 求CV , EI等于常数。
解:
2kN/m
作 M 图 MP 图,如右图所示。 A 2m C 2m B
分段:M ,M P 分为AC、CB两段。16
分块: M P图的AC段分为两块。
还记得 吗?
(3)同侧弯矩图相乘为正,反之为负;
(4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解;
(5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


( M x tan ) 1 x tan M P dx EI tan
xM P dx
图乘法求位移公式为:
图乘法的 适用条件是 什么?
EI tan 1 xc yc EI EI
ip

yc
EI
例. 试求图示梁B端转角.
A
P
B B
MP
A
M 1 B 1
B
c
y c
ql 2 / 2
ql 2 / 8
例 4. 图示梁 EI 为常数,求C点竖向位移 。 q ql 2 / 8 ql 2 / 2
MP
A
l/2 C
1
q q
l/2
B
l/2
Mi
c
y c
C ql / 2 ql 2 / 8
ql 2 / 8 ql 2 / 4 ql 2 / 8
ql / 2
§3.4 图乘法及其应用
(Graphic Multiplication Method and its Applications)
刚架与梁的位移计算公式为:
iP MM P ds EI
在杆件数量多的情况下,不方便. 下面介绍 计算位移的图乘法.
一、图乘法
MM P ds EI 1 图乘法是Vereshagin于 M M P ds (对于等 截面杆) EI 1925年提出的,他当时 1 为莫斯科铁路运输学院 MM P dx (对于直杆) EI 的学生。
1 1
B
Mi
l
ql / 4
2
l
ql 2 / 4
1/ l
0 解:作荷载弯矩图和单位荷载弯矩图
q
MP
ql / 4
1 2 ql 2 1 CD EI EI 3 8 2 ql 3 ql / 4 ( ) 24 EI
yc
三、应用举例
例 3. 已知 EI 为常数,求A点竖向位移 A 。 1 q q l
1
Mi
1/ 2
1 1 Pl 1 Pl 2 B ( l ) ( EI 2 4 2 16 EI
)
取 yc的图形必 须是直线,不能是曲 线或折线.
三、图形分解
求 B
A
MP
60
20
40 B
20
EI
20kN m 40kN m 10 m
1
Mi
1 1 2 B ( 10 60 EI 2 3 1 100 20 10 ) ( ) 2 EI
求B点水平位移,EI=常数。
2Pl 2l
A
MP
A
P
Pl l
l
B
MP
1
l
B
l
解:作荷载弯矩图和单位荷载弯矩图
1 1 2 1 2l 3l B [ l Pl l Pl l l Pl l (l ) Pl l ] EI EI 2 3 2 3 2 11Pl 3 ( ) 3EI
yc
练习
求C、D两点相对水平位移 CD 。
P
Pl EI
C
D
P
l
EA A
MP
1
l l
1
EI Pl
B
l
Mi
l
解:作荷载弯矩图和单位荷载弯矩图
N i N Pl 1 1 2 1 B Pl l l 4 (2 P)( 2) l EI EA EI 2 3 EA 4 Pl 3 4 Pl () 3EI EA
三、图乘法小结
1. 图乘法的应用条件: (1)等截面直杆,EI为常数; (2)两个M图中应有一个是直线;
y c 应取自直线图中。 2. 若 与 y c 在杆件的同侧, yc取正值;
(3) 反之,取负值。
3. 如图形较复杂,可分解为简单图形.
三、应用举例
例 1. 已知 EI 为常数,求C、D两点相对水平位移 CD。
若把二力杆换成弹簧,该如何计算?
B支座处为刚度k的弹簧,该如何计算C点竖向位移?
A
l
P C
2 l
B k
2
A
l 2
=1 C
l
B k
2
Si
l 4
SP P / 2
MP
Pl 4
y c
已知: E、I、A为常数,求 Cy 。
D
P A C B
a
l
2
l
2
解:作荷载内力图和单位荷载内力图
NP P / 2
A
l 2
D P
Ni 1 / 2
D
a
B
2
Pl 4
A
l
1 C
2
a
B
l 2
l 4
C l
MP
M
2 1 l Pl 2 l 1 1 P Pl 3 Pa Cy [( ) ] a () EI 2 2 4 3 4 EA 2 2 48 EI 4 EA
A
B
h
q
2
q
ql / 8
MP
1
1
h h
Mi
l
解:作荷载弯矩图和单位荷载弯矩图 yc 1 2 ql 2 CD lh EI EI 3 8 qhl 3 ( ) 12 EI
三、应用举例
例 2. 已知 EI 为常数,求铰C两侧截面相对转角 C 。 l q
A
C
1
例:求图示梁(EI=常数,跨长为l)B截面转角 B
q
A
1 2 ql 8 1 2
1
B
MP 图
M

