结构力学图乘法
合集下载
结构力学-图乘法

结构力学电子教案
第七章
静定结构位移计算
第2页
等截面直杆AB段 以杆轴为 x 轴,以 M 图的 延长线与 x 轴的交点O为坐 tan 标原点, 沿AB杆段为 常数 M x tan
B
A
M M P ds EI
1 EI
B
MM
A
P
dx
tan EI
B
xM
A
P
dx
tan EI
c
y1
y2
d
结构力学电子教案
第七章
静定结构位移计算
第8页
a
1
2
b
d
y2 c y1
yc
EI 1 EI
图形的纵距a、b 或c、 d不在基线同一侧时。 处理原则也和上面一样, 可分解为位于基线两侧的两 个三角形,分别与另一图形 相乘,然后叠加。
( 1 y 1 2 y 2 )
( 10
2 )( 1 . 5 2 ) 4 2
98 . 84 EI
( )
结构力学电子教案
第七章
静定结构位移计算
第24页
解 绘出实际状态及虚拟状态的 M P 、M 图。
y5 y 4 y 3
y1 y2
解 (1)作实际状态的 M
P
。
ql 8
2
ql 8
2
结构力学电子教案
第七章
静定结构位移计算
第14页
(2)建立虚拟状态,并作
l/2
M
图。
1
(3)进行图形相乘,求C点竖向位移 C y 。
结构力学电子教案
第七章
静定结构位移计算
结构力学图乘法课件

THANKS
感谢观看
工程实践应用
探讨结构力学图乘法在工程实践中的应用,包括结构分析和设计、损伤识别与健康监测、物理实验模拟等领域,以帮 助学员了解该领域的实际应用和未来发展方向。
对个人发展的启示 总结学习结构力学图乘法的经验和方法,提出对个人发展的启示和建议,包括思维方式、分析问题和解 决问题的能力以及团队协作等方面的提升。
图乘法的扩展应用
建筑结构分析
图乘法在建筑结构分析中有着广泛的应用,可以用于分析建筑结构的强度、刚度和稳定性。 通过图乘法,工程师可以快速求解出建筑结构的响应和性能,为建筑设计和施工提供依据。
桥梁结构分析
图乘法在桥梁结构分析中也有着重要的应用,可以用于分析桥梁的承载能力和稳定性。通 过图乘法,工程师可以得出桥梁在不同载荷条件下的响应和性能,为桥梁的设计和施工提 供依据。
选择实例
选择具有代表性的扭转结构作 为分析对象。
建模分析
建立结构模型,进行静力分析 和动力学分析。
结果比较
比较不同设计方案和参数下的 结果,分析优劣。
结论总结
总结分析结果,提出优化方案 和结论。
06
图乘法的应用与扩展
图乘法在结构设计中的应用
01
简化复杂结构分析
图乘法可以用于求解复杂结构的内力和位移,通过将结构分解为简单部
教学方法评析
对采用的教学方法和策略进行反 思和评析,包括案例分析、课堂 讲解、小组讨论和习题练习等, 以帮助学员更好地掌握知识和技
能。
学员收获与感受
分享学员在学习过程中的收获和 感受,包括对基本概念的理解、 解决问题的能力和实践应用能力
的提升等方面。
展望与启示
前沿技术发展
介绍结构力学图乘法领域的前沿技术和研究动态,包括新理论、新方法和新应用等,以激发学员对该领域的兴趣和研 究热情。
结构力学(第三章)-图乘法

( M x tan ) 1 x tan M P dx EI tan
xM P dx
图乘法求位移公式为:
图乘法的 适用条件是 什么?
EI tan 1 xc yc EI EI
ip
yc
EI
例. 试求图示梁B端转角.
