伺服电机知识培训(工程师培训)
交流伺服系统培训资料

交流永磁同步伺服系统一、伺服驱动器应用的场合:成功案例:车床、袜机、横机、绣花机、织编机、内衣机、制涮机、磨床、渔网机、包装机、塑料机、内圆切机、自动送料机、制袋机、雕刻机、喷绘机、绕线机、弯管机、丝网印刷机、钻孔机等。
二、元器件命名规则2.1 贴片电容的命名:0805-CG-102-J-500-NT0805:是指该贴片电容的尺寸大小,是用英寸表示的08表示长度是0.08英寸,05表示宽度为0.05英寸。
CG: 表示做这种电容要求用的材质。
102:是指电容容量,前两位是有效数字,10×10^2=1000PF.J: 要求电容的容值达到的误差精度为5%。
F为1%。
500:是要求电容承受的耐压为50V,同样500前两位是有效数字,后面是指多少个零。
N: 是指端头材料,现在一般的端头都是指三层电极。
T::包装方式:T表示编带包装,B表示塑料盒包装。
2.2 贴片电阻的命名:R-S-05-K-102-J-TR:表示电阻S:提升功率(还有一种C:表示常规功率)05:表封装(01=0201,02=0402,03=0603,05=0805,06=1206,1210=1210,1812=1812,10=2010,12=2512)K:表示温度系数。
(W=200PPM,V=400PPM,K=100PPM,L=250PPM)102:阻值大小。
(前两位为有效位,后一位为指数位。
102=10×10^2=1000欧。
J;表示精度。
T:表示包装。
三、伺服系统基本结构交流永磁同步电机伺服系统主要由伺服控制单元,功率驱动单元,通讯接口单元,伺服电机及相应反馈检测器件组成,其结构组成如图所示。
其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等。
全数字化的永磁同步电机伺服控制系统集先进控制技术和控制策略为一体,使其非常适用于高精度。
高性能要求的伺服领域,同时智能化已成为了现代伺服驱动系统的一个发展趋势。
(1)功率驱动单元功率驱动单元采用三相全桥不控整流,三相正弦PWM电压型逆变器的AC-DC-AC结构。
伺服系统培训资料

伺服系统的控制模式
伺服的三种控制方式:
1,位置控制:脉冲控制方式,与步进系统类似。 2,速度控制:模拟电压指令,速度与电压值成正比。
3,扭矩控制;模拟电压指令,扭矩与电压值成正比。
伺服系统的控制模式
伺服系统位置环的构成方式
1、在伺服驱动器构成位置闭环
步进方式——“脉冲/方向”信号。
2、在上位控制系统构成位置闭环
伺服系统在使用中的注意事项
2,伺服系统的注意事项
①,电机与驱动器之间的连线U、V、W必须一一对应。 ②,与电机同轴的光电编码器属易碎光学器件,因此切记不能敲击,不 能承受过大的轴向力。 ③,由于伺服系统是恒扭矩驱动单元,因此工作要求电机工作转速较低 时最好加减速器。 ④,伺服电机配线时,动力线缆选择屏蔽线;控制线缆选择双绞屏蔽线 缆,提高抗干扰性能进系统的性能比较
3. 速度响应性能不同
步进电机从静止加速到工作转速(300-400RPM)一般 需200-300毫秒。(空载) 交流伺服系统的加/减速性能较好。 以Panasonic MSMA 400W 为例,从静止加速到额定转 速3000RPM,仅需几毫秒。(空载) 因此,交流伺服系统适合于要求快速启停或频繁正反 转的应用场合。
伺服系统增益调整的方法和意义
2、伺服增益调整
意义:伺服系统更快、更准确地跟随指令,使整体性能最优化。
方法:手动调整、自动调整
七、伺服驱动器电子齿轮的使用方法
伺服驱动器电子齿轮的使用方法
作用:
1,每单位指令脉冲所对应的电机移动量可随意设置。比如让电机 每3000个脉冲电机转2圈。 2,当控制器的最高输出脉冲频率不高时,可设置较小的倍频数, 以达到所需的电机转速。
六、伺服系统增益调整的方法和意义
伺服电机培训A5培训

第二增益
刚性大
Pr1.05第二位置环 ↑
Pr1.06第二速度环 ↑
Pr1.07第二积分
↓
Pr1.09第二转矩滤波 ↓
↑
——
——
↑
刚性小 ↓ ↓ ↑ ↑ ↓ —— —— ↓
