耐热混凝土配合比设计及介绍(DOC)
混凝土配合比设计(培训教材)精选全文

可编辑修改精选全文完整版混凝土配合比设计前言:混凝土配合比设计是一项涉及到很多因素的工作。
一是要保证混凝土硬化后的结构强度和所要求的其他性能;二是要满足施工工艺易于操作而又不遗留隐患;三是在符合上述两项要求下选用合适的材料和计算各种材料的用量;四是对初步设计结果进行试配、调整使之达到工程的要求;五是要在满足上述要求的同时降低成本。
一、配合比设计流程和基本原理混凝土配合比设计的基本流程主要有四个阶段,第一阶段是由使用单位根据设计图纸及施工单位的工艺条件,结合当地、当时的具体条件,提出要求,做好配比委托内容的准备;第二阶段是选用材料、选用设计参数,这是整个设计的基础。
材料和参数的选择决定配合比设计效果以及设计是否合理;第三阶段是计算用料,可用重量法或体积法计算;第四阶段是对配合比设计的结果进行试配、调整并加以确定。
配合比确定后,应签发配合比通知书或者配合设计报告单。
搅拌站在进行搅拌前,根据仓存砂、石的含水率作必要的调整,并根据搅拌机的规格确定每拌的投料量。
搅拌后应留置试块并将试件强度反馈。
混凝土配合比设计基本参数确定的原则:水灰比、单位用水量和砂率是混凝土配合比设计的三个基本参数。
混凝土配合比设计中确定三个参数的原则是:在满足混凝土强度和耐久性的基础上,确定混凝土的水灰比;在满足混凝土施工要求的和易性基础上,根据粗骨料的种类和规格确定单位用水量;砂率应以砂在骨料中的数量填充石子空隙后略有富余的原则来确定。
混凝土配合比设计以计算1m3混凝土中各材料用量为基准,计算时骨料以干燥状态为准。
普通混凝土配合比设计基本原理:1)绝对体积法:假定刚浇捣完毕的混凝土拌合物的体积,等于其各组成材料的绝对体积及混凝土拌合物中所含少量空气体积之和。
2)重量法(假定表观密度法):如果原材料比较稳定,可先假设混凝土的表观密度为一定值,混凝土拌合物各组成材料的单位用量之和即为其表观密度。
mc0+mg0+ms0+mw0= mcp式中 mc0——每立方米混凝土的水泥用量(kg ); mg0——每立方米混凝土的粗骨料用量(kg ); ms0——每立方米混凝土的细骨料用量(kg ); mw0——每立方米混凝土的用水量(kg );mcp ——每立方米混凝土拌合物的假定重量(kg );其值可取2400~2450kg 。
混凝土配合比资料

混凝土配合比资料混凝土是现代建筑中不可或缺的材料之一,而混凝土配合比则是决定混凝土性能和质量的关键因素。
合理的混凝土配合比能够确保混凝土具有良好的工作性能、强度、耐久性和经济性。
接下来,让我们详细了解一下混凝土配合比的相关知识。
一、混凝土配合比的定义和重要性混凝土配合比是指混凝土中各组成材料(水泥、砂、石、水、外加剂等)之间的比例关系。
它直接影响混凝土的各项性能指标,如强度、坍落度、凝结时间、抗渗性、抗冻性等。
一个科学合理的配合比不仅能够保证混凝土工程的质量,还能节约原材料,降低成本,提高施工效率。
二、混凝土配合比设计的基本原则1、满足结构设计的强度要求混凝土的强度是其最重要的性能指标之一,配合比设计应首先满足结构设计所规定的强度等级。
2、满足施工和易性要求混凝土在施工过程中应具有良好的流动性、可塑性和稳定性,以便于浇筑、振捣和成型。
3、满足耐久性要求混凝土应具有良好的抗渗性、抗冻性、抗侵蚀性等耐久性性能,以保证混凝土结构在使用过程中的长期稳定性。
4、节约原材料,降低成本在满足混凝土性能要求的前提下,应尽量选择价格低廉、质量稳定的原材料,并通过优化配合比来降低成本。
三、混凝土配合比设计的基本步骤1、初步计算配合比(1)确定混凝土的配制强度根据设计要求的混凝土强度等级和强度标准差,计算出混凝土的配制强度。
(2)确定水胶比根据水泥的强度等级和混凝土的配制强度,通过经验公式计算出初步的水胶比。
(3)确定用水量根据混凝土的坍落度要求和骨料的最大粒径,参考相关规范和经验数据确定用水量。
(4)计算胶凝材料用量根据水胶比和用水量,计算出胶凝材料(水泥和矿物掺合料)的用量。
(5)确定砂率根据骨料的种类、粒径和水胶比,参考相关规范和经验数据确定砂率。
(6)计算砂、石用量根据砂率和胶凝材料用量,计算出砂、石的用量。
2、试配和调整配合比按照初步计算的配合比进行试拌,测定混凝土的坍落度、表观密度等性能指标,并根据测试结果对配合比进行调整。
混凝土配合比及热工计算

六、混凝土配合比计算混凝土配合比设计步骤包括配合比计算、施工配合比的确定等。
混凝土结构材料:水泥:42.5级普通硅酸盐水泥,水泥密度为ρc=3.00g/cm3.砂:中砂,级配合格,砂子表观密度ρos=2.65g/cm3,含水率为2%石:5~31.5mm 碎石,级配合格,其表观密度ρog=2.7g/cm3,含水率为1% 1、初步配合比计算1.计算配制强度(f cu ,o )。
