2013数学建模国赛A题

合集下载

2013全国数模竞赛A题优秀论文祥解

2013全国数模竞赛A题优秀论文祥解

2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。

针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。

图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。

针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。

可见占用车流量大的车道使道路通行能力降低更多。

针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。

我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。

本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。

针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。

关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

2013全国数学建模竞赛题目A-B

2013全国数学建模竞赛题目A-B

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

2013数学建模A题公路通行能力的计算方法

2013数学建模A题公路通行能力的计算方法

车道被占用对城市道路通行能力的影响影响道路通行能力的主要因素有道路状况、车辆性能、交通条件、交通管理、环境、驾驶技术和气候等条件。

道路条件是指道路的几何线形组成,如车道宽度、侧向净空、路面性质和状况、平纵线形组成、实际能保证的视距长度、纵坡的大小和坡长等。

车辆性能是指车辆行驶的动力性能,如减速、加速、制动、爬坡能力等。

交通条件是指交通流中车辆组成、车道分布、交通量的变化、超车及转移车道等运行情况的改变。

环境是指街道与道路所处的环境、景观、地貌、自然状况、沿途的街道状况、公共汽车停站布置和数量、单位长度的交叉数量及行人过街道等情况。

气候因素是指气温的高低、风力大小、雨雪状况!公路通行能力的计算方法公路通行能力的计算方法(一)、无平交路段通行能力(1)基本通行能力一般路段是指不受信号、暂停标志、铁公路口等外界因素的中断,保证大体连续的交通流的公路部分。

多车道公路的基本通行能力是以高速公路上观测到的最大交通量为基准确定的。

根据观测结果,城市快速路比城际间高速公路的值来得大一些,在大体接近城市快速路最大交通量处确定了多车道公路的基本通行能力为每车道2200pcu/h。

往返2车道公路的基本通行能力用往返合计值表示。

其理由为往返2车道公路通常不进行往返车道的分离,以供对面车辆超车用,这种方法是比较现实的。

实际上,在往返2车道公路上发生超车时的最大交通量的观测数据非常少,在美国《公路通行能力手册》中写明往返2车道公路的基本通行能力大约为多车道公路中2车道基本通行能力的二分之一,并确定为2500pcu/h。

另外,与多车道公路相同,对单向通行公路,把其基本通行能力定为每车道2200pcu/h。

(2)可能通行能力可能通行能力是用基本通行能力乘以公路的几何结构、交通条件对应的各种补偿系数求出的。

亦即C= CB*γL*γC*γI*……(2.1)式中,C:可能通行能力;CB:基本通行能力;γLγCγI:各种补偿系数。

就多车道公路而言,先用(2.1)式求出每车道的可能通行能力,然后乘以车道数求出公路截面的可能通行能力。

2013数学建模A题问题一解析

2013数学建模A题问题一解析

2013数学建模A题问题一解析作者:徐小玲杨玉娥贾雅伟王生锋来源:《中小企业管理与科技·下旬刊》2014年第12期摘要:以2013全国大学生数学建模A题为基础,对问题一给出了详细解答,最后对问题一的答题要点进行了详尽地分析。

关键词:城市道路通行能力 ;插值和多项式拟合 ;车流量近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会热点问题。

本文对于2013数学建模中的问题一进行了详细的解答,记录并分析视频1发生事故至事故撤离期间事故所处横断面距离上游路口为120m 时,不同时刻的堵塞车辆数,使用EXCEL处理统计数据,然后运用MATLAB拟合出在事故发生至事故撤离期间上述情形下的堵塞车辆数变化趋势图像,从而确定实际通行能力的变化趋势。

1 预备知识1.1 问题背景资料与条件由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵,影响城市车辆区域通行能力。

车道占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面(垂直于线路轴线的断面)通行能力在单位时间内降低的现象。

1.2 问题的重要性分析近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会问题之一。

正确估算车道被占用对城市道路通行能力的影响程度,将为交通部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

2 问题一的基本建模与求解记录视频1在事故发生至事故撤离期间城市车辆在一定横断面、一定时间内的车辆堵塞数量,通过对记录数据进行理论统计与分析后,得出在事故所处横断面城市车辆的实际通行能力[1],得出一定的变化过程。

表1 ;采用标准小汽车当量数计算车型折算系数及其车辆数表■标准车当量数:M=■AiBi(i=1,2…)(1)2.1 视频1中采集数据周期1min时事故所处横断面车辆通过能力根据表1和公式(1),采集数据周期1min时,记录统计视频一中每一个数据周期事故所处横断面距离上游路口为120m的标准堵塞车辆数,然后运用Excel统计整理数据得表2。

2013高教社杯全国大学生数学建模竞赛A题论文.

2013高教社杯全国大学生数学建模竞赛A题论文.

