初二数学数据分析练习试题(含答案)

合集下载

(2021年整理)初二数学数据分析练习试题(含答案)

(2021年整理)初二数学数据分析练习试题(含答案)

(完整版)初二数学数据分析练习试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)初二数学数据分析练习试题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)初二数学数据分析练习试题(含答案)的全部内容。

(完整版)初二数学数据分析练习试题(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)初二数学数据分析练习试题(含答案) 这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)初二数学数据分析练习试题(含答案)> 这篇文档的全部内容.初二 数据分析测试题一、相信你的选择1、若数据8,4,,2x 的平均数是4,则这组数据的中位数和众数是( )A 、3和2B 、2和3C 、2和2D 、2和42、数学老师对小明在参加高考前5次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A 、平均数或中位数 B 、方差或频率 C 、频数或众数 D 、方差或极差3、已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( ) A 、平均数但不是中位数 B 、平均数也是中位数 C 、众数 D 、中位数但不是平均数4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下:32,26,28,31,32,32,33,那么这组数据的众数和中位数分别是( ) A 、31,32 B 、32,32 C 、31,3 D 、32,35、若54321,,,,x x x x x 的平均数为-x ,方差为2s ,则3,3,3,3,354321+++++x x x x x 的平均数和方差分别是 ( )A 、2+-x ,32+s B 、3+-x ,2sC 、-x ,32+s D 、-x ,2s6、已知一组数据1,2,,0,1--x 的平均数是0,那么这组数据的标准差( ) A 、2 B 、2 C 、4 D 、2-7、一组数据n x x x x ,,,,321 的极差是8,另一组数据12,,12,12,12321++++n x x x x 的极差是( )A 、8B 、9C 、16D 、178、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( )A 、甲班B 、乙班C 、两班一样整齐D 、无法确定 二、试试你的身手1、根据天气预报可知,我国某城市一年中的最高气温为C ︒37,最低气温是C ︒-8,那么这个城市一年中温度的极差为2、航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是 分.3、数据9,10,8,10,9,10,7,9的方差是________,标准差是_____.4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定,如果甲、乙两种产品的方差分别是甲2s ,乙2s ,则它们的大小关系是5、下面是五届奥运会中国获得金牌的一览表:在15,5,16,16,28这组数据中,众数、中位数分别是6、甲、乙两人比赛飞镖,两人所得环数甲的方差是15,乙所得环数如下:0,1,5,9,10,那么,成绩比较稳定的是7、八年级上学期期中质量检测之后,甲、乙两班的数学成绩的统计情况如下表所示:(单位:分)从成绩的波动情况来看, 班学生的成绩波动较大.8、若一个样本是3,3,1,,1,3--a ,它们的平均数-x 是a 的31,则这个样本的标准差是 三、挑战你的技能1、甲、乙两台编织机同时编织一种毛衣,在5天中,两台编织机每天出的合格品数量如下(单位:件):甲:10, 8 , 7 , 7 ,8; 乙:9 , 8 , 7 , 7, 9.在这5天中,哪台编织机出合格品的波动较小?2、甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:(1)请你填上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.3、一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示.现已算得乙组所测得数据的平均数为,00.12=-乙x ,方差002.02=乙s .(1)求甲组所测得数据的中位数与平均数;(2)问哪一组学生所测得的旗杆高度比较一致.四、拓广探究1、某电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另加付电话费,每小时1.2元;乙种方式是包月制,每月付信息费100元,同时加付电话费每小时1.2元;丙种方式也是包月制,每月付信息费150元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7天中每天的上网所花的时间(单位:分钟):你认为该用户选择哪种付费方式比较合适?(一个月按30天计算)1、A2、A3、B4、B5、B6、B7、D8、D 二、1、45℃2、713、1,14、乙甲22s s 〉5、16,166、甲7、甲8、5.33 三、1、解:这20名学生成绩的众数是80分,中位数是70分,平均数是()()分72290780670360250201=⨯+⨯+⨯+⨯+⨯。