①当混凝土的设计强度小于C60时,配制强度应按下式确定: f cu ,o ≥f cu ,k +1.645σ=25+1.645*5=33.23(MPa)即: f cu ,o =33.23(MPa)≥1.15f cu ,k =1.15×25=28.75(MPa) 当没有近期的同一品种、同一强度等级混凝土强度资料时,其强度标准差σ可按下表取值。
2.计算水胶比(W /B )。
混凝土强度等级小于C60时,混凝土水胶比应按下式计算:a bcu o a b b +W f B f f ααα=,式中 αa 、αb ——回归系数,回归系数可由下表采用;f b ——胶凝材料28d 胶砂抗压强度,可实测,MPa 。
当胶凝材料28d 抗压强度(f b )无实测值时,其值可按下式确定:f b =γf ·γs ·f ce式中 γf 、γs ——粉煤灰影响系数和粒化高炉矿渣粉影响系数,按下表选用;当无水泥28d 抗压强度实测值时,其值可按下式确定:f ce =γc ·f ce ,g式中 γc ——水泥强度等级值的富余系数(可按实际统计资料确定);当缺乏实际统计资料时,可按下表选用;f ce ,g ——水泥强度等级值,MPa 。
将以上数据代入得:=5.422.053.053.023.3316.15.4253.0⨯⨯⨯+⨯⨯ =0.69a bcu o a b b +W f B f f ααα=,按照混凝土的最大水灰比和最小水泥用量的规定:W/B ≤0.55,即取W/B=0.55%3.每立方米混凝土用水量的确定。
耐热(耐火)混凝土在工程中的应用

..耐热〔耐火〕混凝土在工程中的应用郭朝林XX省川炭实业XX〔助理工程师〕摘要本文主要介绍了耐热〔耐火〕混凝土在新都新力制造XX平炉根底混凝土中的成功应用,有效防止了混凝土在高温烘烤下裂缝的形成。
关键词耐热混凝土应用一、工程概况新都新力制造XX平炉根底长25米、宽15米、厚度1.4~1.8米,泵送混凝土工程量600m3,强度等级为C30,要求入泵坍落度170~190mm。
工程要求混凝土在满足28天强度的前提下具有良好的工作性能,能够满足混凝土在高温烘烤〔300℃以上〕下不产生有害裂缝的要求,提高混凝土耐久性。
二、技术特点耐热混凝土是一种能长期承受高温作用〔200℃以上〕,并在高温作用下保持所需的物理力学性能的特种混凝土。
而代替耐火砖用于工业窑炉内衬的耐热混凝土也称耐火混凝土。
耐热混凝土已广泛的用于冶金、化工、石油、轻工和建材等工业的热工设备和长期受高温作用的构筑物。
耐热混凝土在原材料的选择方面比拟复杂,本工程采用硅酸盐耐热混凝土,硅酸盐耐热混凝土所用的材料主要有硅酸盐水泥、耐热骨料、掺合料以及外加剂等。
1、原材料要求〔1〕硅酸盐水泥可用矿渣硅酸盐水泥和普通硅酸盐水泥作为胶结材料。
一般应优先选用矿渣硅酸盐水泥,并且矿渣掺量不得大于50%。
如选用普通硅酸盐水泥,水泥中所掺的混合材料不得含有石灰石等易在高温下分解和软化或熔点较底的材料。
此外,因为水泥的耐热性远远低于耐热骨料及耐热粉料,在保证耐热混凝土设计强度的情况下,应尽可能减少水泥用量,为此,要求水泥的强度等级不得低于32.5MPa。
用上述两种水泥配制的耐热混凝土最高使用温度可以到达700~800℃。
其耐热机理是:硅酸盐水泥熟料中的C3S和C2S的水化产物Ca (OH)2在高温下脱水,生成CaO与矿渣及掺合料中的SiO2和AI2O3又反响生成具有较强耐热性的无水硅酸盐和无水铝酸钙,使混凝土具有一定的耐热性。
(2)耐热骨料普通混凝土耐热性能不好的主要原因是一些水泥的水化产物为Ca (OH)2,水化铝酸盐在高温下脱水,使水泥石构造破坏而导致混凝土碎裂;另一原因是常用的一些骨料,如:石灰石、石英砂在高温下发生较大体积变形,还有一些骨料在高温下发生分解,从而导致普通混凝土构造的破坏,强度偏低。
(完整word版)耐热混凝土配合比设计及介绍

以下内容均来自于网络,郑广伟整理。
耐热混凝土是一种能长期承受高温作用( 200 ℃以上),并在高温作用下保持所需的物理力学性能的特种混凝土。
而代替耐火砖用于工业窑炉内衬的耐热混凝土也称为耐火混凝土。
根据所用胶结料的不同,耐热混凝土可分为:硅酸盐耐热混凝土;铝酸盐耐热混凝土;磷酸盐耐热混凝土;硫酸盐耐热混凝土;水玻璃耐热混凝土;镁质水泥耐热混凝土;其他胶结料耐热混凝土。
根据硬化条件可分为:水硬性耐热混凝土;气硬性耐热混凝土;热硬性耐热混凝土.耐热混凝土已广泛地用于冶金、化工、石油、轻工和建材等工业的热工设备和长期受高温作用的构筑物,如工业烟囱或烟道的内衬、工业窑炉的耐火内衬、高温锅炉的基础及外壳。
耐热混凝土与传统耐火砖相比,具有下列特点:1 、生产工艺简单,通常仅需搅拌机和振动成型机械即可;2 、施工简单,并易于机械化;3 、可以建造任何结构形式的窑炉,采用耐热混凝土可根据生产工艺要求建造复杂的窑炉形式;4 、耐热混凝土窑衬整体性强,气密性好,使用得当,可提高窑炉的使用寿命;5 、建造窑炉的造价比耐火砖低;6 、可充分利用工业废渣、废旧耐火砖以及某些地方材料和天然材料.硅酸盐耐热混凝土所用的材料主要有硅酸盐水泥、耐热骨料、掺合料以及外加剂等.1 、原材料要求(1) 硅酸盐水泥可以用矿渣硅酸盐水泥和普通硅酸盐水泥作为其胶结材料。