A
P
B B
MP
A
M 1 B 1
B
c
y c
ql 2 / 2
ql 2 / 8
例 4. 图示梁 EI 为常数,求C点竖向位移 。 q ql 2 / 8 ql 2 / 2
MP
A
l/2 C
1
q q
l/2
B
l/2
Mi
c
y c
C ql / 2 ql 2 / 8
ql 2 / 8 ql 2 / 4 ql 2 / 8
ql / 2
§3.4 图乘法及其应用
(Graphic Multiplication Method and its Applications)
刚架与梁的位移计算公式为:
iP MM P ds EI
在杆件数量多的情况下,不方便. 下面介绍 计算位移的图乘法.
一、图乘法
MM P ds EI 1 图乘法是Vereshagin于 M M P ds (对于等 截面杆) EI 1925年提出的,他当时 1 为莫斯科铁路运输学院 MM P dx (对于直杆) EI 的学生。
1 1
B
Mi
l
ql / 4
2
l
ql 2 / 4
1/ l
0 解:作荷载弯矩图和单位荷载弯矩图
q
MP
5结构力学图乘法.

(1)常见图形面积和形心:
矩 形
a
l
A al
xc 1 l 2 xc 1 3l
xc 1 4l
3 xc 8 l
三角形
a
l
A 1 2 al A 1 3 al A 2 3 al
l
a
l
标准二次 抛物线
a
l
a
A 2 3 al
xc 1 l 2
(2) 梯形相乘
A1
A2
M M
i
K
dx A1 y1 A2 y 2
1 M M P dx EI
(M x tanα)
yc
xc x
M
x
图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路 运输学院的学生。
4、 注意事项
KP AP yc EI
还记得 吗?
(1)必须符合图乘法的适用条件; (2) 必须取自直线图形; (3)同侧弯矩图相乘为正,反之为负; (4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解; (5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
如果将AC段的 M P图如下图那样分块,就比 16 较麻烦。 4kN 4 2kN/m 8 M P图 4 A C C A 2m 4kN.m 例2 求 B, EI等于常数。 12kN.m 4kN C 4m
2kN/m
4kN.m 4m B 7kN
A
5kN
解: 作 M 图 M P 图,如下页图所示。
12
c
y2
d
M图
(3)一般形式的二次抛物线图形相乘 (4)曲线图形与折线图形相乘
M M
i
K
矩 形
a
l
A al
xc 1 l 2 xc 1 3l
xc 1 4l
3 xc 8 l
三角形
a
l
A 1 2 al A 1 3 al A 2 3 al
l
a
l
标准二次 抛物线
a
l
a
A 2 3 al
xc 1 l 2
(2) 梯形相乘
A1
A2
M M
i
K
dx A1 y1 A2 y 2
1 M M P dx EI
(M x tanα)
yc
xc x
M
x
图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路 运输学院的学生。
4、 注意事项
KP AP yc EI
还记得 吗?
(1)必须符合图乘法的适用条件; (2) 必须取自直线图形; (3)同侧弯矩图相乘为正,反之为负; (4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解; (5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
如果将AC段的 M P图如下图那样分块,就比 16 较麻烦。 4kN 4 2kN/m 8 M P图 4 A C C A 2m 4kN.m 例2 求 B, EI等于常数。 12kN.m 4kN C 4m
2kN/m
4kN.m 4m B 7kN
A
5kN
解: 作 M 图 M P 图,如下页图所示。
12
c
y2
d
M图
(3)一般形式的二次抛物线图形相乘 (4)曲线图形与折线图形相乘
M M
i
K
结构力学图乘法详述

6
Pl 2 16 EI
积分常可用图形相乘来代替
§6-5 图乘法
直杆 EI C
位移计算举例
MiMk MiMk 1 EI ds EI dx EI M i M k dx M i是直线 B B 1 1 tg xM k dx M k xtgdx A EI EI A tg B 1 1 y w ×w x0 y tg xd w 0 EI EI EI A
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
