结构力学§5-5 图乘法

合集下载

结构力学第05章 虚功原理与结构位移计算-3

结构力学第05章 虚功原理与结构位移计算-3

6、把复杂图形分为简单图形 、 使其易于计算面积和判断形心位置) (使其易于计算面积和判断形心位置)

取作面积的图形有时是不规则图形, 取作面积的图形有时是不规则图形,面积 的大小或形心的位置不好确定。 的大小或形心的位置不好确定。可考虑把图形 分解为简单图形(规则图形) 分解为简单图形(规则图形)分别图乘后再叠 加。
FP
⊿CV
l/2 l/2 AP FP l
3、正确的作法 、
AP1=1/2×FP l×l/2=FP l2/4 AP2=1/2×FP l/2×l/2=FP l2/8 AP3=1/2×FP l/2×l/2=FP l2/8 y1=l/3 y2=l/6 FP y3 = 0
⊿CV=∑AP·yC/EI
=(FP l2/4×l/3+ FP l2/8×l/6 × +FP l2/8 ×0) / EI =5FP l3/48EI (↓)
32
32
• θC=2[(1/2·80·5)·(2/3·5/8)+(1/2·80·5)·(2/3·5/8+1/3·1) • -(2/3·32·5)·(1/2·5/8+1/2·1)]/EI • kN·m m kN/m2 • =0.005867 (弧度) • 方向与虚拟力方向一致。
思考题:判断下列图乘是否正确?
由此可见,当满足上述三个条件时, 由此可见,当满足上述三个条件时,积分式 的值⊿就等于M 图的面积A乘其形心所对应 乘其形心所对应M 的值⊿就等于 P图的面积 乘其形心所对应 图上的竖标y 再除以EI。 图上的竖标 C,再除以 。 正负号规定: 正负号规定: A与yC在基线的同一侧时为正,反之为负。 与 在基线的同一侧时为正,反之为负。
第五章
虚功原理与结构位移 计算

谈结构力学图乘法应用中复杂图形的图乘技巧

谈结构力学图乘法应用中复杂图形的图乘技巧

基金项目:辽宁工程技术大学应用创新型人才培养立项课题资助项目(YB083033)。 作者简介:孙庆巍,男,辽宁阜新人,硕士,j工宁工程技术大学建筑与工程学院讲师。
2009年第ll卷
孙庆巍
谈结构力学图乘法应用中复杂图形的图乘技巧
-27・
狰衄+狰—一弘
E岛一
图l圈乘法示意图
解法一:将原结构中的荷载分解,如图4。
算的求解过程,大大减少求解的计算量。
譬睑
【1)
相应地嗨图也分解为两个,见图5。

(b)
3复杂问题的图乘技巧
从图乘法公式可知,要想顺利采用图乘法求出 位移,必须要知道Mp的面积和形心位置,对于简单
图S
这时原来的Mi图与M,图进行图乘的过程转
变为丽。图分别与(a)、(b)的%图进行图乘再将结
果相加的过程。此时(a)弯矩图是标准的二次抛物 线,其面积公式与形心位置都已知,(b)弯矩图为三 角形,其面积公式与形心位置自然也已知,所以,将
求出原题中的位移。 总之,遇到复杂图形进行图乘时,均可参考上面 的思路,想办法把原来的复杂图形分解为可确定面
弘2

积与形心位置的标准图形,或将原结构的复杂荷载 分解为单一荷载分别与单位力作用下的M图进行

图乘再求和,这样,就可解决复杂图形的图乘问题。
图9
2∞9年第ll卷
孙庆巍
谈结构力学图乘法应用中复杂图形的图乘技巧
解法一:根据分段叠加法对AC段的M,图分
解,分解为直线(两端截面弯矩纵坐标的连线)与曲 线(AC段的简支梁形式在均布荷载作用下的弯矩 图)相叠加,见图9。
声 譬p 卜j譬仁爿 卜j)T红一) 一)孚p)
荷载形式 弯矩图 圈11

5结构力学图乘法.

5结构力学图乘法.
(1)常见图形面积和形心:
矩 形
a
l
A al
xc 1 l 2 xc 1 3l
xc 1 4l
3 xc 8 l
三角形
a
l
A 1 2 al A 1 3 al A 2 3 al
l
a
l
标准二次 抛物线
a
l
a
A 2 3 al
xc 1 l 2
(2) 梯形相乘
A1
A2
M M
i
K
dx A1 y1 A2 y 2
1 M M P dx EI