初二数学数据分析真题试卷

初二数学数据分析真题试卷

一、选择题(每题3分,共30分)1. 下列哪组数据表示的平均数最大?A. 2, 3, 4, 5B. 1, 2, 3, 4C. 0, 1, 2, 3D. 3, 4, 5, 62. 一组数据的中位数是3,下列哪组数据可能符合条件?A. 1, 2, 3, 4B. 1, 2, 3, 5C. 2, 3, 4, 5D. 3, 4, 5, 63. 下列哪个统计量可以用来描述数据的波动大小?A. 平均数B. 中位数C. 众数D. 极差4. 下列哪个数据集的方差最大?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 0, 2, 4, 6D. 3, 5, 7, 95. 下列哪个数据集的众数是3?A. 1, 2, 3, 3B. 2, 3, 4, 5C. 3, 4, 5, 6D. 4, 5, 6, 76. 下列哪个数据集的标准差最小?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 0, 2, 4, 6D. 3, 5, 7, 97. 下列哪个数据集的极差最大?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 0, 2, 4, 6D. 3, 5, 7, 98. 一组数据为2, 4, 6, 8,下列哪个说法正确?A. 中位数是3B. 众数是4C. 平均数是5D. 极差是19. 下列哪个数据集的方差是0?A. 1, 1, 1, 1B. 2, 2, 2, 2C. 3, 3, 3, 3D. 4, 4, 4, 410. 下列哪个数据集的标准差是0?A. 1, 1, 1, 1B. 2, 2, 2, 2C. 3, 3, 3, 3D. 4, 4, 4, 4二、填空题(每题5分,共25分)11. 一组数据为5, 7, 9,则这组数据的平均数是______。

12. 一组数据的中位数是8,则这组数据中至少有一个数是______。

13. 一组数据的众数是10,则这组数据中至少有______个数是10。

14. 一组数据的极差是12,则这组数据中最大数与最小数的差是______。

初二上册第二十章数据分析练习及参考答案

初二上册第二十章数据分析练习及参考答案

第二十章 数据分析单元练习姓名 班级 学号 得分一、选择题(每小题3分,共27分)1.10名学生的体重分别是41,48,50,53,49,50,53,53,51,67(单位:kg )这组数据的极差是( ) A. 27 B. 26 C. 25 D. 242.某校五个绿化小组一天植树的棵数如下:10,10,12,x, 8.已知这组数据的众数与平均数相等,那么这组数据的中位数是( ) A. 8 B. 9 C. 10 D. 12该班学生身高的众数和中位数分别是( )A .1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1.604.如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据21a ,22a ,…,2n a 的方差是( ) A. 2 B. 4 C. 8 D. 165.(1)甲、乙两班学生成绩平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字 150个为优秀);(3)甲班成绩的波动比乙班大,上述结论正确的是( ) A. ⑴ ⑵ ⑶ B.⑴ ⑵ C.⑴ ⑶ D.⑵ ⑶ 6.如果样本1,2,3,5,x 的平均数是3,那么样本的方差为( )A. 3B. 9C. 4D. 2 7.某校八年级有两个班,在一次数学考试中,一班参加考试人数为52人,平均成绩为75分,二班参加考试人数为50 人,平均成绩为76.65分,则该次考试中,两个班的平均成绩为( )分 A. 78.58 B.75.81 C.75.76 D.75.75 8义的是( ) A. 平均数 B. 众数 C. 中位数 D. 方差 9.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是31那么另一组数据 3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5 -2的平均数和方差分别是 ( )A .2,31B .2,1C .4,32D .4,3二、填空题(每小题4分,共32分)10.一次知识竞赛中,甲、乙两组学生成绩如下: 则: 甲x = , 乙2s = .11.那么射击成绩比较稳定的是: 。

初二数学数据分析练习试题(含答案)

初二数学数据分析练习试题(含答案)