2
三、位移计算的一般步骤: K
t1 t2
MP EI
NP EA
QP k GA
10 9
k--为截面形状系数 (3) 荷载作用下的位移计算公式
1.2
A
A1
MM P NN P kQ QP ds ds ds EI EA GA
4
二、各类结构的位移计算公式
(1)梁与刚架
MM P ds EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 9 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
例:求图示梁中点的挠度。
1 1 3a 3a Pa EI 2 4
求B点的竖向位移。
ql2/2
4
1 1 ql 3l ql B l EI 3 2 4 8 EI 1 1 3ql 2 l B y 0 L 2 EI 3 8 2
Pl 2 16 EI
积分常可用图形相乘来代替
§6-5 图乘法
直杆 EI C
位移计算举例
MiMk MiMk 1 EI ds EI dx EI M i M k dx M i是直线 B B 1 1 tg xM k dx M k xtgdx A EI EI A tg B 1 1 y w ×w x0 y tg xd w 0 EI EI EI A
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
2
三、位移计算的一般步骤: K
t1 t2
MP EI
NP EA
QP k GA
10 9
k--为截面形状系数 (3) 荷载作用下的位移计算公式
1.2
A
A1
MM P NN P kQ QP ds ds ds EI EA GA
4
二、各类结构的位移计算公式
(1)梁与刚架
MM P ds EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 9 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
例:求图示梁中点的挠度。
1 1 3a 3a Pa EI 2 4
求B点的竖向位移。
ql2/2
4
1 1 ql 3l ql B l EI 3 2 4 8 EI 1 1 3ql 2 l B y 0 L 2 EI 3 8 2
6.5 图形相乘法 结构力学

=
MA
MB
+
MA B A dx a qa2/8 MB
MA MA A MB a q B MB
=
+
qa2/8
All Rights Reserved
重庆大学土木工程学院
四、应用图乘法的计算步骤
1)作实际荷载弯矩图MP图; )作实际荷载弯矩图 图 2)加相应单位荷载,作单位弯矩图图; )加相应单位荷载,作单位弯矩图图; 3)用图乘法公式(6-17)求位移。 )用图乘法公式( )求位移。 所示简支梁跨中截面C的挠度 例6-7】试求图 】试求图6-21a所示简支梁跨中截面 的挠度CV和B端的 所示简支梁跨中截面 端的 已知EI=常数。 常数。 转角θB。已知 常数
O
M =xtanα
α
x A x0
M
M图
x
式中, 式中,dA=MPdx为MP图中有阴影线的微分面积,而 xdA即为 为 图中有阴影线的微分面积, 整个M 图的面积对y轴的静矩 轴的静矩。 表示M 的形心至y轴的距 整个 P图的面积对 轴的静矩。用x0表示 P的形心至 轴的距 离,则有 xdA = Ax (b)
1
20kN 100 A2 C A3 20 B A4 A A5 140 (45) A1 D
y02 y01 12 y03
C
4m C 4m
D
y04 y05
A
MP图(kNm)
M 图(m)
y 01
1 = ×12 = 6 2
2 y02 = × 12 = 8 3
y 03 = y 04 = y 05 = 12
MP图 l y03 y 04 y01
A
1
B
y02
C
M图
《结构力学图乘法》PPT课件

EI
E1I1 E2 I 2 E3 I3
Ei Ii
对于等直杆有
Δ
1 EI
l M ( x)M ( x)dx
M(x)
MC
EI
ω
C
即 积分可用M(x)图的面积 ω 和与M(x)
xc
x
图形心C对应的 Mc 的乘积来代替
M(x)
当M图为正弯矩时,
Δ MC
EI
ω应代以正号. 当M图为负弯矩时, ω应代以负号.
(3)图 M 图 M P中至少有一个是直线
图形。
3、图乘法公式
KP
Ap yc EI
M M P ds EI
←杆轴为直线
M M P dx EI
←杆段EI为常数
1 EI
M M Pdx
(M x tan α)
1
EI x tan α M Pdx
tan α EI
注意
有时M(x)图为连续光滑曲线,而 M(x) 为折线,则应以 折线的转折点为界,把积分分成几段,逐段使用图乘法, 然后求其和.