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林医药学院参赛队员(打印并签名) :1. 于邦文2. 薛盈军3. 杨国庆指导教师或指导教师组负责人(打印并签名):霍俊爽(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文通过对城市中车道因交通事故被占用问题的分析,探讨了事故所处道路横断面的实际通行能力的变化过程,并依据事故路段车辆排队长度与实际通行能力、事故持续时间、路段上游车辆流量之间的关系,最后针对各个问题建立模型并求解。

2013数学建模A题分析

2013数学建模A题分析

1 交通事故影响时间分析由于从交通事故发生到检测到事故、接警、事故现场勘测、处理、清理事故现场恢复交通,以及恢复交通后车辆排队不再增加都需要一定的时间。

这部分时间主要由三部分构成: 第一部分是事故发生到警察到达现场的时间1T ; 第二部分是交通事故现场处理时间2T ,由现场测、处理到事故族除、恢复交通;第三部分是交通事故持续影响时间T3,部分时间从恢复事故场交通开始,到事故上游车辆排队不再增加,即排队开始减弱。

在T1内,事故现场保持原状,没有进行处理,这里分两种情况考虑: ( 1) 当交通事故占部分车道时,这时事故点的剩余通行能力Qs ≠0,交通事故越严重,则相应Qs 越小。

若事故点上游的交通需求Q < Qs ,则车辆以较低的速度通过事故点,上游不会形成车辆拥挤排队; 若Q > Qs ,则交通流可按事故点的剩余断面通行能力通过事故点,超过该通行能力的车流在事故点上游排队。

( 2) 当交通事故十分严重时,事故点的剩余通行能力Qs = 0,造成事发路段断流,事故点上游车辆排队,发生交通拥挤堵塞,进而排队一直向上游延伸。

在T2内,确认交通事故发生后,相关部门到现场处理异常事件,在此过程中,事故点交通可能会受到进一步影响,事故断面通行能力也随之发生变化[5],一般会变小,甚至变为0( 全封闭处理) ,视事件处理具体情况而定,事发点上游交通处于严重拥挤状态,车辆排队增加。

由于在交通事故接警时间T1和处理时间T2阶段事故点上游交通车辆产生排队,若没有车辆排队,则T3 = 0; 若有车辆排队,则当事故处理完毕、道路恢复交通时,排队车辆开始消散。

交通事故持续影响时间T3是事故处理完毕、道路恢复交通至车辆排队不再增加这段时间,即交通流消散波从车辆排队队列的头部传到尾部这段时间。

2、事故路段车辆排队长度分析如下图图发生交通事故的路段该事故路段长度为L( m) ,单方向车道数为n,单方向车道宽度为D( m) ,在道路上t = 0 时刻发生了一起交通事故,事故车辆占用道路宽度为b( m) ,长度为a( m) ,事故点上游路段长度为L'。

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》。

我们完全明白,在竞赛开始后参赛队员不能以任何方式与队外的任何人研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料,必须按照规定的面的车辆数。

实际通行车流量的采集与处理视频1中出现车辆多种多样,要统计车流量数据,需先统一车流标准,把视频中出现的车辆进行折算,以小轿车做为标准,对各个型号车辆进行折算[2],折算系数如表1所示。

表1 车辆折算系数附件中出现汽车小轿车中型车大客车车辆折算系数在事故发生前,道路的通行能力足以应对上游车流量,当发生事故时,事故点上游共有10辆小轿车与5辆大客车,车流量为20pcu。

之后一分钟(16:42:32-16:43:32),上游又有车流量21pcu,但只通过了21pcu,说明造成了交通拥堵和排队情况。

“附件5”可知,相位时间为30s,红灯时间为30s,即60s为一个周期,进行统计时间周期也为60s,不会造成因交通灯引起的误差。

实际通行流量是指折算后通过事故横断面的车流,上游车流量是指折算后从各个路口驶入事故横断面的车流。

对附件1中事故横断面处的车流量进行统计,得出实际通行车流量情况,并统计横断面上游的车流量,在统计过程中发现视频并不是完全连续的,例如在16:49:40时出现了突变,直接到16:50:04,跳跃间隔为24s,但于堵车情况较重,可以根据车流量守恒原则和车辆追踪,统计出通过横断面处的车流量及上游车流量。