伺服电机培训A5培训
2.速度控制的基本参数调节
参数号 Pr0.01 Pr3.02 Pr3.03 Pr4.22 Pr0.11
参考值
参考值 0
备注 控制方式选择,固定为“0”
用户指定 电机旋转方向,0或1 用户指定 脉冲方式,具体由电气工程师选
用户指定 用户指定
择 在反馈的时候设定 脉冲当量
伺服电机培训A5培训
1.1位置控制的基本参数调节
。
第一增益 Pr1.00位置环 Pr1.01速度环 Pr1.02积分常数 Pr1.04转矩滤波器 Pr1.10速度前馈 Pr0.04惯量比 Pr0.02自动调整 Pr0.03自动刚性
↑
↓
伺服电机培训A5培训
4、伺服刚性的基本调节
伺服电机的刚性,实际是伺服系统的增益大小 但是可以从下面两方面来理解: 1.系统跟随指令的一个指标 2.系统抗干扰能力的一个指标
伺服电机培训A5培训
4.1伺服电机刚性的基本调节
伺服电机刚性,首先需要确定的第一个参数是:Pr0.04
通过这个方式还不能满足要求的,就要使用Panaterm软件进行调节
伺服电机培训A5培训
2020/11/4
伺服电机我们所说的基本调节就是要确定下 面几个方面的问题: 控制方式(一共有三种) ●位置控制 ●速度控制 ●转矩控制
伺服电机培训A5培训
1.位置控制的基本参数调节
参数号 Pr0.01 Pr0.06 Pr0.07
最完整的伺服培训教程

组成。通过控制电机的电枢电流或励磁电流,实现对电机转速和位置的
高精度控制。
02
优点
直流伺服系统具有调速范围宽、低速性能好、控制精度高等优点。同时
,直流电机具有良好的启动、制动和调速性能,适用于对动态响应要求
高的场合。
03
缺点
直流伺服系统需要使用电刷和换向器,维护较为麻烦,且容易产生火花
干扰。此外,直流电机的体积和重量相对较大,限制了其在某些场合的
2024/1/25
22
安装注意事项和步骤说明
A
环境要求
确保安装环境干燥、通风且温度适宜,避免潮 湿、高温和腐蚀性气体对伺服系统的影响。
安装准备
检查伺服电机、驱动器和编码器等部件是 否完好无损,准备好安装所需的工具和材 料。
B
C
安装步骤
按照厂家提供的安装手册,逐步完成伺服电 机与机械设备的连接、驱动器和编码器的接 线以及控制系统的配置等工作。
熟悉伺服驱动器的功能、参数设 置及调试方法。
伺服系统控制策略
学习伺服系统的控制策略,如位 置控制、速度控制、力矩控制等 。
伺服系统基本原理
伺服系统优化与调试
掌握伺服系统的组成、工作原理 及性能指标等基础知识。
掌握伺服系统性能优化、故障排 查及日常维护等技能。
2024/1/25
31
行业应用前景展望
01
替换法
在怀疑某个部件出现故障时,用正常 的部件进行替换,观察故障是否消除 ,以确定故障点。
2024/1/25
仪器检测法
使用专业的检测仪器对伺服系统的各 个部分进行检测,如电压、电流、转 速等参数,以精确定位故障。
逐步排查法
按照伺服系统的组成部分,从电源、 驱动器、电机、传感器等逐一排查, 逐步缩小故障范围。
伺服电机控制技术培训(高端培训)

当电阻已增大到使临界转差率>1的程度时,合成转矩曲线与横轴相交仅有一点(S=1 处),而且在电机运行范围内,合成转矩均为负值,即为制动转矩。因而当控制电压 UC取消变为单相运行时,电机就立刻产生制动转矩,与负载阻转矩一起促使电机迅速 停转,这样就不会产生自转现象。
C B
A
伺服电动机的机械特性
设电机的负载阻转矩为TL,控制电压 0.25UC时,电机在特性点A运行,转速为na,这 时电机产生的转矩与负载阻转矩相平衡。当 控制电压升高到0.5UC时,电机产生的转矩就 随之增加C,由于电机的转子及其负载存在着 惯性,转速不能瞬时改变,因此电机就要瞬 时地在特性点C运行,这时电机产生的转矩大 于负载阻转矩,电机就加速,一直增加到nb, 电机就在B点运行。
旋转磁场的转速决定于定子绕组极对数和电源的频率。图所表示的是一台两极的电
机,即极对数P=1。对两极电机而言,电流每变化一个周期,磁场旋转一圈,因而 当
电源频率f=400 Hs,即每秒变化400个周期时,磁场每秒应当转400圈,故对两极电 机,即P=1而言,旋转磁场转速为