例1 求CV , EI等于常数。
解:
2kN/m
作 M 图 MP 图,如右图所示。 A 2m C 2m B
分段:M ,M P 分为AC、CB两段。16
分块: M P图的AC段分为两块。
还记得 吗?
(3)同侧弯矩图相乘为正,反之为负;
(4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解;
(5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
最新版结构力学精品课件4-5 图乘法及其应用 (2)

1 2 ql 8
应分段!
M
图
l 4
q A B A
1 2
C B
1
MP 图
1 2 ql 8
M
图
例 2. 已知 EI 为常数,求刚架C、D两点 距离的改变 CD 。
解:作荷载内力图和单位荷载内力图
p117
2
yc h
例 3. 已知 EI 为常数,求刚架A点的竖向位 移 。
Ay
FP
解:作荷载内力图和单位荷载内力图
4-5 图乘法及其应用
已有基础: 1. 静定结构的内力计算; 2. 利用位移计算公式求静定结构的位移;
3. 杆件结构在荷载作用下的位移计算公式,即:
kFQP FNP MP l M dx l FN dx l FQ dx EI EA GA
这部分主要内容:
MM P ds 1. 图乘法; EI
FPl/2 FPl/2 FPl/2 FP FPl/4 EI 2EI
M 图
MP 图
FPl
在
M
图求面积,在 M P图取竖标,有:
例 4. 已知 EI 为常数,求 Cy 。
解:作荷载和单位荷载的内力图
MP
分解
M
二次抛物线
hl n 1
C
h
l n2
( n 1Байду номын сангаасl n2
三、注意事项:
1. 图乘法的应用条件: (1)等截面直杆,EI为常数; (2)两个M图中应有一个是直线;
yc 应取自直线图中。 yc取正值; 2. 若 与 yc 在杆件的同侧,
( 3) 反之,取负值。
3. 如图形较复杂,可分解为简单图形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
c
l n2
N 次抛物线 l h n1
注意
有时M(x)图为连续光滑曲线,而 M(x)为折线,则应以 折线的转折点为界,把积分分成几段,逐段使用图乘法, 然后求其和.
例1 求CV , EI等于常数。
解:
2kN/m
作 M 图 MP 图,如右图所示。 A 2m C 2m B
分段:M
,M
P
分为AC、CB两段。 16
(4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解;
(5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
3
l
顶点
C
5l
3l
8
8
l
三角形
AP
l
h 2
二次抛物线
2 Ap 3 h l
c
顶点
3l/4
l/4
l
二次抛物线
Ap
lh 3
顶点
(n 1) l n2
1
EI Ap xc EI Ap yc
y A
Mp
C
dx B
yc
xc
x
M x
图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路
运输学院的学生。
4、 注意事项
KP
AP yc EI
(1)必须符合图乘法的适用条件; (yc2) 必须取自直线图形;
还记得 吗?
