现代汽车悬架技术的发展趋势

合集下载

汽车悬架系统电控减振技术

汽车悬架系统电控减振技术

汽车悬架系统电控减振技术汽车悬架系统是指汽车车架和车身连接的部件,主要由弹簧、减震器和悬挂构件组成,是汽车重要的组成部分之一。

而电控减振技术是现代汽车悬架系统中的一项重要技术,通过电子控制系统对减震器进行调节,使得汽车在行驶过程中能够更好地适应路面情况,提供更为舒适的驾驶体验。

本文将就汽车悬架系统电控减振技术的原理、发展现状和未来趋势进行探讨。

汽车悬架系统的主要作用是减震,并且可以提高汽车的操控性和乘坐舒适度。

通常情况下,汽车的减震器是根据路面情况和车速来自动调节的,但是传统的机械减震器在这方面的表现并不尽如人意。

为了解决这一问题,汽车制造商开始研发电控减振技术。

电控减振技术主要依靠电子控制单元(ECU)、传感器和调节执行器来实现。

通过获取车辆运动状态和路面情况等数据,电子控制单元可以对减震器进行精准的控制,实现对悬架系统的实时调节。

当车辆行驶在崎岖不平的路面上时,电控减振系统会自动调节减震器的硬度和行程,以提供更好的减震效果;而在高速行驶时,减震器则会调整为更硬的状态,以提高悬架系统的稳定性和操控性。

随着汽车制造技术的不断进步和消费者对驾驶舒适性的需求不断提高,电控减振技术在汽车行业中得到了越来越广泛的应用。

目前,许多汽车厂商已经推出了搭载电控减振系统的车型,如奔驰的AirMatic气动悬架、宝马的自适应M悬架等,这些技术在提高车辆悬架性能的也使得汽车的行驶更加舒适和安全。

除了高端车型之外,电控减振技术也在中低端车型中得到了应用。

一些自主品牌汽车制造商也开始引入电控减振技术,使得这一技术逐渐走向了大众化。

可以预见的是,随着技术的不断成熟和成本的不断降低,电控减振技术将在未来成为汽车悬架系统不可或缺的一部分。

随着电控减振技术的不断发展,人们对于其在未来的应用和发展趋势也越发关注。

可以预见的是,未来电控减振技术将在以下几个方面取得更大的进展:1. 高精度控制:未来的电控减振技术将会实现更高精度的控制。

汽车半主动悬架系统研究现状与发展

汽车半主动悬架系统研究现状与发展

汽车半主动悬架系统的研究现状与发展[摘要] 文阐述了半主动悬架的产生及发展,着重论述半主动悬架的控制方法,探讨该技术存在的问题今后研究的方向。

[关键词]半主动悬架主动悬架控制发展前言现代汽车正朝者多目标综合控制和智能化控制的方向发展。

悬架系统智能化解决了传统被动悬架存在的舒适性和稳定性不能兼顾的问题,代表了悬架系统发展的方向。

国外在60年代提出了主动悬架,主动悬架采用有源可控元件组成闭环系统,能获得一个优质的隔振系统,使悬架始终处于最佳减振状态。

但要由外部提供较大的控制能量、结构复杂、造价昂贵使其广泛应用受到很大限制。

半主动悬架是1974年由美国加州大学戴维斯分校机械工程系d.e.karnopp教授等提出的一种半主动隔振方案在车辆上的实现。

采用无源但可控的阻尼器在工作中消耗能量小,控制易于实现,造价低,并且性能接近主动悬架,因而得到广泛重视。

1、半主动悬架的控制从控制形式上看,有连续变化阻尼(阻尼力无级可调)的半主动悬架系统和开关式(阻尼力有级可调)半主动悬架系统,前者又称为主动阻尼控制系统,后者又称为半主动阻尼控制系统。

连续变化阻尼的半主动悬架在控制作用下,其阻尼力可以在最小值与最大值之间连续调节。

研究表明:只要合适选择控制逻辑,半主动悬架就几乎可以达到像主动悬架一样的阻尼调节范围(如图1-1)。

但其控制方法和控制系统较为复杂。

开关式半主动悬架系统的减振器采用较为简单的方式,控制方法大为简化,同时也降低了控制系统的复杂性。

通常半主动阻尼控制是根据不同的路面条件和不同的行驶要求,实现阻尼的软、硬两种工况或软、中、硬三种工况有级转换。

开关式悬架系统的性能低于连续变化阻尼的方式。

(a) 被动悬架; (b) 有级半主动悬架; (c) 无级半主动悬架; (d) 主动悬架由于悬架系统是很复杂的非线性系统,因此,基于模型的线性反馈控制是不适用的。