n0= 24000 r/min
保护电路
速度检出
速度误差 位置/速度 放大器
转矩
电流控制 转矩限位
处理编码器信号
M
RE
A/D
交流伺服电机系统应用
交流伺服电机系统结构
连接AC220V
I/O板
交流伺服电机驱动器
图 2-2 交流伺服电机系统接线示意图
交流伺服电机系统应用
交流伺服电机系统结构
PC机
运动控制器
速度信号 DAC 0/1
I/O 电
结论:改变控制电压的大小,就实 现了转速的控制
5V
西门子802D系统机床数据和伺服参数设置(工程师培训)

d. PLC机床数据
e.其他机床数据
2、伺服驱动器的配置
Simocom_U伺服调试工具,是西门子公司开发的 用于调试Simodrive 611U的一个软件工具。其具有 直观、快捷、易掌握的特点
Ø 利用SimoCom U可设定驱动器的基本参数:设定 与电机和功率模块匹配的基本参数
Ø利用SimoCom U可实现对驱动器参数的优化:根 据伺服电机实际拖动的机械部件,对611UE速度 控制器的参数进行自动优化
块; ⑥为单轴功率模块;
⑥ ③
电源模块:有使能端子T64(控制器使能),T63(脉冲使能), T48(功率输出控制),另有T72,T73,T74为系统READY/FAULT 信号输出端子,T51/T52/T53为模块温度报警输出。
三、实训必备知识
Ø 1、机床数据的设定 1)机床数据的功能 • 机床数据是数控系统与机床以及伺服驱动
之间匹配的媒介。
• 机床数据是数控系统功能管理和开放的钥 匙。
• 机床数据是机床动态特性的调节阀门。 • 机床数据为PLC逻辑控制提供灵活的方式。
2)机床数据的分类
• 通用机床数据 • 轴机床数据 • PLC 机床数据 • 伺服驱动数据 • 其他机床数据
步骤四 选择连机方式 步骤五 进入连接画面后,自动进入参数设定画面:
在软件的提示下进行参数的设定:
1)定义驱动器的名称,通常可以用轴的名称来定义,如该驱动器用于 X轴我们可以添入XK7124_X
2)输入PROFIBUS总线地址:
3)设定电机型号:
ห้องสมุดไป่ตู้
4) 选择编码器,选择标准编码器( 2048 P sin/con信号,1Vpp) 如为其他编码器请选择Enter Data 并如实输入编码器数据。
最完整的伺服培训教程

最完整的伺服培训教程一、教学内容本节课的教学内容来自于小学数学教材的第五章《几何图形》中的第二节——《正方形和长方形》。
本节内容主要介绍了正方形和长方形的定义、性质、计算方法以及它们在实际生活中的应用。
二、教学目标1. 让学生掌握正方形和长方形的定义、性质和计算方法。
2. 培养学生运用几何图形解决实际问题的能力。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:正方形和长方形的定义、性质和计算方法。
难点:正方形和长方形在实际生活中的应用。
四、教具与学具准备教具:黑板、粉笔、正方形和长方形的模型。
学具:练习本、彩笔。
五、教学过程1. 实践情景引入:让学生观察教室里的桌子、黑板等物品,找出正方形和长方形的例子。
2. 概念讲解:讲解正方形和长方形的定义、性质。
3. 例题讲解:用模型展示正方形和长方形的计算方法。
4. 随堂练习:让学生独立完成练习题,巩固所学知识。
5. 应用拓展:让学生分组讨论,找出正方形和长方形在实际生活中的应用。
六、板书设计板书内容:正方形:四条边相等,四个角都是直角。
长方形:对边相等,四个角都是直角。
七、作业设计1. 请用彩笔画出一个正方形和一个长方形。
2. 计算下面图形的面积:正方形:边长 5cm长方形:长 8cm,宽 4cm答案:正方形面积:25cm²长方形面积:32cm²八、课后反思及拓展延伸1. 课后反思:本节课学生对正方形和长方形的定义、性质和计算方法掌握较好,但在实际应用方面还需加强。
2. 拓展延伸:让学生观察家庭中的物品,找出更多正方形和长方形的例子,并尝试运用所学知识解决实际问题。
重点和难点解析一、教学内容细节重点关注1. 正方形的定义:正方形是四条边相等,四个角都是直角的四边形。