(M x tanα)

yc
xc x
M
x

图乘法是Vereshagin于1925年 提出的,他当时为莫斯科铁路 运输学院的学生。
4、 注意事项
KP AP yc EI
还记得 吗?
(1)必须符合图乘法的适用条件; (2) 必须取自直线图形; (3)同侧弯矩图相乘为正,反之为负; (4)拱、曲杆结构和连续变截面的结构只能通过积 分的方式求解; (5)应用图乘法首先熟练掌握常用图形面积及形心 位置。
如果将AC段的 M P图如下图那样分块,就比 16 较麻烦。 4kN 4 2kN/m 8 M P图 4 A C C A 2m 4kN.m 例2 求 B, EI等于常数。 12kN.m 4kN C 4m
2kN/m
4kN.m 4m B 7kN
A
5kN
解: 作 M 图 M P 图,如下页图所示。
12
c
y2
d
M图
(3)一般形式的二次抛物线图形相乘 (4)曲线图形与折线图形相乘
M M
i
K

结构力学§5-5_图乘法

结构力学§5-5_图乘法

L M P M ds L FNP F N ds FNP F N L
o EI
o EA
EA1
(曲杆)
(曲杆)
(拉杆)
§5-5 图乘法
1.图乘原理公式
——将积分转变为图形相乘
y

形心
积分式: L MP M ds
o EI
等直杆EI常数: 1
EI
L
o M P M ds
A
C dx
MP图 B
EI
L o
M
P
M
ds
1 EI
yC
乘积“+、-”规定—— 与 yC 同侧为+,不同侧为-
其中:
— M P 图的面积 (教材用A表示)
yC — M P 图形心位置所对应的 M 图中的竖标
2.图乘注意事项
1)杆件是直杆,EI必须是常数;
2) yC必须取自直线图 ( M P 均M为直线时可互换);
3)M 图为折线或 M P 在基线两侧时都需分段图乘;
MM P EI
dx
1 EI
Ay0
1 2 ql 2 1
ql 3
EI
3
8
l
2
24 EI
Cy
1 EI
(
2 l 1 ql 2 38
)
l 4
B
Cy
1 EI
(
2 3
l 2
1 8
ql 2 )
(85
4l )
2
5 ql4 () 384 EI
分段图乘
[例2] 计算悬臂梁在集中荷载作用下的C点的竖向位移 C 。
o EI
o GA
o EA
2. 各种静定结构位移的计算公式 (1)梁、刚架 —只考虑弯曲变形

结构力学I-第五章 虚功原理与结构位移计算(荷载位移,图乘法)

结构力学I-第五章 虚功原理与结构位移计算(荷载位移,图乘法)

局部变形时静定结构的位移计算
⑴ 在要求的位移处,施加相应的单位荷载; ⑵ 利用力平衡条件,求出局部变形处对应的 内力M,FN,FQ; ⑶ 由虚力方程解出拟求位移: dΔ = ( Mκ + FNε + FQγ0 ) ds
Page 7
Δ A 1
B M
θ
14:32
LOGO
结构体位移计算的单位荷载法
真实荷载 弯曲 剪切
A
x
虚设荷载
B
b 截面参数 1 bh3 I=— 12 A =bh,k = 1.2
ql 4 1 2 qx dx 1.5 0 x Ebh3 2
l
变形类型
M P 0.5qx2
M x
FQP qx
F Q 1
MM P 1 ⑴ 弯曲变形引起的位移 M ds EI EI
Page 12
14:32
LOGO
荷载作用下的位移计算及举例
k F Q FQP F N FNP MM P ds ds ds EI EA GA
弯曲变形 拉伸变形 剪切变形
各类结构的位移公式
各类结构中三种变形的影响所占比重各不相同,故可简化; 例5-3 试求图示悬臂梁在A端的竖直 位移 Δ ,并比较弯曲变形和剪切变 形对位移的影响。设梁的截面为矩 形,泊松比1/3。 解:应用单位荷载法 A 1 q A x B
单位荷载法
单位荷载法求刚体体系位移
虚力原理
⑴ 虚力方程,实质为几何方程;
⑵ 虚力与实际位移状态无关,故可设 单位广义力 P = 1;单位荷载法 ⑶ 关键是找出找出虚力状态的静力平
衡关系。
Page 6
14:32

结构力学图乘法详述

结构力学图乘法详述
6
Pl 2 16 EI
积分常可用图形相乘来代替
§6-5 图乘法
直杆 EI C
位移计算举例
MiMk MiMk 1 EI ds EI dx EI M i M k dx M i是直线 B B 1 1 tg xM k dx M k xtgdx A EI EI A tg B 1 1 y w ×w x0 y tg xd w 0 EI EI EI A
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
2
三、位移计算的一般步骤: K
t1 t2
MP EI
NP EA
QP k GA
10 9
k--为截面形状系数 (3) 荷载作用下的位移计算公式
1.2
A
A1
MM P NN P kQ QP ds ds ds EI EA GA
4
二、各类结构的位移计算公式
(1)梁与刚架
MM P ds EI
1 1 ql 2 3 ql 4 B l l EI 3 2 4 8EI
⑥当图乘法的适用条件不满足时的处理方法: a)曲杆或 EI=EI(x)时,只能用积 分法求位移; 9 b)当 EI 分段为常数或 M、MP 均非直线时,应分段图乘再叠加。
例:求图示梁中点的挠度。
1 1 3a 3a Pa EI 2 4
求B点的竖向位移。
ql2/2
4
1 1 ql 3l ql B l EI 3 2 4 8 EI 1 1 3ql 2 l B y 0 L 2 EI 3 8 2