初二 数据分析测试题一、相信你的选择1、若数据8,4,,2x 的平均数是4,则这组数据的中位数和众数是( ) A 、3和2 B 、2和3 C 、2和2 D 、2和42、数学老师对小明在参加高考前5次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A 、平均数或中位数 B 、方差或频率 C 、频数或众数 D 、方差或极差3、已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( )A 、平均数但不是中位数B 、平均数也是中位数C 、众数D 、中位数但不是平均数4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下:32,26,28,31,32,32,33,那么这组数据的众数和中位数分别是( )A 、31,32B 、32,32C 、31,3D 、32,35、若54321,,,,x x x x x 的平均数为-x ,方差为2s ,则3,3,3,3,354321+++++x x x x x 的平均数和方差分别是 ( )A 、2+-x ,32+s B 、3+-x ,2sC 、-x ,32+s D 、-x ,2s6、已知一组数据1,2,,0,1--x 的平均数是0,那么这组数据的标准差( ) A 、2 B 、2 C 、4 D 、2-12,,12,12,12321++++n x x x x 的极差是( )A 、8B 、9C 、16D 、178、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( ) A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定 二、试试你的身手1、根据天气预报可知,我国某城市一年中的最高气温为C ︒37,最低气温是C ︒-8,那么这个城市一年中温度的极差为2、航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是 分.3、数据9,10,8,10,9,10,7,9的方差是________,标准差是_____.4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定,如果甲、乙两种产品的方差分别是甲2s ,乙2s ,则它们的大小关系是5、下面是五届奥运会中国获得金牌的一览表: 第23届 洛杉矶奥运会 第24届 汉城奥运会 第25届 巴塞罗那奥运会 第26届 亚特兰大奥运会 第27届 悉尼奥运会 15块5块16块16块28块在15,5,16,16,28这组数据中,众数、中位数分别是6、甲、乙两人比赛飞镖,两人所得环数甲的方差是15,乙所得环数如下:0,1,5,9,10,那么,成绩比较稳定的是7、八年级上学期期中质量检测之后,甲、乙两班的数学成绩的统计情况如下表所示:(单位:分)级数分数数差甲55 88 76 81 108乙55 85 72 80 112从成绩的波动情况来看,班学生的成绩波动较大.8、若一个样本是3,3,1,,1,3--a,它们的平均数-x是a的31,则这个样本的标准差是三、挑战你的技能1、甲、乙两台编织机同时编织一种毛衣,在5天中,两台编织机每天出的合格品数量如下(单位:件):甲:10 ,8 ,7 ,7 ,8;乙:9 ,8 ,7 ,7,9.在这5天中,哪台编织机出合格品的波动较小?2、甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:命中环数 5 6 7 8 9 1平均数众数方差甲命中环数的次数1 42 1 1 1 7 6 2.2乙命中环数的1 2 4 2 1 0(1)请你填上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.3、一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示.所测量的旗杆高度(米) 11.90 11.95 12.00 12.05 甲组测得的次数 1 0 2 2 乙组测得的次数212现已算得乙组所测得数据的平均数为,00.12=-乙x ,方差002.02=乙s . (1)求甲组所测得数据的中位数与平均数;(2)问哪一组学生所测得的旗杆高度比较一致.四、拓广探究1、某电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另加付电话费,每小时1.2元;乙种方式是包月制,每月付信息费100元,同时加付电话费每小时1.2元;丙种方式也是包月制,每月付信息费150元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7天中每天的上网所花的时间(单位:分钟):日期 1 2 3 4 5 6 7上网时间62435742768你认为该用户选择哪种付费方式比较合适?(一个月按30天计算)1、A2、A3、B4、B5、B6、B7、D8、D 二、1、45℃2、713、1,14、乙甲22s s 〉5、16,166、甲7、甲8、5.33 三、1、解:这20名学生成绩的众数是80分,中位数是70分,平均数是()()分72290780670360250201=⨯+⨯+⨯+⨯+⨯. 2、解:该用户一个月上网总时间约为:()h t 276030780602774354062=÷⨯++++++=。

人教版初中八年级数学下册第二十章《数据的分析》经典练习题(含答案解析)(2)

人教版初中八年级数学下册第二十章《数据的分析》经典练习题(含答案解析)(2)