但16:56:04等时间,跳跃时间较长,近2分钟,无法精确统计,如表2处“空缺”所示。

在17:00:07到17:01:20时视频发生跳变,在此期间事故车辆驶离道路,之后为事故恢复时间。

为了描述事故发生开始到车辆离开车道全程的实际通行能力变化情况,将视频中空缺数据通过灰色预测(程序见附录)进行填补,结果如表2所示。

2013年全国大学生数学建模竞赛A题:车辆排队长度与事故持续时间、道路实际通行能力、路段上流流量间的关系

2013年全国大学生数学建模竞赛A题:车辆排队长度与事故持续时间、道路实际通行能力、路段上流流量间的关系

道路上不断增加的交通流经常导致拥挤。

拥挤产生延误、降低流率、带来燃油损耗和负面的环境影响。

为了提高道路系统的效率,国内外许多研究者一直致力于车流运行模型的研究。

Daganzo[1]提出了一种和流体力学LWR 模型相一致的元胞传输模型,这种模型能用来模拟和预测交通流的时空演化,包括暂时的现象,如排队的形成、传播、和消散。

Heydecker 和Addison[2]通过研究车速和密度的因果关系分析和模拟了在变化的车速限制下的交通流。

Jennifer 和Sallissou[3]提出了一种混合宏观模型有效地描述了路网的交通流。

然而,拥挤也会由交通异常事件引起。

交通异常事件定义为影响道路通行能力的意外事件[4],如交通事故、车辆抛锚、落物、短期施工等,从广义角度看,还应包括恶劣天气与特殊勤务等。

异常事件往往造成局部车道阻塞或关闭,形成交通瓶颈,引起偶发性拥挤,这已经逐渐成为高速道路交通拥挤的主要原因[5],越来越多地受到研究者们的重视。

例如M. Baykal-Gursoy[6]等人提出了成批服务受干扰下的稳态M/M/c 排队系统模拟了发生异常事件的道路路段的交通流。

Chung[7]依据韩国高速公路系统监测的准确记录的大型交通事故数据库提出了一种事故持续时间预测模型。

当然,这些研究最终都是为了帮助缓解异常事件引起的交通拥挤。

交通异常事件发生后,事发地段通行能力减小,当交通需求大于事发段剩余通行能力时,车辆排队,产生延误,行程时间增加[8],交通流量发生变化。

本文以高速公路基本路段发生交通事故为例,主要分析了交通事故发生后不同时间段内事故点及其上游下游路段交通流量的变化,用于以后进一步的突发事件下交通流预测工作。

1 交通事故影响时间分析由于从交通事故发生到检测到事故、接警、事故现场勘测、处理、清理事故现场恢复交通,以及恢复交通后车辆排队不再增加都需要一定的时间。

这部分时间主要由三部分构成: 第一部分是事故发生到警察到达现场的时间T1; 第二部分是交通事故现场处理时间T2,由现场勘测、处理到事故族除、恢复交通; 第三部分是交通事故持续影响时间T3,这部分时间从恢复事故现场交通开始,到事故上游车辆排队不再增加,即排队开始减弱[9]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 表示事故横断面处实际通行能力, 表示n时刻通过横断面处小汽车数目, 表示n时刻通过横断面处大型客车数目, 表示n时刻通过横断面处面包车数目; , , 分别表示小汽车、大型客车、面包车的当量系数。
根据视频一,统计出事故发生前,事故发生后以及事故解决后每分钟内事故发生处横断面通过的各类型的车辆数(见附录一)。由于车辆运行状态不同时,其相应的当量换算系数是不同的,因此在确定其当量换算系数时,首先要对其运行状态进行确定。一般来说,车辆的运行状态与公路的服务水平即公路质量、车间距等因素有关。所以为得出相应的当量换算系数,就必须建立与之相适应的公路服务水平,参考文献【1】,从中摘录出我国公路水平分级指标,见下表:
日期:年月日
赛区评阅编号(由赛区组委会评阅前进行编号):
2013高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用):







全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
车道被占用对城市道路通行能力的影响
3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。
4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。
通行能力Qn
N
14
正态参数a,,b
均值
191.87
标准差
17.276
最极端差别
绝对值
.152