一般应优先选用矿渣硅酸盐水泥,并且矿渣掺量不得大于 20 %.如选用普通硅酸盐水泥,水泥中所掺的混合材料不得含有石灰石等易在高温下分解和软化或此外,因为水泥的耐热性远远低于耐热骨料及耐热粉料,在保证耐热混凝土设计强度的情况下,应尽可能减少水泥的用量,为此,要求水泥的强度等级不得低于 42.5MPa 。
用上述两种水泥配制的耐热混凝土最高使用温度可以达到 700 ~ 800 ℃.其耐热机理是:硅酸盐水泥熟料中的 C 3 S 和 C 2 S 的水化产物 Ca(OH) 2 在高温下脱水,生成的 CaO 与矿渣及掺合料中的活性 SiO 2 和 A 1 2 O 3 又反应生成具有较强耐热性的无水硅酸钙和无水铝酸钙,使混凝土具有一定的耐热性。
混凝土配合比与配方

常规C10、C15、C20、C25、C30混凝土配合比常规C10、C15、C20、C25、C30混凝...常规C10、C15、C20、C25、C30混凝土配合比混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。
立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。
混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。
混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。
有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。
常用等级C20水:175kg水泥:343kg 砂:621kg 石子:1261kg配合比为:0.51:1:1.81:3.68C25水:175kg水泥:398kg 砂:566kg 石子:1261kg配合比为:0.44:1:1.42:3.17C30水:175kg水泥:461kg 砂:512kg 石子:1252kg配合比为:0.38:1:1.11:2.72.......普通混凝土配合比参考:水泥品种混凝土等级配比 (单位)Kng 塌落度mm 抗压强度 N/mm2水泥砂石水 7天 28天P.C32.5 C20 300 734 1236 195 35 21.0 29.01 2.45 4.12 0.65C25 320 768 1153 208 45 19.6 32.11 2.40 3.60 0.65C30 370 721 1127 207 45 29.5 35.21 1.95 3.05 0.56C35 430 642 1094 172 44 32.8 44.11 1.49 2.54 0.40C40 480 572 1111 202 50 34.6 50.71 1.19 2.31 0.42P.O 32.5 C20 295 707 1203 195 30 20.2 29.1 1 2.40 4.08 0.66C25 316 719 1173 192 50 22.1 32.41 2.28 3.71 0.61C30 366 665 1182 187 50 27.9 37.61 1.82 3.23 0.51C35 429 637 1184 200 60 30.***6.21 1.48 2.76 0.47C40 478 *** 1128 210 60 29.4 51.01 1.33 2.36 0.44P.O 32.5R C25 321 749 1173 193 50 26.6 39.1 1 2.33 3.65 0.60C30 360 725 1134 198 60 29.4 44.31 2.01 3.15 0.55C35 431 643 1096 190 50 39.0 51.31 1.49 2.54 0.44C40 480 572 1111 202 40 39.3 51.01 1.19 2.31 0.42P.O42.5(R) C30 352 676 1202 190 55 29.***5.2 1 1.92 3.41 0.54C35 386 643 1194 197 50 34.5 49.51 1.67 3.09 0.51C40 398 649 1155 199 55 39.5 55.31 1.63 2.90 0.50C50 496 606 1297 223 45 38.4 55.91 1.22 2.61 0.45PII 42.5R C30 348 652 1212 188 50 31.