2. 长方形的定义:长方形是对边相等,四个角都是直角的四边形。
3. 正方形和长方形的性质:正方形和长方形都是平行四边形,对边相等,对角相等。
4. 正方形和长方形的计算方法:正方形的面积等于边长的平方,长方形的面积等于长乘以宽。
伺服电机应用(工程师培训)

1)交流永磁同步伺服电机(SM)性能
控制响应性能最优,主要自动化系统执行器 控制,市面上伺服电机多为永磁同步电机。
●控制速度非常快(3-5ms →启动到额定转速) ●启动扭矩大,可驱动大惯量负荷 ●功率密度大,利于小型、轻型 ●结构简单、功率因素高 ●运行平稳,且支持长时间低速转动 ●主要以脉冲量输入
电机自带的编码器采集运行状态的反馈信号, 驱动器比较反馈与目标值差额进行角度修正。
伺服电机精度: 编码器精度(线数)。
相关基础知识:
●主磁通:经过转子的定子磁力线,能在旋转的 电枢绕组中感应电动势和电磁场。
●漏磁通:定子发出的不经过转子的闭合磁力线,
这部分磁通量不做有效功。
●气隙:定子与转子之间的间隙。
自带编码器采集运行状态信号,编码器线数 决定了执行电机控制精度。
由于气隙磁场难以直接检验,通常用转子位 置和速度的等效(矢量)控制实现。
常用的三种控制方式:
力矩控制:按设定电机输出扭矩 位置控制:按输入脉冲频率、频数 速度模式控制:外部输入模拟量或脉冲频数
1)转矩控制模式(模拟量输出)
外部模拟量的输入设定电机轴对外的输出转 矩的大小,适用于严格控制输出扭矩场合。
信号输入后产生磁场叠加,形成驱动力矩。
(2)同步型(SM)电机性能及应用
交流同步伺服电机内部的转子是永磁铁,驱 动器及控制方式与直流无刷电机类似。
控制器发出U/V/W三相交流电,依次接通定子 绕组形成旋转磁场,转子在磁场作用下转动。 同步型转子结构:永磁体
电机自带编码器,实时反馈信号;执行精度 决定于编码器精度(线数)。
大功率输出
精密丝杠组件
(1)控制精度需求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制绕组
励磁绕组
电气原理图
3 旋转磁场作用下的运行分析
3.1旋转磁场的产生
同时,又假定通入励磁 绕组的电流Uf与通入控
ic Im sint
if Im sint 90
if Ic
制绕组的电流UC相位上
彼此相差900幅值彼此相
等,这样的两个电流称
为两相对称电流,用数
学式表示为
3.1旋转磁场的产生
相互作用产生电磁力,这个电磁力F作用在转子上,并对转轴形
成电磁转矩。根据左手定则,转矩方向与磁铁转动的方向是一 致的,也是顺时针方向。因此,鼠笼转子便在电磁转矩作用下 顺着磁铁旋转的方向转动起来。
3 旋转磁场作用下的运行分析 3.1伺服电机旋转磁场的产生
为了分析方便,先假定 励磁绕组有效匝数Uf与 控制绕组有效匝数UC相 等。这种在空间上互差 900电角度,有效匝数又 相等的两个绕组称为对 称两相绕组。
培训资料
• 名称:伺服电机知识培训(工程师培训) • 所属班组:xx • 汇报人:xx
伺服电机知识培训
一.伺服电机基本知识
伺服来自英文单词Servo,指系统跟随外部指令进行人们
所期望的运动,运动要素包括位置、速度和力矩。
最常见的伺服是交流永磁同步伺服电机, 伺服电机内部 的转子是永磁铁,驱动器控制的U/V/W三相电在定子中形成 变化的电磁场,转子在此磁场的作用下转动,同时电机自带 的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进 行比较,调整转子转动的角度。伺服电机的精度决定于编码 器的精度(线数)。最常见的是2500线标准编码器配置的伺 服电机。
表示的是一台两极的电机,即极对数P=1。对两极电机而言,
电流每变化一个周期,磁场旋转一圈,因而当
伺服电机分类
伺服电动机也称为执行电动机,在控制系统
中用作执行元件,将电信号转换为轴上的转角或
转速,以带动控制对象。
伺服电动机分为:
1、交流伺服电动机 2、直流伺服电动机
同步伺服 异步伺服
伺服电机知识点概述