目前,基于现代控制理论的发展,半主动悬架控制系统的研究主要有以下几个方面。

浅析汽车主动悬架系统的发展和控制策略

浅析汽车主动悬架系统的发展和控制策略
科 技 论 坛
・ 2 9・
浅析汽车主动悬架系统 的发展和控制策略
邱 亚 宇

( 南京信 息职业技术 学院, 江苏 南京 2 1 0 0 4 6 ) 要: 介绍 了国内外汽 车主动 悬架控 制 系统发展和 主要控 制策略 , 重点论述 了汽车主动悬 架控制 系统的应用和发展 , 最后列举 了
目前 主 动 悬 架 的控 制 策 略 和 优 缺 点 。
关键词 : 主动悬架 ; 应用 ; 发展 ; 控 制策略
随着现代汽车对乘坐舒适 『 生 和行驶安全J 生的要求提高 ,设计一个 起步比较晚 其中上海交通大学、 清华大学 、 吉林大学和同济大学等科研 具有良好综合陛能的悬架成为现代汽车研究的一个重要课题。传统被 院所都开展了一些研究工作 ,对主动悬架进行 了一些理论研究和试验 动式悬架系统的弹『 生 元件其刚度和阻尼是固定值,在汽车行驶过程中 方法的研究 ,仍处于理论探索与数值模拟阶段 ,相应的试验验证比较 无法随路面状况 、 载荷和车速等因素的变化而变化。 由于悬架参数不可 少 , 还没有进入产品研制开发阶段。 北京理工大学的章一鸣教授较早地 改变 , 即使参数采用优化设计, 也只能对特定的激励具有最佳效果 , 一 对主动悬架进行了理论及试验研究。 该校高志彬 、 黄志刚等人进行 了可 旦激励发生变化 , 悬架 系统的减振效果很难维持最佳, 这一问题注定了 控减振器的性能试验研究 ,试验结果说咀昕 十的三级阻尼可调减振 被动式悬架系统的性能难以提高。近年来 , 随着计算机技术和各种控制 器 I 生 能优于传统的被动悬架。 方法 的发展 , 汽车主动悬架技术成为汽车技术研究的—个重要方向。 这 2主动悬架系统的控制策略 种主动悬架系统 ,可随汽车行驶状况而自适应地通过作动器控制悬架 汽车主动悬架的研究工作包含两个方面: 一方面是执行器的开发 , 动力响应 、 或 自动调节悬架的刚度和阻尼参数 , 具有优 良的减振性能 , 另一方面是控制策略的研究,两方面较好的配合才会使悬架系统的性 也有利于车辆的操纵稳定 I 生。 能达到理想的效果。 上世纪五十年代形成完整的经典控制理论, 采用频 1主 动悬 架 系统 国内外发 展状 况 率响应 法和根轨迹法这些 图解分析方法分析系统性能和设计控制装 在汽车悬架系统的发展史上 , 是1 9 5 4 年美 国 G M汽车公司的 E 置。历史的实践汪明经典控制理论十分有效的。 s p i e l L a b r o s s e 首次提出了主动悬架的概念。 雪铁龙早在 2 0 世纪 5 0 年 随着状态空间空间法的应用而出现的现代控制理论 ,它可以解决 代初期就将电控主动液压悬架装备在其 1 5车型上 , 但实现大规模的批 多输人多输出的多维空间系统 , 研究 的系统复杂性不断提高 , 其 已开始 量使用则是在稍后推出的 D S系列车型上Ⅲ 。 向智能控制方向发展 。目前应用于主动悬架系统的控制理论 比较多, 常 1 9 6 5 年, W. 0 . O b s o n 和k R  ̄ A l l e n 作了类似的研究工作。此后 , T . H . 见的控制方法主要有 以下 3 种: R o c h w e l l , S . K i mi c  ̄和 M . L a w t h e r 做了用伺服机构作为主动元件的理论 2 . 1 天棚阻尼控制。美 国著名控制专家 K a r n o p p 在二十世纪七十年 研究 。早期研究的主动悬架数学模型是不考虑非簧载质量和轮胎特l 生 代初提出了天棚阻尼的概念。这种方法的思想就是在车身上安装一个 的单 自由度系 统 。 与车身振动速度成正比的阻尼器,使阻尼器产生的力与车身竖直方向 1 9 7 6 年T h o mp s o n首先将全状态反馈最优控制理论应用于主动悬 的运动相抵抗 , 便可以Байду номын сангаас效地防止车身与悬架发生大的共振。 这种方法 架的研究中。1 9 8 4年他又利用部分状态反馈最优控制理论构造了次最 简单 , 所需要的车身传感器数量也较少 , 不需要非常复杂的悬架系统模 优反馈阵。 随后 , T h o m p s o n 和P e a r c e 把两个 自由度模型扩充到四个 型 , 实现起来 比较简单 。后来 k a r n o p p 又提出了开关阻尼的概念 , 这种 自由度模 型 。 