(3)同侧弯矩图相乘为正,反之为负;
l
c
l n2
N 次抛物线
lh n1
3. 图形相乘的几种情况
(1)常见图形面积和形心:
矩形
a
l
A al
三角形
a
l
A
1 2
al
xc
1 2
l
xc
1 3
l
a
l
标准二次 a
抛物线
l
a
l
A
1 3
al
A
2 3
al
A
2 3
al
xc
1 4
l
xc
3 8
l
xc
1 2
l
(2) 梯形相乘
A1 A2
M i M K dx A1 y1 A2 y2
§4-4 图乘法
1.图乘法原理
梁、刚架等弯曲变形为主的构件位移计算公式:
KP
M K M P ds 称莫尔积分 EI
建立方程,逐杆积分,在杆件数量多的情况 下不方便。
图乘法的思想:利用图形静矩的概念将图 形积分变为图形相乘。
2、图乘法的适用条件: (1)杆件轴线是直线;
(2)杆段的弯曲刚度EI为常数;
y3
1 2
(12
4)
4
2
CH
1 EI
(1 y1 2 y2
3 y3 )
1 ( 8 1.5 32 2 8 4)
EI 3
3
1 (25.33 32) 6.67 ()
EI
EI
y3=4 ω2 2m MP图(kN.m)
ω3 y2
M图
4B 4
ω1
C 2
y1
1
作业:
4-3 (a);(c)
§4-5 互等定理
16
2kN/m 4kN
A
C
2m 4kN.m
4
8 A
4 C
M P图
例2
求B, EI等于常数。
12kN.m 4kN 2kN/m
A
C
B 4kN.m
5kN 4m
4m
7kN
解:
作 M 图 M P 图,如下页图所示。
12
A
A
1
1 2
16 8
64
C ω1 y2
4 B MP图
8
4 ω3
(kN.m)
1/2y1 ω2 y3
14
2
1 2
4
2 3
4 3
21 2 y1 3 3 9
y2
(2 3
14
1 6) 3
22 3
3
2 3
4 12
32
y3
1 3
B
1 EI
(1 y1
2 y2
3 y3 )
1 (14 2 4 22 32 1)
EI
93 3
3
156 17.33 ( ) 9EI EI
y2
6
ω1
ω3
14 y1 1/3
y1
(2c 3
d
)
y2
(c
2d) 3
MiM Kdx 1y1 2 y2
y1
(2c 3
d
)
y2
(c
2d) 3
b c取负值
A
a A1
C
y1 c
B A2 b
D y2
d
MK 图 M图
(3)一般形式的二次抛物线图形相乘
(4)曲线图形与折线图形相乘
M i M K dx A1 y1 A2 y2 A3 y3 Ai yi
1
B M图
C
1
y1 1/ 2
3
2 4 4 3
32 3
2
1 81 2
4
21
20
y2
( 4 3
12) 3
3
y3
1 2
(1 1 /
2)
3 4
B
1 EI
(1 y1
2 y2
3 y3 )
1 EI
(64 1 2
4
20 3
32 3 ) 34
1 (32 80 8) 13.33 ( )
EI
3
EI
互等定理适用于线性变形体系,即体系产生的 是小变形,且杆件材料服从虎克定律。
12 M P 图 (kN.m)
y3
1/6
1 2/3
ω2
1/6
M图
例5-5 求ΔCH,EI等于常数。
2kN/m
A
B
EI
2m
EI
2kN/m
C 4m 解: 作MP图和 M 图见下页图。 分块:MP图的AB段分为两块。
1
1 3
2
4
8 3
y1
3 4
2
1.512ຫໍສະໝຸດ 22 344
32 3
y2 2
A
3 2 4 8
(5)阶形杆件图形相乘
M i M K dx A1 y1 A2 y2 A3 y3 Ai yi
EI
E1I1 E2 I 2 E3 I3
Ei Ii
对于等直杆有
M(x)
Δ
1 EI
l M ( x)M ( x)dx
MC
EI
ω
C
即 积分可用M(x)图的面积 ω 和与M(x)
xc
x
图形心C对应的 M 的乘积来代替
分块: M P 图的AC段分为两块。
1
2 3
2
1
4 3
y1 1
A
ω1 y2 4
C
MP B
2
1 2
2
2
2
y2
(2 3
16
1 3
4)
2 ω2
1
36 12 3
A
y1
C
M
B
CV
1 EI
(1 y1
2 y2 )
1 EI
(
4 3
1
2 12)
22.67
1 EI
如果将AC段的
M
图如下图那样分块,就比
P
较麻烦。
(3)图 M 图 M P中至少有一个是直线
图形。
3、图乘法公式
KP
Ap yc EI
M M P ds EI
←杆轴为直线
M M P dx EI
←杆段EI为常数
1 EI
M M Pdx
(M x tan α)
1 EI
x
tan
α
M Pdx
tan α EI
xM
PdxtaEnIα
xdA
tan α
例3 求 ,B EI等于常数。
解: A
作 M 图及M P 图,
如右所示。
7kN
B 2m
6kN/m
C
6kN.m
4m
17kN
分段:M
,M
分
P
为AB、BC两段。
分块:
M
图的
P
BC段分为两块。
y2
6
ω1
ω3
14 y1 1/3
12 M P 图 (kN.m)
y3
1/6
1 2/3
ω2
1/6
M图
1
1 2
214
c
M(x)
当M图为正弯矩时,
Δ MC
EI
ω应代以正号. 当M图为负弯矩时,
ω应代以负号.