解:
1 2 1 2 1 B [( l ql ) ] EI 3 8 2 1 ql 3 ( ) 24 EI
三、图形分解
求 B
MP
20
A
B
20kN m
20 A
40 B
EI
1 1 B 10 1 (20 EI 2 2 500 20 ) ( ) 3 3EI
1
Mi
1/ 2 2 / 3
1 1 2 B ( 10 20 EI 2 3 1 500 10 20 ) ( ) 2 3EI
当两个图形均 为直线图形时,取那 个图形的面积均可.
11ql 4 ( ) 12 EI
已知 EI 为常数,求B截面转角。
2kN/m
B
6kN
1
4
3m
MP
12
Mi
A
4m 2m
解:作荷载弯矩图和单位荷载弯矩图
B yc
1 1 1 2 1 ( 4 12 1 4 4 ) EI EI 2 3 3 2 )
8 ( 3EI
已知 EI 为常数,求C、D两点相对水平位移 CD,并画出变形图。
ql
C
D
l
A
q
B
ql
1
q
1
l
ql 2
l
l
MP
Mi
解:作荷载弯矩图和单位荷载弯矩图
CD
yc
1 1 1 2 ql 2 2 2 2 ( l ql l l ql l l l) EI EI 2 3 2 3 8
MP
l
解: By

MM P EI ds
y c
EI 1 1 2 ( Pl l l Pl l l ) EI 2 3 4 Pl 3 () 3 EI
二、几种常见图形的面积和形心位置的确定方法
二次抛物线
hl n 1
C
h
l n2
( n 1)l n2
1 1 对称弯矩图 1 1
l
Mi
1
Mi
l
l
1
作变形草图
绘制变形图时,应根据弯矩图判断杆件的凹凸方向,注意 反弯点的利用。如:
Pl
P
P
1
1
1 1
练习
求B点水平位移。
4 EI
Pl
l
l
EI A
MP
EI
B P
Mi
1
l 解:作荷载弯矩图和单位荷载弯矩图
yc
注意:各杆刚度 可能不同
1 1 2 1 B Pl l l 2 Pl l l EI EI 2 3 4 EI 5 Pl 3 () 8 EI
yc
三、应用举例
例 4. 图示梁EI 为常数,求C点竖向位移。
ql 2 / 2
MP
q ql 2 / 8
A
c
y c
l/2 C l/2
1
C
B
1 1 ql 2 1 l l EI EI 3 2 2 2
l/2
Mi
1 ql 3 () 24 EI
1 1 3ql 2 l 3 l l ql 2 l C ( ) EI EI 3 8 2 4 2 2 8 4 5ql 3 ( ) 128 EI
20kN m 10 m40kN m
A
40 B 40kN m
1
Mi
1/ 3
2/3
1 1 2 B ( 10 40 EI 2 3 1 1 500 10 20 ) ( ) 2 3 3EI
三、图形分解
求 B
MP
20 A
40 B
EI
20kN m 10 m40kN m
EI 1 1 l ql 2 3 l 1 l ql 2 2 l ( EI 3 2 8 4 2 2 2 4 3 2 l ql 2 1 l ) 2 8 2 2 17 ql 4 () 384 EI
相关文档
最新文档