***6.0 1 1.87 3.48 0.54C35 380 639 1187 194 50 35.0 50.51 1.68 3.12 0.51C40 398 649 1155 199 55 39.5 55.31 1.63 2.90 0.50C45 462 618 1147 203 4***2.7 59.11 1.34 2.48 0.44C50 480 633 1115 192 25 45.7 62.81 1.32 2.32 0.40P.O 52.5R C40 392 645 1197 196 53 40.2 55.81 1.64 3.05 0.50C45 456 622 1156 19***2 43.5 59.51 1.36 2.53 0.43C50 468 626 1162 192 30 45.2 61.61 1.33 2.47 0.41此试验数据为标准实验室获得,砂采用中砂,细度模数为2.94,碎石为5~31.5mm连续粒级。
耐高温混凝土配合比设计

耐高温混凝土配合比设计一、混凝土材料受热后作用机理大量研究表明混凝土在高温受热下的退化主要表现在:混凝土表观密度降低;形成大量的孔和和裂缝以及强度和弹性模量的下降。
受热作用主要分为两个方面:1、水泥水化产物受热作用机理;2、骨料受热作用机理;3、水泥石和骨料界面受热作用机理。
水泥水化产物受热作用具体过程如下:100℃时毛细孔开始失水;100-150℃时由于水蒸气蒸发促进熟料逐步水化使混凝土抗压强度增加;200-300℃水泥水化产物水化硅酸钙凝体脱水导致组织硬化;300℃以上由于脱水加剧混凝土收缩开始出现裂纹,强度开始下降;575℃氢氧化钙脱水使水泥组织破坏,900℃混凝土中的碳酸钙分解。
普通硅酸盐水泥配制的混凝土在900℃时游离水、结晶水及水化物的脱水基本结束,混凝土强度几乎丧失。
同时必须注意由于氢氧化钙的脱水,碳酸钙的分解,混凝土中生成了氧化钙,氧化钙会吸收空气中的水分,再次水化导致体积膨胀产生混凝土表面酥松剥落现象,此外高温改变了钙矾石的形成机理,使混凝土内部形成粗大的孔结构。
各种岩石成分的骨料,受热变形也不相同。
含有石英岩的骨料(如石英砂、砂岩等石英质骨料),在575℃以下,体积逐渐膨胀,而在575℃时,突然膨胀;含有石灰岩的材料,在750─900℃条件下分解成氧化钙,强度显著降低故普通混凝土不宜在高温环境下使用,其使用温度一般也不超过250℃。
300℃时混凝土中的骨料开始膨胀,随着温度的继续升高,水泥收缩和骨料膨胀加剧,两者结合被破坏产生界面破坏,伴随着水泥水化产物的受热破坏以及骨料的晶型转换,界面破坏加剧。
同时由于混凝土表面温度升高比内部快得多以及骨料和水泥石之间的热不相容造成的内外温差和应力差也会引起混凝土开裂和强度下降。
二、耐热混凝土配合比设计要点依据上述混凝土材料受热后作用机理可以得出配合比设计要点:1、水泥品种的选择按照设计目标,本次混凝土耐热度在700℃,为确保安全实际研究过程中提高至750℃,基本已经达到了硅酸盐水泥耐热混凝土温度上限。
混凝土配合比配置比例及调配办法

混凝土配合比配置比例及调配办法C15混凝土理论配合比(kg/m3)2、基准砂率为37%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占20%,10~20.0mm占80%).4、使用部位:预制空心砖等。
C15混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10.0mm占20%,10~25.0mm占80%).4、使用部位:基础、垫层等.C15混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:路基护坡、骨架预制件、回填等.C15混凝土理论配合比(kg/m3)2、基准砂率为45%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%)4、使用部位:涵洞、基坑、回填、骨架护坡、集水井等.CFG桩C20混凝土理论配合比(kg/m3)2、基准砂率为44%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10.0mm占20%,10~25.0mm占80%).4、使用部位:CFG桩.CFG桩C20混凝土理论配合比(kg/m3)2、基准砂率为44%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10.0mm占20%,10~25.0mm占80%). F类粉煤灰.4、使用部位:CFG桩.32、基准砂率为49%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占20%,10~20.0mm占80%).4、使用部位:CFG桩.C20混凝土理论配合比(kg/m3)2、基准砂率为37%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10mm占20%,10~20.0mm占80%)4、使用部位:侧沟、预制盖板等.2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%)4、使用部位:涵洞、垫层、翼墙、侧沟等.C20混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%)4、使用部位:箱涵框架基础等.C20 