一、选择题1.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89B解析:B【分析】根据加权平均数的计算方法可以得解.【详解】解:由题意得,小颖本学期的学业成绩为:8520%9030%9250%17274690⨯+⨯+⨯=++=(分),故选B.【点睛】本题考查加权平均数的计算,熟练掌握加权平均法的计算方法是解题关键.2.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( )A.15,15 B.14,15 C.14,14.5 D.15,14.5D解析:D【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15;10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5.故选:D.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3.一组数据:3,2,5,3,7,5,x,它们的众数为5,则x=()A.2 B.3 C.5 D.7C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x,它们的众数为5,∴5出现的次数最多,x ,故5故选C.【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.4.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.5.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8.5,9 B.8.5,8 C.8,8 D.8,9C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选:C.【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.6.某校10名学生参加某项比赛成绩统计如图所示。

2023年初二数学数据分析练习题及答案

2023年初二数学数据分析练习题及答案

2023年初二数学数据分析练习题及答案题目1:某班级共有50名学生,参加一次数学测试后,每位学生的得分如下所示:80, 85, 90, 78, 92, 88, 75, 82, 79, 86, 95, 83, 91, 87, 77, 84, 89, 73, 96, 81, 94, 76, 93, 85, 88, 79, 87, 90, 82, 78, 80, 84, 91, 77, 89, 93, 87, 94, 75, 92, 83, 85, 86, 89, 90, 88, 81, 84, 95, 80请计算并列出以下数据:a) 平均得分(精确到个位数)。

b) 最高分和最低分之间的差值。

c) 得分高于或等于90分的人数。

d) 得分低于80分的人数。

解答1:a) 平均得分 = (80 + 85 + 90 + 78 + 92 + 88 + 75 + 82 + 79 + 86 + 95 +83 + 91 + 87 + 77 + 84 + 89 + 73 + 96 + 81 + 94 + 76 + 93 + 85 + 88 + 79 + 87 + 90 + 82 + 78 + 80 + 84 + 91 + 77 + 89 + 93 + 87 + 94 + 75 + 92 + 83 + 85 + 86 + 89 + 90 + 88 + 81 + 84 + 95 + 80) ÷ 50 = 85b) 最高分 = 96最低分 = 73差值 = 最高分 - 最低分 = 96 - 73 = 23c) 得分高于或等于90分的人数:6人(90, 92, 91, 95, 93, 90)d) 得分低于80分的人数:3人(78, 75, 77)题目2:某电商平台销售了以下几款手机型号的数量:型号A: 25台型号B: 18台型号C: 10台型号D: 30台型号E: 12台请计算并列出以下数据:a) 所有手机型号的总销售数量。

初二数学下册:数据的分析经典题+答案

初二数学下册:数据的分析经典题+答案

初二数学下册:数据的分析经典题+答案一.选择题1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是(D)A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的(D)A.众数B.方差C.平均数D.中位数3.下列特征量不能反映一组数据集中趋势的是(C)A.众数B.中位数C.方差D.平均数4.表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?(A)A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数5.刻画一组数据波动大小的统计量是(B)A.平均数B.方差C.众数D.中位数6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的(B)A.平均数B.中位数C.众数D.方差7.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识(A)A.众数B.中位数C.平均数D.方差如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(B)A.平均数B.中位数C.众数D.方差9.以下是期中考试后,班里两位同学的对话:小晖:我们小组成绩是85分的人最多;小聪:我们小组7位同学成绩排在最中间的恰好也是85分以上两位同学的对话反映出的统计量是(D)A.众数和方差B.平均数和中位数C.众数和平均数D.众数和中位数解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选.10.下列说法不正确的是(A)A.数据0、1、2、3、4、5的平均数是3B.选举中,人们通常最关心的数据是众数C.数据3、5、4、1、2的中位数是3D.甲、乙两组数据的平均数相同,方差分别是S甲²=0.1,S乙²=0.11,则甲组数据比乙组数据更稳定该店经理如果想要了解哪种型号女式T恤销售量最大,那么他应关注的统计量是众数.14.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对它们的使用寿命进行跟踪调查,结果如下:(单位:年)【甲:4,6,6,6,8,9,12,13.乙:3,3,4,7,9,10,11,12.丙:3,4,5,6,8,8,8,10.三个厂家在广告中都称该产品的使用寿命是8年.请根据结果判断,厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:平均数,乙:中位数,丙:众数.三.解答题(2)根据如表,请选择一个合适的统计量作为选择标准,说明哪一个你认为这个销售记录对老板管理鞋店生意有用吗?如果你认为有用,请说明你的理由,并请你帮这个老板策划一下如何利用这些信息?】解:这个销售记录对老板有用,∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.∴建议老板进货时多进41号的男鞋.18.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;解:(1)甲的极差为:94﹣87=7分乙的极差为:95﹣85=10∴乙的变化范围大;∴乙的变化范围大.89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92(2)甲的平均数为:(89+93+88+91+94+90+88+87)÷8=90,乙的平均数为:(92+90+85+93+95+86+87+92)÷8=90,∴两人的成绩相当;(3)甲的众数为88,乙的众数为92,∴从众数的角度看乙的成绩稍好;。