M 也应按弯矩符号给以正负号.
l
x
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
3
l
顶点
C
5l
3l
8
8
l
三角形
Ap
l
h 2
二次抛物线
Ap
2 3
hl
c
顶点
3l/4
l/4
l
二次抛物线
Ap
lh 3
顶点
(n 1) l n2
c
l n2
N 次抛物线 l h n1
注意
有时M(x)图为连续光滑曲线,而 M(x)为折线,则应以 折线的转折点为界,把积分分成几段,逐段使用图乘法, 然后求其和.
例1 求CV , EI等于常数。
解:
2kN/m
作 M 图 MP 图,如右图所示。 A 2m C 2m B
分段:M
,M
P
分为AC、CB两段。 16
(4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解;
(5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
3
l
顶点
C
5l
3l
8
8
l
三角形
AP
l
h 2
二次抛物线
2 Ap 3 h l
c
顶点
3l/4
l/4
l
二次抛物线
Ap
lh 3
顶点
(n 1) l n2
1
EI Ap xc EI Ap yc
y A
Mp
C
dx B
yc
xc
x
M x
图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路
运输学院的学生。
4、 注意事项
KP
AP yc EI
(1)必须符合图乘法的适用条件; (yc2) 必须取自直线图形;
还记得 吗?
(3)同侧弯矩图相乘为正,反之为负;
l
c
l n2
N 次抛物线
lh n1
3. 图形相乘的几种情况
(1)常见图形面积和形心:
矩形
a
l
A al
三角形
a
l
A
1 2
al
xc
1 2
l
xc
1 3
l
a
l
标准二次 a
抛物线
l
a
l
A
1 3
al
A
2 3
al
A
2 3
al
xc
1 4
l
xc
3 8
l
xc
1 2
l
(2) 梯形相乘
A1 A2
M i M K dx A1 y1 A2 y2
§4-4 图乘法
1.图乘法原理
梁、刚架等弯曲变形为主的构件位移计算公式:
KP
M K M P ds 称莫尔积分 EI
建立方程,逐杆积分,在杆件数量多的情况 下不方便。
图乘法的思想:利用图形静矩的概念将图 形积分变为图形相乘。
2、图乘法的适用条件: (1)杆件轴线是直线;
(2)杆段的弯曲刚度EI为常数;
y3
1 2
(12
4)
4
2
CH
1 EI
(1 y1 2 y2
3 y3 )
1 ( 8 1.5 32 2 8 4)
EI 3
3
1 (25.33 32) 6.67 ()
EI
EI
y3=4 ω2 2m MP图(kN.m)
ω3 y2
M图
4B 4
ω1
C 2
y1
1
作业:
4-3 (a);(c)
§4-5 互等定理
16
2kN/m 4kN
A
C
2m 4kN.m
4
8 A
4 C
M P图
例2
求B, EI等于常数。
12kN.m 4kN 2kN/m
A
C
B 4kN.m
5kN 4m
4m
7kN
解:
作 M 图 M P 图,如下页图所示。
12
A
A
1
1 2
16 8
64
C ω1 y2
4 B MP图
8
4 ω3
(kN.m)
1/2y1 ω2 y3
14
2
1 2
4
2 3
4 3
21 2 y1 3 3 9
y2
(2 3
14
1 6) 3
22 3
3
2 3
4 12
32
y3
1 3
B
1 EI
(1 y1
2 y2