方法是天棚阻尼的延伸 ,目前已被美 国通用汽车公司应用于某型号车 并取得了良好 的效果 。 1 9 8 6 年, R . M. C h a l a s s a n i 研究了整车模型 的行驶 I 生能。P . B a r a k和 上 , 2 . 2 智能控制。 近些年来智能控制取得了很大的发展 , 最有代表f 生 的 D . H r o v a t 用计算机模拟激励的方法, 比较 了主动悬架的优趱 陛。用性能 指数 1 I表示 主动 、 半主动 、 和被动 悬 架 的性能 。对 一组 特 定的 Ⅱ 加权 便是模糊控制和神经网络控制。模糊控制是由美国动控制理论专家扎 计算模拟的激励结果显示采用半主动悬架和主动悬架的车辆其各项指 德f L ^ A . z a d a h 艉 出来的, 通过一定的发展 , 模糊控制理论已经成为人们所 研究的一个热 门课题。在汽车悬架控制方面, Y o s h i m u r o 教授将模糊控 标多下降了很多。 1 9 5 5 年法 国 C i t r o e n 汽车公司研制出一种液压一空气悬架系统 , 制理论首先应用到汽车主动和半主动悬架 中。汽车悬架可以看作是用 可以使汽车具有较好 的行驶平顺性和乘坐舒适性 ,由于它的制造工序 组非线 『 生 微分方程来描述的非线性系统 ,利用模糊推理方法可推导 过于复杂 , 最终未能普及。1 9 8 2 年美国 L O T U S 汽车公 司研制出有源主 出合适的阻尼力 ,实验结果显示采用模糊控制理论设计的控制器可使 动悬架系统 ,瑞典 V O L V O汽车公 司在其车上安装 了实验 f 生的 L O T U S 主动悬架的性能得到有效提高 , 提高了汽车行驶的平顺性 。 模糊控制和 主动悬架系统。1 9 8 3年 日 本T O Y O T A汽车公司在 S o a r e 轿车上采用了 神经网络控制能够为特殊条件下的模型处理问题提供有效的方法 。可 阻尼可调的减振器。1 9 8 6年丰 田又在 S o a r e 车型采用了能分别对阻尼 以认为智能控制将是 2 1 世纪控制领域 的核心技术 , 智能控制的发展必 和刚度进行三级调节的空气悬架 , 1 9 8 9年 T O Y O T A在 C e l i c a 车型上装 将推动科技的发展, 从而对社会进步的推动力是不可估量 的。 置了真正意义上的主动油气悬架系统 福特汽车公司在 1 9 8 4年底的 2 . 3 混合控制。 当前用于汽车悬架振动的控制策略比较多, 单一控制 L i n c o l n C o n t i n e n t a l 车上 装 备 了电控 空气 悬架 系 统 , 可 以有效 地实 现 隔 策略可以使某一控制 目标达到理想的效果 ,但很难达到多个控制 目标 振 和高 度调 整 。 同时满足要求 的要求。因为各种控制策略都有 自身无法弥补的缺陷 , 考 1 9 8 8年雪铁龙公 司正式将装备有液压悬架的 X M车型正式命名 虑到一方面则往往另一面就会有损失 。因此常将多种控制方法结合起 为第一代主动液压悬架系统,之后雪铁龙又在其生产的 X A N T I A系列 来对悬架系统进行混合控制 ,例如将模糊控制和神经网络控制混合设 车型装置了第二代主动液压悬架, 这一代新型主动悬架大大地提高 E — 计 应用于奔驰高级轿车和重型坦克,这种混合控制策略同样适用于汽 C U控制单元的计算速度 , 同时有运动和舒适两种模式可供选择。到 目 车主动悬架这样复杂的非线性系统 ,仿真结果显示均能取得 良好的效 前为止,雪铁龙的主动液压悬架已发展到第三代 ,并装备于其 c 5 、 c 6 果 , 从长远来看 , 混合控制方法将是今后悬架控制策略研究的一个很重 系列车型上。 其第四代主动液压系统也在研发 当中 [ 3 1 。 2 0 世纪 9 0 年代 要 方 向。 日本 N I S S A N汽车公司在 I n i f n i t e Q 4 5 轿车上也装备了液压主动悬架。 参考文献 此外 , 德国 P o r s c h e 、 美国F o r d , 德国 B e n z 、 通用、 克莱斯勒 、 雪铁龙 [ 1 Ⅱ .E s k i ,S . Y i d i r i m .V i b r a t i o n C o n t r o l o f V e h i c l e A c t i v e S u s p e n s i o n s t e m Us i n g a Ne w Ro b u s t N e u r a l Ne t w o r k C