.152

-.113
Kolmogorov-Smirnov Z
.569
渐近显著性(双侧)
.903
a.检验分布为正态分布。
b.根据数据计算得到。
分析结果可知,横断面处实际通行能力 随时间的变化满足正态分布。
2.5模型的评价
建立基于服务能力的当量换算系数的道路通行能力模型,分析结果后发现模型存在一定的误差,考虑到速度的影响,对模型进行修正后分析事故发生后道路实际通行能力的变化情况。
2.2问题假设
(1)假设不考虑四轮以下的交通工具的流量。
(2)假设小汽车车长为4.5米,大型客车车长8米,小面包车车长为4米。
(3)假设一定时间段内车辆匀速行驶。
问题四
由于问题三中模型二要优于模型一,选用模型二进行计算,通过题目所给数据,对模型二中的个别因子进行修正,得出针对问题四的队列长度函数关系式,计算得出了事故发生后车辆排队长度到达上游路口的时间为14分钟。
关键词:当量换算系数 通行能力SINGAL94二流理论流量守恒
一.问题重述
车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。如处理不当,甚至出现区域性拥堵。
事故发生前道路的车辆通行能力
事故发生后道路的车辆通行能力
事故解决后道路的车辆通行能力
为了更好地比较同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异,将问题一与问题二的结果绘成图表,如下:
图1 视频一与视频二道路车辆通行能力柱状图
由图表可知:
在事故发生后,视频一与视频二的道路通行能力均降低,但视频二的通行能力大于视频一的通行能力。根据题目所给附件三,在事故发生路段的下游交叉路口处,右转流量比例为21%,直行流量比例为44%,左转流量比例为35%。在两段视频中,事故车辆均完全占用两个车道,且视频一中能通行的车道为右转车道,视频二中能通行的车道为左转车道。在视频一中,行驶在左转车道和直行车道的车辆通过事故横断面后,需进行换道,需要换道的车辆比例为79%;同理,在视频二中,行驶在右转车道和直行车道的车辆也需进行换道,且需要换道的车辆比例为65%。
问题一
本问以小汽车为标准车型,对其他车型进行基于公路服务水平的当量换算,并构建道路通行能力模型,将速度作为影响因子,对模型进行优化,最终确定事故横断面道路通行能力模型: ,得出事故发生至撤离期间横断面实际通行能力随时间的变化满足正态分布。
问题二
采用问题一建立的模型分别计算出了视频一、二中事故发生前后该横断面道路的平均实际通行能力,并将二者的结果进行对比,分析得出:道路实际通行能力的大小与被占车道无直接联系,道路通行能力只与被占车道的行驶车辆在下一交叉口处的分流比例有关。
2013高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
6.24
事故解决后
小汽车(m/s)
10
9.6
10.9
12
11.43
38.8
大型客车(m/s)
10.43
9.6
8.89
9.23
--
34.3
面包车(m/s)
8
--
--
--
--
28.8
注:--表示该时间段内通横断面处车辆过少,无法统计数据
由于标准车型为小汽车,因此道路分级以小汽车的速度为标准。根据计算得出的小汽车速度,对照表2,可以得出事故发生前道路服务水平为C,事故发生后道路服务水平为E,事故解决后道路的服务水平仍为E。明显地,事故的发生使道路的服务水平降低,并且事故处理后,事故对其的影响还会在短时间内持续。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
3.2模型假设
(1)假设不考虑四轮以下的交通工具的流量。
(2)假设小汽车车长为4.5米,大型客车车长8米,小面包车车长为4米。
(3)假设一定时间段内车辆匀速行驶。
(4)假设不考虑视频跳断处。
3.3问题的求解
分析视频二,统计出事故发生前,事故发生后以及事故解决后每分钟内通过事故发生处横断面的各类型的车辆数(见附录二)。根据问题一所建立的模型,按照问题一的方法,计算出求解所需数据,制成下表:
视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。请研究以下问题:
1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。
2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。
优点:
1.模型考虑了速度因子、公路服务水平及当量换算系数,较好地描述了道路的实际通行能力。
2.运用SPSS对 与n的关系进行定性的分析,简明地描述了事故横断面实际通行能力的变化过程。
缺点:
1.采用目测的方法统计数据,具有较大的随机误差。
三.问题二
3.1问题分析
问题二要求分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。由问题一的分析与求解结果可知,问题一中所建立的模型可以较好地评价事故路段通行能力的变化,因此,本问采用问题一中的模型对视频二进行相同的求解与结果分析,并与问题一的结果进行对比,找出横断面实际通行能力变化的差异,并分析原因。
表7c-n-v数据表
小汽车
大型客车
面包车
1
2
1
36
39.3
37.6
16
1
3
1
2
1
12.46
10.29
14.4
15.45
2
2.07
1
2
1
35.3
36
36.2
28
4
4
将上表所示数据代入模型(5),得出以下结果:
事故发生前道路的车辆通行能力
事故发生后道路的车辆通行能力
事故解决后道路的车辆通行能力
同理可得视频一中:
(4)假设不考虑视频跳断处。
2.3符号说明
:事故横断面处实际通行能力( =1,2, )
:n时刻通过横断面处i型车辆数目( =1,2,3,n=1,2, )
:各类型车辆的当量系数( =1,2,3)
:各类型车辆的速度( =1,2,3)
2.4模型的建立与求解
考虑不同类型的车辆的当量,建立基于服务能力的当量换算系数的道路通行能力模型:
211.58
200.16
n取值
8
9
10
11
12
13
14
道路通行能力 (辆 )
217.82
173.52
201.46
177.64
201.38
195.06
191.18
将上表中通行能力 与n在SPSS中进行单样本的K-S检验,结果如下:
表6 与n的K-S检验结果
单样本Kolmogorov-Smirnov检验
表4事故发生后不同车辆的当量系数值
小汽车
大型客车
相关文档
最新文档