人教版苏科版初中数学—数据的分析(经典例题含答案)

人教版苏科版初中数学—数据的分析(经典例题含答案)

一、平均数(一)算数平均数据分析例题答案数例1.一组12个数据的平均数为28,其中一个数据为25.8,那么另外11个数据的平均数是.28.2例1.变式1.有m 个数的平均值是x ,n 个数的平均值是y ,则这m n +个数的平均值是.mx ny m n++例1.变式2.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是(C )A.30吨B.31吨C.32吨D.33吨例1.变式3.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是(C)A .2B .2.8C .3D .3.3(二)加权平均数例2.某汽车配件厂在一个月(30天)中的零件产量如下:有2天是51件,3天是52件,5天是53件,9天是54件,6天是55件,4天是56件,1天是57件.则平均日产量是件.54例2.变式1.某班有50名学生,数学期中考试成绩为90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(保留小数点后第一位)()()190984127310651356245473.750x =⨯+⨯+⨯+⨯+⨯+⨯=分例2.变式2.再一次数学测试中,某班25名男生的平均成绩是86分,23名女生的平均成绩是82分,求这些学生的平均成绩。

(结果精确到0.01分)()8625822384.082523x ⨯+⨯=≈+分例2.变式3.某公司欲招聘一名推销员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下:(百分制)候选人面试笔试甲9087乙8494(1)如果公司认为面试和笔试成绩同等重要,谁将被录取?()()90+872=88.5=84+942=89.x x =÷÷∴甲乙,乙会被录取(2)如果公司认为,作为推销员,面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权.计算甲、乙两人各自的平均成绩,看看谁将被录取.()()906+87410=88.8=846+94410=88.x x =⨯⨯÷⨯⨯÷∴甲乙,甲会被录取(三)一组数据经过一定变化得到的一组新数据的平均数例3.已知数据1210,,x x x 的平均数为a ,111230,,x x x 的平均数为b ,那么1230,,x x x 的平均数为.102030a b+例3.变式1.有3个数据的平均数为6,有7个数据的平均数是9,则这10个数的平均数是.例3.变式2.已知数据12345,,,,x x x x x 的平均数为a ,则数据123454,4,4,4,4x x x x x 的平均数为;1234542,42,42,42,42x x x x x -----的平均数为.8.1例3.变式3.已知数据x 1,x 2,x 3的平均数为a ,数据y 1,y 2,y 3的平均数是b ,则数据3x 1+y 1,3x 2+y 2,3x 3+y 3的平均数为(D )A .3+a +bB .3(a +b )C .a +bD .3a +b二、中位数与众数(一)中位数例4.学校团委组织“阳光助残”捐款活动,九年级(1)班学生捐款情况如下表:捐款金额/元5102050人数/人10131215则学生捐款金额的中位数是(D )A.13元B.12元C.10元D.20元例4.变式1.已知一组数据23,27,20,18,x ,12,若它们的中位数是21,那么数据x 是(B )A.23B.22C.21D.20例4.变式2.已知一组数据20,20,x ,15的中位数与平均数相等,那么这组数据的中位数是(D )A.15 B.17.5C.20D.20或17.5例4.变式3.已知数据a ,a ,b ,c ,d ,b ,c ,c ,且a <b <c <d ,则这组数据的中位数、平均数分别为(A )A .223,28b c a b c d++++B .223,28a c a b c d++++C .222,8a b c d c +++D .233,8a b c d a +++(二)众数例5.下列说法中错误的是(C )A.一组数据的平均数、众数和中位数可能是同一个数B.一组数据的众数可能有多个C.数据中的中位数可能不唯一D.众数、中位数和平均数是从不同的角度描述了一组数据的集中趋势例5.变式1.某青年排球队12名队员的年龄情况如下表,则12名队员年龄的(D)年龄(岁)1819202122人数14322A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁例5.变式2.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是(A )A .180度,160度B .160度,180度C .160度,160度D .180度,180度例5.变式3.为了丰富课外活动,班委会准备利用周日组织全班同学去观看一场球类比赛,为了吸引更多的同学参与,事先做了“你最喜欢的球类活动”问卷调查,获得的信息如图所示,假如你是这个班级的体育委员,你会组织观看的比赛是(C)A.足球比赛B.篮球比赛C.排球比赛D.乒乓球比赛(三)平均数、中位数及众数的特征例6.某男子篮球队在10场比赛中,投球所得的分数分别为80,86,95,86,79,65,98,86,90,81,则该球队10场比赛得分数的众数为,中位数为.8686例6.变式1.一名射击运动员连续射靶10次,其中3次射中10环,5次射中9环,1次射中8环,1次射中7环,则平均每次射中环数为环,这次射击中环数的众数为环,这次射击中环数的中位数是环.999例6.变式2.为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是,中位数是,众数是,鞋厂最感兴趣的是数.22.5522.523众例6.变式3.下表是食品营养成分表的一部分:(每100克食品中可食部分营养成分的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是克,平均数是克.44(四)平均数、中位数及众数的综合例7.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是(A)A.21B.22C.23D.24例7.变式1.10位学生分别购买如下尺码的鞋子:20,20,21,22,22,22,22,23,23,24(单位:cm),这组数据的平均数、中位数、众数三个指标中鞋店老板最喜欢的是.众数例7.变式2.已知一组数据:-2,-2,3,-2,x,-1.若这组数据的平均数是0.5,则这组数据的中位数是.-1.5例7.变式3.如下图,反映了某校初中三年级甲、乙两班学生的体育中考成绩.(1)不用计算,根据统计图,请判断哪个班级学生的体育成绩好一些.(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?请写出来.(3)如果依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,请分别计算甲、乙两班学生体育成绩的平均值.(1)甲班;(2)中,中;(3)()()155+1065+207511858957850555+1065+207510855957550x x ⨯⨯⨯+⨯+⨯==⨯⨯⨯+⨯+⨯==甲乙分分三、从统计图分析数据的集中趋势(一)根据统计图中的数据求平均数、中位数和众数例8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和平均数分别是(C )A.7,7B.8,7.55C.7,7.55D.8,6例8.变式1.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(C)A.2.25B.2.5C.2.95D.3例8.变式2.如图是我市某景点6月份1-10日每天的最高气温折线统计图,由图中信息可知该景点这10天的最高气温的中位数是℃.26例8.变式3.