图乘法

图乘法
分析: 分析: 在直杆结构中总是直线。 M在直杆结构中总是直线。 满足上式推导中f(x)的条件 满足上式推导中f(x)的条件 f(x)
y0 o A
MM P 1 ∆ = ∑∫ ds = ωy 0 EI EI
武汉理工大学土木工程与建筑学院 结构力学教研室 李保德副教授
MM P 1 ds = ∑ ωy 0 ∆ = ∑∫ EI EI
1 1 2 ω 3 = × qL 2 8 3 y3 = L 4
C
B L/2
1 L 1 2 ω1 = × × qL 3 2 8
1 L 1 2 ω 2 = × × y2 = L 6
∆B =
1 (ω1 y1 + ω 2 y 2 + ω 3 y3 ) EI
41qL4 = 384 EI
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
3. 常见图形的面积和形心
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
注意: 注意:
标准抛物线
武汉理工大学土木工程与建筑学院
结构力学教研室
李保德副教授
4. 图乘的一般方法
两图均是直线图形,y0可取其中的任一图形
ω
y0
y0
ω
武汉理工大学土木工程与建筑学院
武汉理工大学土木工程与建筑学院
C
B L/2
∆B =
1 ωM P y EI
1 1 2 PL3 = × L × PL × L = EI 2 3 EI
B
MP

1 ∆B = ωM y EI
1 1 2 PL3 = × L × L × PL = EI 2 3 EI
M
结构力学教研室
李保德副教授

结构力学教学 虚功原理与结构位移计算

结构力学教学 虚功原理与结构位移计算

解:虚设力系如图(b)
M 1 (0 x l)
实际荷载作用下的弯矩图虚设力系如图(c)
MP
FPb l
x
(0 x a)
MP
FP a(1
x) l
(a x l)
MM P ds FPab(
EI
2EI
)
§5-5 图乘法
图乘法应用条件:杆件为直杆,有一个弯矩图是直线图, 截面抗弯刚度EI为一常数。
§5-5 图乘法
例5-7 试用图乘法计算图(a)所示简支梁B端转角△B。
解:荷载作用下的MP图如图(a) 虚设单位力偶作用下的 M 如图(b)
虚功方程为 1 M 0
解得
M
§5-2 结构位移计算的一般公式
例5-2 在图中,截面B有相对剪切位移η,试求A点与杆轴成α
角的斜向位移分量△。
解:图(a)的实际位移状态可改用 图(b)来表示。
虚设力系如图(c) FQ sin
虚功方程为 1 FQ 0
解得 FQ
§5-2 结构位移计算的一般公式
AB的圆心角为α,半径为R。试求B点的竖向位移△。
解:虚设荷载如图(b)
图(a)中
MP
1 2
qx2
FNP qx sin
FQP qx cos
图(b)中
M x
FN sin FQ cos
M
AMPM B EI
ds qR4 ( 2 cos 1 cos3 )
2EI 3
3
N
A FNPFN ds qR2 ( 2 cos 1 cos3 )
M
MM P ds ql4
EI
8EI
Q k
FQ FQP ds 0.6 ql 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[例4] 计算图示刚架在分布荷载作用下的B点的水平位移 。 各杆截面为矩形bh,惯性矩相等。只考虑弯曲变形的影响。
ql 2
ql
ql 2
M P图
M图
解: MP图面积可分为三块: A1、A2 、 A3
1 ql 2 ql 3 A1 l 2 2 4 2 y1 l 3 ql 3 A2 4 2 y2 l 3 2 ql 2 ql 3 A3 l 3 8 12 l y3 2
(3)组合结构
FNP F N MP M ds L o EI EA
l
(受弯构件)
(链杆)
(4)三铰拱 — 曲杆要考虑弯曲变形和轴向变形,拉杆只有轴向变形。