混凝土理论配合比(kg/m3)2、基准砂率为43.5%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:基础、侧沟、回填等.C20 混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:涵洞、垫层、翼墙、侧沟等.2、基准砂率为45.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:水沟、盖板、挖孔桩护壁、填充等.高性能混凝土(C25)配合比(kg/m3)2、基准砂率为47.0%.3、碎石5~10.0mm.4、使用部位:预制防护栅栏等.5、只调掺合料比例.C25 混凝土理论配合比(kg/m3)2、基准砂率为43.5%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:基础、垫层等.C25 混凝土理论配合比(kg/m3)2、基准砂率为44.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:路基面找平、挡墙、侧沟及盖板、基础回填等.31、基准砂率为50.0%,在基准砂率的基础上分别增加或减小1%.2、基准水胶比为0.40,在基准水胶比的基础上分别增加或减小0.05.3、碎石5~10.0mm.4、使用部位:仰拱﹑初期支护等.C25混凝土理论配合比(kg/m3)2、基准砂率为45.0%,在基准砂率的基础上分别增加或减小1%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%). 粉煤灰:Ⅰ级.4、使用部位:水沟、盖板、挖孔桩护壁、填充等.高性能混凝土(C30)配合比(kg/m3)2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、涵洞.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.41.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.41.2、基准砂率为45.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa. 水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.40.2、基准砂率为44.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.41.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台.5、只调胶凝材料比例.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为47.0%.3、碎石5~10.0mm..4、使用部位:预制电缆槽、栅栏、声屏障等.5、只调胶凝材料比例.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为44.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基、明挖基础.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:承台、基础等.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.37.2、基准砂率为43.0%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:承台、基础等.5、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、涵洞.5、只调胶凝材料比例.水下混凝土高性能混凝土(C30)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为44.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基..5、水下混凝土配制强度需要提高10%~20%,取15%.例:C30:fcu,0=(30.0+1.645×4.5)×(1+0.15)=43.0MPa.