同学们对戒烟方式进行调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整(3)求以上五种戒烟方式人数的众数.(1)这次调查中同学们调查的总人数为20÷10%=200(人).(2)统计图如图(扇形统计图与条形统计图).(3)以上五种戒烟方式人数的众数是20.四、数据的离散程度(一)极差、方差、标准差例9.数据2,3,3,5,7的极差是(D)A.2B.3C.4D.5 2.例9.变式1.数据90,91,92,93的标准差是.5 2例9.变式2.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是环,方差为.82例9.变式3.甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据(单位:mm)如下:甲机床:99,100,98,100,100,103;乙机床:99,100,102,99,100,100.(1)分别求出上述数据的平均数及方差;甲平均数为100mm,方差为7 3.乙平均数为100mm,方差为1.(2)根据(1)计算结果,说明哪一台机床加工这种零件更符合要求.因为甲乙平均数相同,乙的方差更小,所以乙机床加工这批零件更符合要求.(二)运用平均数、中位数、众数、方差进行综合评价例10.为了从甲、乙、丙三位同学中选一位或两位选手参加数学竞赛,下表是甲、乙、丙三位同学前五次数学测验的成绩(成绩满分100分):测验(次)12345甲(分)70819896100乙(分)6585858798丙(分)6070959798(1)请你填写甲、乙、丙三位同学前五次的数学成绩统计表(下表)平均数中位数方差甲89135.2乙8485丙95251.6平均数:84,中位数:96,方差:113.6.(2)如果只选派一名学生参加数学竞赛,你认为应该派谁?请说明理由;略.提示:根据甲、乙两学生的射击环数的平均数、众数、方差来进行合理评价,只要有道理即可例10.变式1.一次科技知识竞赛,两组学生的成绩如下表所示:已经算得两个组的平均分都是80分,请根据学过的统计知识,进一步判断两个组在这次竞赛中的成绩谁优谁次,并说明理由.解:甲组成绩的众数90分,乙组成的众数为70分,从成绩的众数看,甲组成绩好些.s 2甲=1251013146+++++×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172,s 2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256,因为s 2甲<s 2乙,所以甲组成绩较好.甲、乙两组成绩的中位数、平均分都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,所以从这一角度看,甲组成绩较好.甲组成绩高于90(含90分)的有14+6=20(人),乙组成绩高于90(含90分)的有12+12=24(人),因为乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组成绩较好.例10.变式2.为了从甲、乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了10次测验,成绩如下(单位:分)(1)请填写下表:(2)利用(1)的信息,请你对甲、乙两个同学的成绩进行分析.解:(1)第二行从左到右依次填:84:14.4,第三行从左到右依次填:90;0.5.(2)甲、乙成绩的中位数、平均数都是84.①甲成绩的众数是84,乙成绩的众数是90,从成绩的众数看,乙的成绩好;②甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;③甲成绩85分以上(不含85分)的频率为0.3,乙成绩85分以上(不含85分)的频率为0.5,从85分以上的频率看,乙的成绩好.例10.变式3.随着某市社会经济的发展和交通状况的改善,该市的旅游业得到了高速发展.某旅游公司对该市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的统计表和统计图(如图).组别个人年消费金额x /元频数(人数)A x ≤200018B 2000<x ≤4000aC 4000<x ≤6000bD 6000<x ≤800024E x >800012合计120根据以上信息解答下列问题:(1)a =________,b =________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3000名员工,请你估计个人旅游年消费金额在6000元以上的人数.解:(1)36;30补全条形统计图如图:(2)C (3)因为24120=0.2,12120=0.1,所以估计个人旅游年消费金额在6000以上的人数为3000×(0.2+0.1)=900(人)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二 数据分析测试题
一、相信你的选择
1、若数据8,4,,2x 的平均数是4,则这组数据的中位数和众数是( ) A 、3和2 B 、2和3 C 、2和2 D 、2和4
2、数学老师对小明在参加高考前5次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A 、平均数或中位数 B 、方差或频率 C 、频数或众数 D 、方差或极差
3、已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( )
A 、平均数但不是中位数
B 、平均数也是中位数
C 、众数
D 、中位数但不是平均数
4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下:32,26,28,31,32,32,33,那么这组数据的众数和中位数分别是( )
A 、31,32
B 、32,32
C 、31,3
D 、32,3
5、若54321,,,,x x x x x 的平均数为-
x ,方差为2s ,则3,3,3,3,354321+++++x x x x x 的平均数和方差分别是 ( )
A 、2+-x ,32
+s B 、3+-
x ,2s
C 、-x ,32
+s D 、-
x ,2s
6、已知一组数据1,2,,0,1--x 的平均数是0,那么这组数据的标准差( ) A 、2 B 、2 C 、4 D 、2-
7、一组数据n x x x x ,,,,321 的极差是
8,另一组数据
12,,12,12,12321++++n x x x x 的极差是( )
A 、8
B 、9
C 、16
D 、17
8、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( ) A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定 二、试试你的身手
1、根据天气预报可知,我国某城市一年中的最高气温为C ︒37,最低气温是C ︒-8,那么这个城市一年中温度的极差为
2、航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是 分.
3、数据9,10,8,10,9,10,7,9的方差是________,标准差是_____.
4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定,如果甲、乙两种产品的方差分别是甲2s ,乙2s ,则它们的大小关系是
5、下面是五届奥运会中国获得金牌的一览表:
在15,5,16,16,28这组数据中,众数、中位数分别是
6、甲、乙两人比赛飞镖,两人所得环数甲的方差是15,乙所得环数如下:0,1,5,9,10,那么,成绩比较稳定的是
7、八年级上学期期中质量检测之后,甲、乙两班的数学成绩的统计情况如下表
所示:(单位:分)
从成绩的波动情况来看,班学生的成绩波动较大.
8、若一个样本是3,3
,1,
,1
,3-
-a,它们的平均数-
x是a的
3
1,则这个样本的标准差