L
o
(曲杆)
L F FN FNP F N MP M NP ds ds L o EI EA EA1
(曲杆)
(拉杆)
1 1
2) 在C、D两点加一对 反向的单位水平力, 并作弯矩图
M图
M P图
M图
4 4 1 q 2 ——(三次抛物线) y1 1m m A1 1m m 5 5 4 6
q 2 A2 m 2m ——(矩形) 6
y2 1m
2 q 2 A3 m 2m ——(二次抛物线) y3 1m 3 2
1
C
A
1 2 l 2 Cy ( 3 l 8 ql ) 4 B 1 ( 2 l 1 ql 2 ) ( 5 l ) 2 Cy EI 3 2 8 8 4 1 EI
l 4
5 ql 4 () 384 EI
分段图乘
[例2] 计算悬臂梁在集中荷载作用下的C点的竖向位移 C 。 解:M P 图的面积 (教材用A表示)
yC
2.图乘注意事项
M P 图形心位置所对应的 M 图中的竖标
1)杆件是直杆,EI必须是常数;
2) yC 必须取自直线图 ( M P M 均为直线时可互换); 3)M 图为折线或 M P 在基线两侧时都需分段图乘; 4)图形的
或 yC 很难计算时,不宜用图乘法。
A
6m 300
B
6m
C
A
300 6 1 1 300 2 3
45
不是顶点
(2)求C点的竖向位移
叠加图乘
1
M P图 M A图
1
CV
300 6 2 6 2 3 2 2 6 45 3 3 6660
1
6
MC 图

1 q 4 4 2 A1 y1 A2 y2 A3 y3 m EI EI 15
结 束
(第二版)作业:5—17, 19, 24
§5-5 图乘法
1.图乘原理公式
——将积分转变为图形相乘
y
积分式:

L
o
MP M ds EI
形心 C A
dx
1 等直杆EI常数: EI
M P图

L
o
M P Mds
考察MP和M图
MP ——曲线
B
0
α
M x A xC
yC
M图
由图可见: M x tg 代入积分式有:
M ——直线
MM P 1 3ql 4 A1 y1 A2 y2 A3 y3 ds 8EI EI EI
[例5] 试求图示刚架在水压力作用下C、D两点的相对水平 位移。设各杆EI为常数。 解: 作荷载作用下的弯矩图 1)
M P图
q M A q x dx 1 x q x 1 x dx 0 0 6
技巧:恰当运用叠加原理
3.常用图形的 面积及形心
注意: “顶点”与基线切点, 若不是则公式无效。
4. 图乘的分段 示例(1): M 图 为折线
MP图

M图
L
o
M P Mds A1 y1 A2 y2 A3 y3
示例(2): M 图 为特殊折线
C1 C2
M P图
y1
M图
y2=0

L
o
M P Mds A1 y1 0
5. 图乘的叠加 (1) 两个直线图形图乘的叠加法
MP图 M图


L
o
M P Mds A1 y1 A2 y2
3 3 2 1 y2 d c 3 3
其中 y 2 c 1 d 1
两个直线图形图乘的通用公式: (注意代入abcd的正负) L (2ac 2bd ad bc) 6 EI
yc取自MP图
MM P 1 C dx Ayc EI EI
5FP l 3 1 l2 5 FP l EI 8 6 48EI 1 l l l2 A 2 2 2 8

[例3] 求A点的转角和C点的竖向位移。 (EI=1)
10kN/m
20kN
解:(1)求A点的转角
B x

B A
M P Mdx x tg M P dx
B
MP图对oy的面积矩
tg x M P dx
A B
A
B
d
P xc
yc
tg x d A tg xc P yc P
得图乘法公式: 1
1 o M P Mds EI yC EI 乘积“+、-”规定—— 与 yC 同侧为+,不同侧为-
l
力场(虚)
1 [ Md F Q d F N d ] F Rk Ck
0 0 0
(弯曲)
(剪切)
(轴向)
(已知支座移动)
位移场(实)
仅考虑荷载作用, Ck 0 由材料力学可知 :
FQP GA
代入得 :
l
MP d ds EI
d k
ds
d
FNP ds EA
l k FQP F Q l F FN MP M 1 ds ds NP ds o o o EI GA EA
2. 各种静定结构位移的计算公式
(1)梁、刚架 —只考虑弯曲变形
MP M ds o EI
l
(2)桁架 —只有轴向变形
FNP F N L EA
第5章 结构位移计算与虚功-能量法
§5-1 刚体体系的虚功原理与位移计算 §5-2 结构位移计算的一般公式 §5-3 荷载作用下的位移计算
§5-4 荷载作用下的位移计算举例
§5-5 图乘法 §5-6 温度变化时的位移计算 §5-7 互等定理
1.荷载作用下的位移计算公式:
位移计算的一般公式:
l l
回顾
公式适用所有直线图形的情况,例:
a

c
×

b d
×

×
(2) 复杂图形的图乘叠加法 (有q作用的梁段)
M P图
×
M图
=
×
+
×
×
=
×
+
×
6. 举例
[例1] 试用图乘法计算简支梁在均布 荷载q作用下的B端转角 B, 以及AB梁中点的竖向位移。
解:
MM P 1 B dx Ay0 EI EI 1 2 ql 2 1 ql 3 l EI 3 8 2 24EI
相关文档
最新文档