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38.2、基准砂率为42.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘、涵洞.5、只调胶凝材料比例.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.39. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘、支承垫石.5、只调胶凝材料比例. *:外掺料.防腐承台高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为H1(二氧化碳侵蚀).2、基准砂率为45.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘等.5、只调胶凝材料比例. *:内掺料,属胶凝材料.水下混凝土高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为H1.2、基准砂率为44.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例. *:内掺料,属胶凝材料.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C35:fcu,0=(35.0+1.645×4.5)×(1+0.15)=48.8MPa.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.40. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘、支承垫石.5、只调胶凝材料比例.防腐承台高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.39. 环境作用等级为H1(二氧化碳侵蚀).2、基准砂率为43.0%. *:内掺料,属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘等.5、只调胶凝材料比例. 水下混凝土高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.39. 环境作用等级为H1.2、基准砂率为44.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:桩基.5、只调胶凝材料比例.6、水下混凝土配制强度需要提高10%~20%,取15%.例:C35:fcu,0=(35.0+1.645×4.5)×(1+0.15)=48.8MPa.防腐承台高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为H1(二氧化碳侵蚀).2、基准砂率为42.0%. *:内掺料属胶凝材料.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:承台、墩身、顶帽、托盘.5、只调胶凝材料比例.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~25.0mm(5~10mm占20%,10~25.0mm占80%).4、使用部位:墩台身、顶帽、托盘.5、只调胶凝材料比例.高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.37. 环境作用等级为T2.2、基准砂率为43.0%.3、碎石5~20.0mm(5~10.0mm占35%,10~20.0mm占65%).4、使用部位:基础、墩台身、顶帽、托盘等.5、只调胶凝材料比例.防水混凝土高性能混凝土(C35)配合比(kg/m3)1、基准水胶比为0.38,在基准水胶比的基础上分别增加或减小0.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以下内容均来自于网络,郑广伟整理。
耐热混凝土是一种能长期承受高温作用(200 ℃以上),并在高温作用下保持所需的物理力学性能的特种混凝土。
而代替耐火砖用于工业窑炉内衬的耐热混凝土也称为耐火混凝土。
根据所用胶结料的不同,耐热混凝土可分为:硅酸盐耐热混凝土;铝酸盐耐热混凝土;磷酸盐耐热混凝土;硫酸盐耐热混凝土;水玻璃耐热混凝土;镁质水泥耐热混凝土;其他胶结料耐热混凝土。
根据硬化条件可分为:水硬性耐热混凝土;气硬性耐热混凝土;热硬性耐热混凝土。
耐热混凝土已广泛地用于冶金、化工、石油、轻工和建材等工业的热工设备和长期受高温作用的构筑物,如工业烟囱或烟道的内衬、工业窑炉的耐火内衬、高温锅炉的基础及外壳。