三、挑战你的技能
1、甲、乙两台编织机同时编织一种毛衣,在5天中,两台编织机每天出的合格品数量如下(单位:件):
甲:10 ,8 ,7 ,7 ,8;
乙:9 ,8 ,7 ,7,9.
在这5天中,哪台编织机出合格品的波动较小?
2、甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:
(1)请你填上表中乙进行射击练习的相关数据;
(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.
3、一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示.
现已算得乙组所测得数据的平均数为,00.12=-
乙x ,方差002.02=乙s . (1)求甲组所测得数据的中位数与平均数;
(2)问哪一组学生所测得的旗杆高度比较一致.
四、拓广探究
1、某电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另加付电话费,每小时1.2元;乙种方式是包月制,每月付信息费100元,同时加付电话费每小时1.2元;丙种方式也是包月制,每月付信息费150元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7天中每天的上网所花的时间(单位:分钟):
你认为该用户选择哪种付费方式比较合适?(一个月按30天计算)
1、A
2、A
3、B
4、B
5、B
6、B
7、D
8、D 二、
1、45℃
2、71
3、1,1
4、乙甲22s s 〉
5、16,16
6、甲
7、甲
8、5.33 三、
1、解:这20名学生成绩的众数是80分,中位数是70分,平均数是
()()分7229078067036025020
1
=⨯+⨯+⨯+⨯+⨯. 2、解:该用户一个月上网总时间约为:
()h t 2760307
80
602774354062=÷⨯++++++=。