3 y3 )
1 (14 2 4 22 32 1)
EI
93 3
3
156 17.33 ( ) 9EI EI
y2
6
ω1
ω3
14 y1 1/3
y1
(2c 3
d
)
y2
(c
2d) 3
MiM Kdx 1y1 2 y2
y1
(2c 3
d
)
y2
(c
2d) 3
b c取负值
A
a A1
C
y1 c
B A2 b
D y2
d
MK 图 M图
(3)一般形式的二次抛物线图形相乘
(4)曲线图形与折线图形相乘
M i M K dx A1 y1 A2 y2 A3 y3 Ai yi
1
B M图
C
1
y1 1/ 2
3
2 4 4 3
32 3
2
1 81 2
4
21
20
y2
( 4 3
12) 3
3
y3
1 2
(1 1 /
2)
3 4
B
1 EI
(1 y1
2 y2
3 y3 )
1 EI
(64 1 2
4
20 3
32 3 ) 34
1 (32 80 8) 13.33 ( )
EI
3
EI
互等定理适用于线性变形体系,即体系产生的 是小变形,且杆件材料服从虎克定律。
12 M P 图 (kN.m)
y3
1/6
1 2/3
ω2
1/6
M图
例5-5 求ΔCH,EI等于常数。
2kN/m
A
B
EI
2m
EI
2kN/m
C 4m 解: 作MP图和 M 图见下页图。 分块:MP图的AB段分为两块。
1
1 3
2
4
8 3
y1
3 4
2
1.512ຫໍສະໝຸດ 22 344
32 3
y2 2
A
3 2 4 8
(5)阶形杆件图形相乘
M i M K dx A1 y1 A2 y2 A3 y3 Ai yi
EI
E1I1 E2 I 2 E3 I3
Ei Ii
对于等直杆有
M(x)
Δ
1 EI
l M ( x)M ( x)dx
MC
EI
ω
C
即 积分可用M(x)图的面积 ω 和与M(x)
xc
x
图形心C对应的 M 的乘积来代替
分块: M P 图的AC段分为两块。
1
2 3
2
1
4 3
y1 1
A
ω1 y2 4
C
MP B
2
1 2
2
2
2
y2
(2 3
16
1 3
4)
2 ω2
1
36 12 3
A
y1
C
M
B
CV
1 EI
(1 y1
2 y2 )
1 EI
(
4 3
1
2 12)
22.67
1 EI
如果将AC段的
M
图如下图那样分块,就比
P
较麻烦。
(3)图 M 图 M P中至少有一个是直线
图形。
3、图乘法公式
KP
Ap yc EI
M M P ds EI
←杆轴为直线
M M P dx EI
←杆段EI为常数
1 EI
M M Pdx
(M x tan α)
1 EI
x
tan
α
M Pdx
tan α EI
xM
PdxtaEnIα
xdA
tan α
例3 求 ,B EI等于常数。
解: A
作 M 图及M P 图,
如右所示。
7kN
B 2m
6kN/m
C
6kN.m
4m
17kN
分段:M
,M
分
P
为AB、BC两段。
分块:
M
图的
P
BC段分为两块。
y2
6
ω1
ω3
14 y1 1/3
12 M P 图 (kN.m)
y3
1/6
1 2/3
ω2
1/6
M图
1
1 2
214
c
M(x)
当M图为正弯矩时,
Δ MC
EI
ω应代以正号. 当M图为负弯矩时,
ω应代以负号.
M 也应按弯矩符号给以正负号.
l
x
几中常见图形的面积和形心的计算公式
a
b
C
lb
la
3
3
l
顶点
C
5l
3l
8
8
l
三角形
Ap
l
h 2
二次抛物线
Ap
2 3
hl
c
顶点
3l/4
l/4
l
二次抛物线
Ap
lh 3
顶点
(n 1) l n2