耐热混凝土与传统耐火砖相比,具有下列特点:1 、生产工艺简单,通常仅需搅拌机和振动成型机械即可;2 、施工简单,并易于机械化;3 、可以建造任何结构形式的窑炉,采用耐热混凝土可根据生产工艺要求建造复杂的窑炉形式;4 、耐热混凝土窑衬整体性强,气密性好,使用得当,可提高窑炉的使用寿命;5 、建造窑炉的造价比耐火砖低;6 、可充分利用工业废渣、废旧耐火砖以及某些地方材料和天然材料。
硅酸盐耐热混凝土所用的材料主要有硅酸盐水泥、耐热骨料、掺合料以及外加剂等。
1 、原材料要求(1) 硅酸盐水泥可以用矿渣硅酸盐水泥和普通硅酸盐水泥作为其胶结材料。
一般应优先选用矿渣硅酸盐水泥,并且矿渣掺量不得大于20 %。
如选用普通硅酸盐水泥,水泥中所掺的混合材料不得含有石灰石等易在高温下分解和软化或熔点较低的材料。
此外,因为水泥的耐热性远远低于耐热骨料及耐热粉料,在保证耐热混凝土设计强度的情况下,应尽可能减少水泥的用量,为此,要求水泥的强度等级不得低于42.5MPa 。
用上述两种水泥配制的耐热混凝土最高使用温度可以达到700 ~800 ℃。
其耐热机理是:硅酸盐水泥熟料中的 C 3 S 和 C 2 S 的水化产物Ca(OH) 2 在高温下脱水,生成的CaO 与矿渣及掺合料中的活性SiO 2 和A1 2 O 3 又反应生成具有较强耐热性的无水硅酸钙和无水铝酸钙,使混凝土具有一定的耐热性。
(2) 耐热骨料普通混凝土耐热性不好的主要原因是一些水泥的水化产物为Ca(OH) 2 ,水化铝酸钙在高温下脱水,使水泥石结构破坏而导致混凝土碎裂;另一个原因是常用的一些骨料,如石灰石、石英砂在高温下发生较大体积变形,还有一些骨料在高温下发生分解,从而导致普通混凝土结构的破坏,强度降低。
因此,骨料是配制耐热混凝土一个很关键的因素。
常用的耐热粗骨料有碎黏土砖、黏土熟料、碎高铝耐火砖、矾土熟料等;细骨料有镁砂、碎镁质耐火砖、含A12O3 较高的粉煤灰等。
(3) 掺合料掺合料的作用主要有两个:一是可增加混凝土的密实性,减少在高温状态下混凝土的变形;二是在用普通硅酸盐水泥时,掺合料中的A12O3 和SiO 2 与水泥水化产物C a(OH) 2 的脱水产物CaO 反应形成耐热性好的无水硅酸钙和无水铝酸钙,同时避免了Ca(OH) 2 脱水引起的体积变化。
所以,掺合料应选用熔点高、高温下不变形且含有一定数量三氧化铝的材料。
硅酸盐水泥耐热混凝土配制时,可掺加减水剂以降低W/C ,减少混凝土结构内部的孔隙率。
减水剂宜采用非引气型。
2 、硅酸盐水泥耐热混凝土的配合比该品种耐火混凝土的配合比设计用计算法比较繁琐,一般常采用经验配合比为初始配合比,再通过试配调整,得到适用的配合比。
铝酸盐水泥是一类没有游离CaO 的中性水泥,具有快硬、高强、热稳定性好、耐火度高等特点。
在冶金、石油化工、建材、水电和机械工业的一般窑炉上得到广泛的应用,其使用温度可达到1300 ~1600 ℃,有的甚至能达到1800 ℃左右,所以又称为铝酸盐耐火混凝土。
它属于水硬性耐热混凝土,也属于热硬性耐热混凝土。
1 、胶结材铝酸盐水泥耐热混凝土的胶结材主要有矾土水泥、低钙铝酸盐水泥、纯铝酸盐水泥。
(1) 高铝水泥( 普通铝酸盐水泥)高铝水泥是由石灰和铝矾土按一定比例磨细后,采用烧结法和熔融法制成的一种以铝酸- 钙(CA) 为主要成分的水硬性水泥。
高铝水泥水化的产物主要有 C 3 AH 6 、AH 3 、CAH10 、 C 2 A H 8 ,而上述产物在高温作用下会发生脱水,脱水产物之间发生反应。
如:300 ~500 ℃C3AH6 →CaO+C12A7 +H2OAH3 →A12O3 +H2O500 ~1200 ℃A12O3 +CaO →CAA12O3+C12A7 →CA( 或CA2 )A12O3 +CA →CA2 ( 在A12O3 较多时)由上可知,在500 ℃以前,水泥石由高铝水泥的水化物组成;500 ~900 ℃时由水化产物及由脱水产物之间的二次反应物组成;1000 ℃开始发生固相烧结;1 200 ℃以上时变为陶瓷结合的耐火材料。
(2) 纯铝酸盐水泥纯铝酸盐水泥是用工业氧化铝和高纯石灰石或方解石为原料,按一定比例混合后,采用烧结法或熔融法制成的以CA2 或CA 为主要矿物的水硬性水泥。
其中CA2 和CA 含量总和在95 %以上,CA2 占60 %~65 %,另外含有少量C12A7 和C2AS 。
纯铝酸盐水泥的水化硬化及在加热过程中强度的变化与高铝水泥类似。
由于该水泥的化学组成中含有更多的A12O3,因此在1200 ℃发生烧结产生陶瓷结合后,具有更高的烧结强度和耐火度,其最高使用温度可达1600 ℃以上。
2 、骨料由于纯铝酸盐水泥可以配制较高温度下工作的耐热混凝土,因此,采用的骨料应为耐火度更高的骨料,如矾土熟料碎高铝砖、碎镁砖和镁砂等。
如使用温度超过1500 ℃,最好用铬铝渣、电熔刚玉等。
3 、掺合料为提高耐热混凝土的耐高温性能,有时在配制混凝土时掺加一定量的与水泥化学成分相进的粉料,如刚玉粉、高铝矾熟料粉等。