甲种付费方式每月应付()()元4.140272.141=⨯+=W ; 乙种付费方式每月应付()元4.132272.11002=⨯+=W ; 丙种付费方式每月应付()元1503=W 。

因为312W W W 〈〈,所以该用户选择乙种付费方式比较合适. 3、解:()1
10877885
x -
=
++++=甲, ()1
9877985
x -
=
++++=乙。

2
2221[(108)(88)(88)] 1.25s =-+-++-=甲…,
2
2221[(98)(88)(98)]0.85
s =-+-++-=乙…。

因为x x --
=甲乙且22
s s >乙
甲,所以乙纺织机出合格品的波动较小。

4、解:(1)甲组所测得数据的中位数是12.00m ;平均数是
()1
11.90212.00212.0512.005
+⨯+⨯=(m )
; (2)003.02=甲s ,因为x x --
=甲乙且乙甲22s s 〉,所以乙组学生所测得的旗杆高度比
较一致.
1、解:(1)平均数是7,众数是7,方差是1.2;
(2)根据甲、乙两人的射击环数、平均数、众数、方差,用一种数据或多种数据进行合理评价.
2、解:(1)平均数为8,方差为
4
3
; (3)答案不惟一,如:①由于平均数相同,22
s s <大枣葡萄
,所以大枣的销售情况相对比较稳定;②从图上看,葡萄的月销售量呈上升趋势.。

相关文档
最新文档