汽车悬架毕业论文

汽车悬架毕业论文

汽车悬架毕业论文汽车悬架毕业论文随着科技的不断进步,汽车行业也在不断发展和创新。

汽车悬架作为汽车的重要组成部分,对于汽车的操控性、舒适性和安全性起着至关重要的作用。

本篇论文将探讨汽车悬架的发展历程、原理和未来趋势,以及对汽车悬架进行改进的一些方法。

第一部分:汽车悬架的发展历程汽车悬架的发展可以追溯到汽车的诞生。

最初的汽车悬架是由弹簧和减震器组成的简单结构,主要用于减缓车辆行驶中产生的震动和冲击力。

随着时间的推移,汽车悬架经历了许多改进和创新。

从传统的独立悬挂到现代的气动悬挂和电子悬挂,汽车悬架的技术不断提升,为驾驶者带来更好的驾乘体验。

第二部分:汽车悬架的原理汽车悬架的主要功能是保持车身稳定,并提供舒适的乘坐体验。

它通过减震器和弹簧来吸收和分散道路上的震动和冲击力。

减震器通过阻尼器的工作原理来减少车身的颠簸和晃动,使驾驶者感到更加平稳和舒适。

而弹簧则起到支撑车身和分散车轮受力的作用,使车辆在行驶中保持平衡和稳定。

第三部分:汽车悬架的改进方法为了提高汽车悬架的性能,许多改进方法被提出和应用。

其中之一是采用更先进的材料,如碳纤维和铝合金,来替代传统的钢材。

这些新材料具有更高的强度和更轻的重量,可以减少车辆的整体重量,提高悬架的刚度和响应速度。

另一个改进方法是引入电子控制技术。

通过使用传感器和控制单元,悬架系统可以根据道路状况和驾驶者的需求进行实时调节。

这种电子悬架可以根据车速和转向角度来调整减震器的阻尼力,以提供更好的操控性和舒适性。

此外,气动悬挂也是一种改进方法。

通过调节气囊的气压,气动悬挂可以根据不同的道路条件和驾驶模式来调整车身高度。

这种悬挂系统可以提供更好的通过性和减少风阻,从而提高燃油经济性和行驶稳定性。

第四部分:汽车悬架的未来趋势未来,汽车悬架将继续朝着更加智能化和自动化的方向发展。

随着自动驾驶技术的不断成熟,悬架系统将与其他车辆控制系统进行整合,以实现更高级别的自动驾驶功能。

例如,悬架系统可以通过感知和判断道路状况,自动调整悬架的刚度和高度,以提供更安全和舒适的驾驶体验。

浅谈汽车悬架的类型及其发展趋势

浅谈汽车悬架的类型及其发展趋势

车辆工程技术70车辆技术 悬架是现代汽车的重要组成之一,它把车架和车轮弹性地连接在一起,对汽车的平顺性、操纵稳定性、舒适性起着决定性的作用,并且直接关系着汽车的安全性。

汽车悬架的主要功用是传递并承受路面作用在车轮和车架上的一切力和力矩;缓和路面传递给车架的冲击载荷并衰减其振动,保证汽车的行驶平顺性。

为了满足汽车悬架的功用,悬架由弹性元件(螺旋弹簧、钢板弹簧、扭杆弹簧等)、减震器、横向稳定器、导向装置、缓冲块等组成,它们通过胶套等弹性连接元件连接。

其中弹性元件与减震器配合起到缓冲减震的作用;缓冲块用来减轻车轴对车架的冲撞,一般出现在货车上;横向稳定器能够减轻汽车转弯行驶时的侧倾角和横向角振动;导向装置由导向杆系组成,影响着整车的操纵稳定性和抗纵倾能力。

1 被动悬架1.1 非独立悬架 非独立悬架是指左右两侧车轮通过一根车轴刚性的连接在一起,它的优点就是结构简单,制造容易且制造成本低,维修方便,承载能力强,工作可靠;但是它的缺点也非常明显,当汽车行驶在不平路面上时,右侧车轮的跳动势必引起左侧车轮的跳动,使车桥和车身发生倾斜,影响乘坐的舒适性;当左右两侧车轮不同步跳动时,车轮会左右摇摆,使前轮容易发生摆振;簧下质量大,使汽车的操纵性下降。

非独立悬架主要用在一些总质量大的货车、商用车的前后悬架上,基本结构就是纵置钢板弹簧;还有时使用在一些微型车的后悬架上,基本结构就是扭力梁加螺旋弹簧非独立悬架。

1.2 独立悬架 独立悬架是指将车桥做成断开的,左右两侧车轮通过各自的悬架与车架相连接,它的优点是,左右两侧车轮可以相互跳动,互不影响,车身的倾斜和振动小;簧下质量小;在不平路面上行驶时的附着能力好;由于采用断开式车桥,发动机的位置可以下沉使质心高度下降,提高汽车行驶的稳定性;弹性元件只承受垂直力,所以可以选用刚度小的弹簧,使车身振动频率降低。

它的缺点就是结构复杂,制造成本高维修困难。

独立悬架广泛应用在乘用车上,还可以应用在总质量不大的商用车上。

汽车电控悬架系统及其发展趋势

汽车电控悬架系统及其发展趋势

电控悬架系统及其发展趋势研究摘要:本论文阐述电控悬架系统的作用、组成、主要构造、工作原理,同时论述了各类悬架的优缺点,以及电控悬架系统运用的最新技术及电控悬架系统的发展趋势。