• 电机制造是一个传统行业,已经存在100余年。 • 电机的控制技术,是除了气缸控制技术外,比较
2 伺服电机基本结构及原理
驱动器
交流伺服 电机器
交流伺服电机系统
伺服电机主要构成
1、结构(永磁同步电机) 主要由:定子1、转子5和检测元件8等几部分组成。
1 2 3 4
15678 Nhomakorabea9
2 伺服电机基本结构及原理
2、 转子
(1) 笼型转子 铁芯槽内放铜条,端
部用短路环形成一体, 或铸铝形成转子绕组。
控制绕组 励磁绕组
UF1
UC1
UC2
UF2
当两相对称电流通入两相对称绕组时,在电机内就产生一个旋 转磁场。当电流变化一个周期时,旋转磁场在空间转了一圈。
3.2伺服电机旋转磁场的方向
励磁绕组
控制绕组
3.2伺服电机旋转磁场的方向
励磁绕组
控制绕组
3.3 伺服电机旋转磁场的速度
旋转磁场的转速决定于定子绕组极对数和电源的频率。图所
难的技术;特别是大家之前经常提到的“矢量控 制技术”。 • 电机控制技术的难点,交流电机模型特点是高阶、 非线性、强耦合的多变量系统; • 目前电机控制,主要是基于芯片控制、高速传输 技术为基础的反馈控制系统。 • 电机控制技术,已经逐步实现直驱控制。像安川 已经推出配套驱动器的直驱电机。
1.2伺服电机最大特点
伺服电动机又称执行电动机,在自动控制系统中,用作 执行元件,把所收到的电信号转换成电动机轴上的角位移或 角速度输出。分为直流和交流伺服电动机两大类。
在交流伺服系统中,电动机的类型有永磁同步交流伺服 电机(PMSM)和感应异步交流伺服电机(IM),其中,永
磁同步电机具备十分优良的低速性能、可以实现弱磁高速控制,调速范 围宽广、动态特性和效率都很高,已经成为伺服系统的主流之选。而 异步伺服电机虽然结构坚固、制造简单、价格低廉,但是在特性上和 效率上存在差距,只在大功率场合得到重视。 交流伺服系统的性能指标可以从调速范围、定位精度、稳速精度、 动态响应和运行稳定性等方面来衡量。中低档的伺服系统调速范围在 1:1000以上,一般的在1:5000~1:10000,高性能的可以达到1:100000 以上;定位精度一般都要达到±1个脉冲,稳速精度,尤其是低速下的 稳速精度比如给定1rpm时,一般的在±0.1rpm以内,高性能的可以达 到±0.01rpm以内;动态响应方面,通常衡量的指标是系统最高响应频 率,即给定最高频率的正弦速度指令,系统输出速度波形的相位滞后 不超过90°或者幅值不小于50%。应用在特定要求高的一些场合,如 伺服电机MR-J3系列的响应频率可达900Hz,目前国内主流产品的频率 在200~500Hz。运行稳定性方面,主要是指系统在电压波动、负载波 动、电机参数变化、上位控制器输出特性变化、电磁干扰、以及其他 特殊运行条件下,维持稳定运行并保证一定的性能指标的能力。
转 定子 子
壳体
笼型转子
铸铝的笼型转子
2 伺服电机基本结构及原理
(2) 杯型转子纲
薄壁园筒形,放于内外定 子之间。一般壁厚为0.3mm
转 定子 子
壳体
杯型转子
2 伺服电机基本结构及原理
2.2 转动原理
2 三相异步电动机的转动原理 2.2 转动原理
2 三相异步电动机的转动原理
2.2 转动原理
当磁铁旋转时,在空间形成一个旋转磁场。假设永久磁铁是 顺时纠方向以n0的转速旋转,那末它的磁力线也就以顺时针方向 切割转子导条,在转子导条中就产生感应电势。根据右手定则, N极下导条的感应电势方向垂直地从纸面出来。而S极下导条的 感应电势方向垂直地进入纸面。由于鼠笼转子的导条都是通过 短路环连接起来的,因此在感应电势的作用下,在转子导条中 就会有电流流过,电流有功分量的方向和感应电势方向相同。 再根据通电导体在磁场中受力原理,转子载流导条又要与磁场
在有控制信号输入时,伺服电动机就转动;没 有控制信号输入,它就停止转动。改变控制电压的 大小和相位(或极性)就可改变伺服电动机的转速和 转向。
1.3伺服电机与普通电机相比具有如下特点
(1)调速范围宽广。伺服电动机的转速随着控制电 压改变,能在宽广的范围内连续调节。 (2)转子的惯性小,即能实现迅速启动、停转。 (3)控制功率小,过载能力强,可靠性好。