粉料的细度一般应小于lμm 。
该耐热混凝土是以磷酸盐或磷酸作胶结剂和耐热骨料等配制而成的混凝土。
它是一种热硬性耐热混凝土。
磷酸盐耐热混凝土使用温度一般为1500 ~1700 ℃,最高可达3000 ℃。
而磷酸盐耐高温混凝土可以经受-30 ~2000 ℃的多次冷热循环而不破坏。
1 、胶结剂(1) 磷酸盐主要有铝、钠、钾、镁、铵的磷酸盐或聚磷酸盐,其中用得最多的是铝、镁和钠的磷酸盐。
磷酸铝一般是磷酸二氢铝、磷酸氢铝和正磷酸铝三种的混合物,其中磷酸二氢铝的胶结性最强。
使用磷酸铝时,为加速混凝土在常温下的硬化,可加入适量的电熔或烧结氧化镁、氧化钙、氧化锌和氟化铵等作为促硬剂,也可用含有结合状态的碱性氧化物( 如硅酸盐水泥) 作促硬剂。
磷酸钠盐一般用正磷酸钠(Na3PO4) 、磷酸二氢钠、聚磷酸钠。
(2) 磷酸磷酸有正磷酸(H3PO4) 、焦磷酸(H3P2O7) 及偏磷酸(HPO3) 等,常用的主要是正磷酸。
正磷酸本身无胶结性,但与耐热骨料接触后,会与其中的一些氧化物( 如氧化镁、氧化铝) 反应形成酸式磷酸盐,从而表现出良好的胶凝性。
2 、耐火骨料由于磷酸盐及磷酸耐热混凝土一般用于温度较高的结构物中,因此其所用的耐火骨料也应选用耐火度高的材料,常用的有碎高铝砖、镁砂、刚玉砂等。
3 、掺合料磷酸盐耐热混凝土加热时因水分蒸发会产生较大的收缩,因此在配制时应加入一些微米级耐火材料,如刚玉粉、石英粉等。
由于磷酸盐和磷酸对人体具有很强的腐蚀性,因此,在施工时必须注意安全,应穿好防护服、防护鞋,戴好防护手套、防护目镜等。
水玻璃耐热混凝土是以水玻璃为胶结料,与各种耐火骨料、粉料等按一定比例配制而成的气硬性耐热混凝土。
它具有高温下强度损失小、耐磨、耐腐蚀、热震稳定性好等优点。
适用温度为800~ 1200 ℃,是理想的耐火混凝土品种。
普通混凝土在环境温度超过300 ℃后,其强度急剧下降,这是由于水泥石中的水化产物在高温下分解脱水,晶格结构遭到破缘故。
当温度达到600 ~900 ℃时,含有石英岩与石灰岩的集料会急剧膨胀并产生化学分解,也使混凝土强度显著降低。
所以普凝土的正常使用温度不应超过250 ℃。
耐热混凝土是指能够长期承受高温(250 ~1300 ℃) 作用高温下保持工作所需要的物理力学性能的特种混凝土,耐热混凝土主要用于工业窑炉基础、外壳、烟囱及原子能压力容器等处,长时间承受高温作用外,还会承受加热冷却的反复温度变化作。
耐热混凝土由耐热集料与适量的胶结料( 有时还添加矿物料) 和水按一定的比例配制而成。
耐热混凝土按其胶结材料不同为水泥耐热混凝土和水玻璃耐热混凝土。
其中水泥耐热混凝土又分为普通硅酸盐水泥耐热混凝土( 耐热温度700 ~1200 ℃) 、矿渣酸盐水泥耐热混凝土( 耐热温度700 ~900 ℃) 和高铝水泥耐热( 耐热温度1300 ~1 400 ℃) 等几种。
水玻璃耐热混凝土的耐热温度为600 ~1200 ℃。
耐热混凝土的材料选用有如下要点。
(1) 水泥强度等级不得低于42.5MPa ,水泥中所掺的混合材料不得含有石灰岩类熔点低且在高温下易于分解软化的材料。
(2) 掺合材料当工作温度高于700 ℃时,必须加入掺合材料。
掺合材料是在拌制耐热混凝土时掺入的具有耐热作用的细粒粉料。
加入掺合料首先可以增加混凝土的密实性,减少高温变形;其次某些掺合料可以与水泥水化物起化学反应而减轻水泥水化物在高温下的体积变化。
掺合材料种类有黏土质( 黏土熟料、黏土砖、红砖) 、高铝质滴铝砖,矾土熟料) 、镁质( 冶金镁砂、镁砖) 、粉煤灰及高炉重矿渣等。
(3) 集料不宜采用石灰岩及石英质集料。
石灰岩集料易在高温下分解,石英质集料在高温下会发生较大的体积变形( 扩大至原体积的 1.3 ~ 1.5 倍) ,这些将导致混凝土结构的破坏。
因此耐热混凝土的集料应选择在高温下体积变形小且化学性质比较稳定的材料。
可用黏土熟料、铝矾土熟料、耐火砖碎料、红砖碎料、高炉矿渣、碎镁砖、烧结镁砂、铬铁矿、玄武岩及辉绿岩等。
集料中严禁混有石灰岩等有害杂质。
耐热混凝土的配合比设计,应根据混凝土的工作强度、极限工作温度、材料来源及经济因素加以综合考虑,并通过试验确定。
在试验中应注意用水量( 或水玻璃用量) 在满足和易性要求下应尽量减少,其坍落度应比普通混凝土小10 ~20mm ;宜用机械搅拌,搅拌时间要比普通混凝土延长1~2 分钟。
耐热混凝土浇筑后应精心养护,水泥耐热混凝土宜在15 ~25 ℃的潮湿环境中养护,水玻璃耐热混凝土宜在15 ~30 ℃的干燥环境中养护;水泥耐热混凝土在气温低于+ 7 ℃、水玻璃耐热混凝土在低于+ 10 ℃时施工,即应按照冬期施工规定执行,并不得掺用化学促凝剂。
耐火混凝土的用途、材料组成及设计施工要点耐火混凝土是指工作于900~ 1600 ℃的温度下并保持其物理力学性能的特种混凝土,它与耐热混凝土有许多共同之处,在一些资料中甚至不将二者加以区分。