关键词:电控悬架系统悬架各类悬架系统特点电控悬架系统新技术及发展趋势目录1 绪论 (1)1.1电子控制空气悬架发展综述 (1)1.2国内外车辆主动悬架研究 (1)2 电控悬架系统的组成、工作原理及其功能特点 (2)2.2电控悬架系统的工作原理 (2)3 电控悬架系统的控制策略 (4)3.1天棚阻尼器控制方法 (4)3.2最优控制方法 (4)3.3预测控制方法 (4)3.4自适应控制方法 (5)4 ECAS需要解决的问题和发展前景 (6)结论 (8)参考文献 (9)1 绪论为了满足现代汽车对悬架提出的各种性能要求,悬架的结构形式一直在不断地更新和完善,尽管这样,传统的被动悬架仍然受到很多限制,主要是难于同时改善在不平路面上高速行驶车辆的稳定性和行驶平顺性,即使采用优化设计也只能保证悬架在特定的激励发生变化后,悬架的性能亦随之发生变化,为了克服传统的被动悬架对汽车性能改善的限制,近年来,汽车工业中相继出现了性能更加优越的主动悬架和半主动悬架。

1.1电子控制空气悬架发展综述概述了国内外电控空气悬架的发展历程及现状 ,介绍了电控悬架系统的组成和基本工作原理及其功能特点。

关键词:电子控制空气悬架;控制策略;虚拟样机;多体动力学;联合仿真,简要介绍了电控悬架系统的控制策略 ,并对各种控制策略的特点给予了论述 ;分析了我国电控悬架系统需要解决的问题和今后的发展前景。

1.2国内外车辆主动悬架研究汽车悬架系统对提高汽车行驶平顺性和操纵设备的隔振;美国首先在普尔曼车上使用空气弹稳定性起着重要的作用。

随着电子技术、测控技簧,此后意大利、英国、法国及日本等国家相继对术、机械动力学等的快速发展,使车辆悬架系统由空气弹簧作了大量的研究工作。

(1) 国外汽车空气悬架传统被动隔振发展到振动主动控制。

国内外汽车可控悬架的研究动态

国内外汽车可控悬架的研究动态

得 到完善总结 的是 T o sn hmpo 。 T o po 证明了 “ hm s n 全主动”悬 架系统对提高车辆性能 的作 用。二十世纪八 十年代初 , 关于车辆 主动悬架系统的研究和开发 成果得到 了实 现 。 些样 车被生产 出来 , 一 主动悬架系统使 车辆 整 体性能有 了很 大的提高 。 在主动悬 架中 , 一个作动器 代替 了传 统被动悬架 中的相应部 分 。 产生 的作用力 是车辆状态变量 的函数 , 它 能根据行 驶性能 达 到最优。根据 作动器 响应带宽 的不 同, 主动悬架 又分 为宽带 主动 悬架 和有 限带 宽主动悬架 , 即文献 中所说 “ 主动悬 架” 慢 主 全 和“ 动悬架” 。 慢主动悬架 : 十世纪八十年代 以后 的理论 工作 着眼于基本 二 原理 的研究 , 即利用控制 系统来提高性能 的机理 。二十世纪八十 年代 中期 ,hr S ap便提 出了一 种更有 发展前途 的替换 系统——有 限带 宽的主动系统 , 常被称为“ 通 慢主动悬架” 系统 。慢主动悬架 由作动器与一个普通 弹簧 串联后 ,再 与一个 被动阻尼器并 联构 成. 慢主动悬架 的主动控制系统仅在一 个低频范 围( 约 0 6 z 大 —H ) 内进行 , 高于该频率 范围时 , 被动悬架则主导悬架系统的特性 。 由 于慢 主动悬架作动器仅需要在一窄带频率范 围内工作 , 以它 降 所 低了系统 的成本及复杂程度 , 主动悬架 更便宜 。它 的控制仍 比全 然包括了主要 的车身振动 ( 向、 纵 仰俯 、 侧倾 ) 以及转 向控 制等要 求的频率 范围,其 系统性能可 达到与全 主动系统很 接近的程度 , 所以人们 现在对慢 主动悬架表现 出了浓厚 的兴趣 , 已经有一些装 有该悬架的商用车投入 市场 。 全主动悬 架 : 全主动悬架系统采用了一个可控 的作动器取 代 了被动悬 架中的相 应部 分。作动器是一个气 动或液 动油缸 , 具 它 有较宽的响应 频带 , 对车轮的高频 共振也可 以进行控 制。作 动器 的控制带宽一般应至少覆 盖车辆 常受的频率 0 1Hz - 5 ,有 的作动 器 响应带宽甚 至高达 10 。从减少能量 消耗 的角度考虑 , 0 Hz 一般 情况下也保留了一个与作动器并联 的传 统弹簧 , 支持车身 的 用来 静载 。 全 主动悬架 的一个重 要特点是要求 作动器所产 生 的力能够

汽车半主动悬架关键技术的发展现状和展望

汽车半主动悬架关键技术的发展现状和展望

开发技术 、 评价技术研究为重 点 , 突破执行器设计与工 艺 关键问题 , 形成产业化能力基础 , 全 面提升我 国半主动悬 架开发 的技术水平 。
3 结

对于不同厂 家 、 不 同型号 的频谱分析仪 , 电路各有差 异, 但主体框架和常见故障的一般分析方法大致如本文所 述, 在实际运用 中效果较好 , 可为相关工作者提供参考。
参 考文献 : [ 1 】 冯桂山. 频谱分析 仪使用简介[ . 宇航计测技术, 1 9 8 3 , 0 )
障是变频器件损坏或者是信号传输故障 , 用清理虚焊点和 调谐耦合 电容方法可排除信号传输故障。 故障五 : G P I B 不工作 。 首先检查G P I B 电缆的连接是否 正确以及 电缆 的好坏 , 再查看G P I B 地址的设置有无问题。 在 出厂时, 频谱仪地址均有设置 , 一般在“ 配置 ” 菜单的“ 频谱 仪地址 ” 中查看G P I B 地址 。 故障六 : 2 . 9 5 G H z 以上信号不能测试 。 2 . 9 5 G H z 以上频 率属于高频段信号 , 由于低频段测试正常 , 说 明步进衰减 器、 第二 、 三变频器和后续 电信号处理各个 电路均正常 , 那 么通过原理框图可得 出判断 , 此故 障产生的原因可能有二 个: 射频开关故障、 第一变频器的谐波混频器故障。 若射频 开关 自身损坏更换射频开关 即可 , 若是射频开关驱动电路 故障造成不能转换, 则检修方法同一般 电路 的是 同样 的。 用 此析方法 同样可检修低频段故障。
车企业为引导, 努力培养像德尔福 、 博世 、 T R W、 Z F 、 威伯科 等一些专业的零部件企业 , 由整车企业 明确划分悬架系统 设计开发的权 限与分工 , 由零部件企业的研发部门负责研 发方 向、 确定 系统特性参数 , 实现悬架产品的技术积累和 升级换代。 悬架 系统是个复杂 的系统工程 , 应以具备生产 悬架能力的企业为主导 , 以电控系统开发商为配合 , 辅助 高校和科研院所的科研力量 , 协同设计与开发。 目前在汽车悬架系统方面 , 我 国除了钢板弹簧悬架的 设计及应用比较成熟 以外 , 其他的悬架技术的应用绝大部 分还处于车型引进 、 仿制或直接购买产品阶段 。 悬架产 品 的设计开发滞后 , 一方面表现在设计手段落后 , 计算机应 力分析 、 动态仿真在企业 中应用还较少 ; 另一方 面没有建 立起一套完善 的设计评价体系 , 使我国汽车悬架技术的研 究和应用与欧美等发达国家相比明显落后 。 在半主动悬架系统的研究开发方面 , 高校 的相关专家 及研究机构多年来做 了大量 的工作 , 目前已取得 了一定 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代汽车悬架技术的发展趋势肖永清内容提要:本文阐述了现代汽车悬架系统的种类、结构特点、功能与工作原理;介绍了汽车悬架系统的新技术及其发展趋势。

关键词:汽车悬架结构原理发展趋势1.汽车悬架系统的种类、结构特点与功能所谓汽车悬挂,就是指汽车车身和车轮弹性地连接起来的机构。

俗称汽车的避震、悬挂和悬架的意思都一样,都是指车轮与车身之间的连接物,避震是通俗叫法,而悬挂和悬架均是"学名"。

悬架是将车身与车桥、车轮弹性相连,传递作用在车轮和车身之间的力和力矩,缓和由不平路面传给车身的冲击,并衰减由此引起的振动,以保证汽车正常行驶时的平顺性、操纵稳定性和乘坐舒适性。

目前多数汽车的悬架都是被动式悬架,即汽车的车轮和车身状态只能被动地取决于路面及行驶状况以及汽车的弹性支承元件、减振器和导向机构。

汽车上的悬挂结构大体可分为两种:一种是左、右车轮用一根刚性轴连起来并与车身相连的叫非独立悬挂。

常见卡车使用的钢板弹簧避震系统就是非独立悬挂。

它具有结构简单、强度高、稳定性好、容易制造、维修方便、轮胎磨损小和价格低廉等优点。

其缺点是当汽车在高速或在不平路面行驶时,容易颠簸,使人感到不舒服。

另一种是左、右车轮不连在一根轴上,而是单独通过悬挂与车身连接的叫独立悬挂。

往往轿车的舒适性比卡车好, 是因为这些车采用了独立悬挂,其结构是用轻便的杠杆、摆臂代替了整体车轴,当一侧车轮驶入凹凸不平路面时,不会牵动另一侧车轮而引起冲击振动,这就提高了乘座舒适性。

但采用独立悬挂后也相应使结构复杂,成本上升。

常见的独立悬挂结构型式有:螺旋弹簧双横臂独立悬挂、扭杆式独立悬挂、滑柱摆臂式独立悬挂和麦弗逊式独立悬挂等。

现代轿车的前轮都采用独立悬挂,后轮虽然比前轮采用独立悬挂的要少,但中、高级轿车一般都是四轮独立悬挂。

雪铁龙有一种液压悬挂,它是用一个液压筒代替一组弹簧和减震器。

液压筒根据中央控制器的指令来调整自身的工作情况。

而中央控制器是按车身上的传感器所收集的资料信息计算后发出指令的。

这些信息资料包括车速、车身侧偏程度、方向盘及油门位置等。

现生产的雪铁龙汽车都使用了液压悬挂,便成其"独门"技术,自然也成为它的最大个性之一。

此外还有一种悬挂就是空气悬挂。

它是在夹有连线的橡胶囊内充入压缩空气组成。

除具有减震功能和导向机构外,还设有车身高度调节装置。

空气悬挂虽然储能量大,但因结构复杂、维修麻烦,以及轮廓尺寸大不易布置等缺点,目前多用于大客车和无轨电车上。

电控悬架系统主要有半主动悬架和主动悬架两种。

半主动悬架是指悬架元件中的弹簧刚度和减振器阻尼系数之一可以根据需要进行调节。

为减少执行元件所需的功率,主要采用调节减振器的阻尼系数法,只需提供调节控制阀、控制器和反馈调节器所消耗的较小功率即可。

可以根据路面的激励和车身的响应对悬架的阻尼系数进行自适应调整,使车身的振动被控制在某个范围之内。

半主动悬架是无源控制,因此,汽车在转向、启动、制动等工况时,不能对刚度和阻尼进行有效的控制。

全主动悬架简称主动悬架。

它是有源控制,具有作功能力的悬架。

它通常包括产生力和转矩的主动作用器(液压缸、气缸、伺服电动机、电磁铁等)、测量元件(加速度、位移和力传感器等)和反馈控制器等。

当汽车载荷、行驶速度、路面状况等行驶条件发生变化时,主动悬架系统能自动调整悬架刚度和阻尼(包括整体调整和单轮调整),从而能同时满足汽车行驶平顺性和操纵稳定性等各方面的要求。

此外,主动悬架还可根据车速的变化控制车身的高度。

另外,根据悬架介质的不同,电控悬架系统又可分为油气式主动悬架和空气式主动悬架两种,悬架系统零部件在汽车上的位置如图1所示。

2.汽车悬架的结构型式汽车悬架有多种结构型式,纵置钢板弹簧的非独立式悬架,通常用于载货汽车及其变型车;独立式悬架广泛用于轿车和轻型客车。

独立悬架有单杆(纵置或横置)、双杆(横置或斜置)以及滑柱式(烛式)几种,现代轿车(尤其是轻型轿车)普遍采用一种滑柱摆臂式悬架(见图2)该型式悬架为美国人厄尔勒·麦克弗逊受飞机起落架结构启发,早在四十年代中期发明的。

他把螺旋弹簧和减振器组合在一起,几乎垂直地布置在汽车前轮的内侧,不仅为前轮驱动小型汽车的横置发动机(含变速器)节省了空间,同时也由于零件较少而降低了成本,颇受汽车制造厂家的欢迎。

八十年代初期以来,由于它的种种优点,这种悬架系统普遍为前轮驱动汽车所采用,现代轿车大多也都采用了这种悬架。

如日本丰田公司的克雷西达、加美、光冠、花冠、日产公司的公爵、美国的福特、旁蒂克等轿车。

我国目前生产的一汽奥迪100、上海桑塔纳、广州标致505和天津夏利以及神龙富康(雪铁龙ZX系列轿车)均采用发明者名字命名的悬架为汽车的前悬架。

3.悬架系统的组成及工作原理悬架是连接车身和车轮之间一切传力装置的总称。

它主要由弹簧(如钢板弹簧、螺旋弹簧、扭杆弹簧等)、减振器和导向机构等组成。

当汽车在不同的路面上行驶时,由于悬架系统实现了车身和车轮之间的弹性支撑,有效地降低了车身与车轮的振动,从而改变了汽车行驶的平顺性和操纵稳定性。

同时,它也引起在汽车起步、制动、转向时车身的俯仰、点头和侧倾等现象,影响汽车的平顺性和操纵稳定性。

汽车行驶的平顺性和操纵稳定性是衡量悬架性能好坏的主要指标,但二者性能要求又相互排斥。

例如:降低弹簧的刚度,可使车身加速度减小,平顺性变好,但同时会导致车体位移增加,对操纵稳定性产生不良影响;另一方面,增加弹簧刚度会提高操纵稳定性,但硬弹簧将导致汽车对路面的不平度很敏感,使平顺性降低。

理想的悬架应在不同的使用条件下,具有不同的弹簧刚度和减振器阻尼,既能满足平顺性要求又能满足操纵稳定性要求。

实际的设计只能是根据某种路面情况和车速,兼顾各方面的要求,优化选定一种刚度和阻尼系数、这种刚度和阻尼系数一定的悬架称为被动悬架。

汽车在行驶过程中,路面情况和车速是变化不定的。

因此,这种刚度和阻尼系数都不可调节的被动悬架,不可能在改善汽车的乘坐舒适性、行驶平顺性和操纵稳定性等方面有大的作为,进而无法达到悬架控制的理想目标。

每种悬挂各有利弊。

如果想提高舒适性而采用较软的悬挂,那么就会影响汽车行驶时的稳定性,尤其是在转弯时侧倾会加大,加速和刹车时会"前仰后合";反之,为了避免上述不利因素,增加悬挂的刚性,则必然要降低汽车的舒适性。

如何调整它们之间的关系,只能根据汽车的用途、车型来确定。

因此,只能说最适合的悬挂就是最好的悬挂。

为解决被动悬架的不足,国外在20世纪60年代就提出了主动悬架的概念。

80年代以来,半主动悬架和主动悬架开始在一部分汽车中得到应用。

所谓主动悬架,是根据行驶条件,随时对悬架系统的刚度、减振器的阻尼力以及车身的高度和姿势进行调节,使汽车的有关性能始终处于最佳状态。

调节方式可以是机械式的,也可以是电子控制式的。

这种调节需要消耗能量,故系统中需要能源,即系统是有源的。

半主动悬架仅对减振器的阻尼力进行调节,有些还对横向稳定器的刚度进行调节,调节方式也有机械式和电子控制式两种。

这种调节不需消耗能量,故系统中不需要能源,即系统是无能源的。

主动悬架是在悬架系统中采用有源或无源控制元件组成一个闭环控制系统,根据车辆的运动状况和路面状况主动做出反应,以抑制车身的振动和摆动,使悬架始终处于最佳的减振状态。

现在,一些较高挡的轿车,己较多地采用了主动悬架。

现代汽车中采用的电子控制悬架系统,克服了传统的被动悬架系统对其性能改善的限制,该系统可根据不同的路面条件、不同的装载质量、不同的行驶速度等来控制悬架系统的刚度,调节减振器阻尼力的大小,甚至可以调整车身高度,从而使车辆的平顺性和操纵稳定性在各种行驶条件下达到最佳的组合。

4.主动悬架的电控系统基本组成传感器将汽车行驶的路面情况(汽车的振动)和车速及启动、加速、转向、制动等工况转变为电信号,输送给电子控制器,控制器将传感器送入的电信号进行综合处理,输出对悬架的刚度和阻尼及车身高度进行调节的控制信号。

执行机构按照电子控制器的控制信号,准确地动作,及时地调节悬架的刚度和阻尼系数及车身的高度。

电子控制器一般由微机和信号输出放大电路组成。

执行元件由电磁阀和步进电机及气泵电动机等组成。

从行驶平顺性和舒适性出发,弹簧刚度和减振器的阻尼系数应能随汽车运行状态而变化,使悬架系统性能总是处于最优状态附近。

但是,弹簧刚度选定后,又很难改变,因此从改变减振器阻尼入手,将阻尼分为两级或三级,由驾驶员选择或根据传感器信号自动选择所需要的阻尼级。

5.汽车悬架系统的新技术为提高汽车的安全性、可靠性和乘坐舒适性,近年汽车悬架系统采用了许多新部件和新式装置。

悬架和转向系统中出现的新技术有空气弹簧、电控减振器、主动悬架电控平顺性和操纵性等。

(1)新型悬架电控系统随着汽车结构和功能的不断改进和完善,研究汽车振动,设计新型悬架电控系统,将振动控制到最低水平是提高现代汽车品质的重要措施。

汽车振动是影响汽车行驶平顺性和操纵稳定性,以及汽车零部件疲劳寿命的重要因素。

严重的振动还会影响汽车的行驶速度,并产生环境噪声污染。

汽车减振主要使用悬架系统。

悬架系统一般由弹性元件和阻尼元件构成,用以缓冲和吸收因路面不平而产生的激振力,同时承受汽车转向时产生的侧倾力。

而汽车行驶的平顺性与操纵稳定性在汽车设计中又是矛盾的,故传统悬架系统难以同时满足这种要求。

工业发达国家在70年代就己经开始研究基于振动主动控制的悬架系统,这种悬架系统是典型的非线性机、电、液一体化动力系统。

近年来,随着现代控制理论的发展,对最优控制、自适应控制、模糊控制、人工神经网络控制等的研究,不仅在理论上取得令人瞩目的成绩,同时已开始应用于汽车悬架系统的振动控制。

现代汽车悬架的结构形式和振动控制方法随时在更新和完善。

按导向机构的形式,可分为独立悬架和非独立悬梁两大类。

但一般按控制力进行分类,分为被动悬架、半主动悬架和主动悬架3种基本类型。

电控空气悬架是利用压缩空气充当弹簧作用,弹簧的刚度和车身的高度是根据汽车行驶状况进行自动控制,减振器的减振力控制也用来抑制汽车行驶和停驶时车身姿态的变化。

其具体功能:在水平路面上高速行驶时, 使车身变低、弹簧变软,以提高舒服性;在凹凸不平的路面行驶时,车身变高,使悬架变硬,以消除颠簸,提高通过性;防止纵向仰头和栽头及横向倾斜,保持前照灯光轴不变,提高安全性;电子调节空气悬架的控制包括减振力和弹簧刚度控制以及汽车高度控制两方面。

减振力和弹簧刚度的控制:防侧倾控制:侧倾发生于汽车在横向坡道高速行驶和汽车高速转弯时,根据汽车行驶速度和转向角度,使减振力和弹簧刚度转换为"坚硬"状态,抑制转变期间的侧倾,这种控制持续时间大约为2s,然后恢复到最初减振力和弹簧刚度,持续时间较长。

相关文档
最新文档