数据的分析 初二数学知识点
(完整word)初二数学八下数据的分析所有知识点总结和常考题型练习题,推荐文档

一、统计学中的几个基本概念 1、总体所有考察对象的全体叫做总体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
二、平均数把一组数据的总和除以这组数据的个数所得的商。
平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
算术平均数x =1n (1x +2x +3x +…n x )。
加权平均数x =1122k k x f x f x f n +++K 。
三、众数、中位数1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差 1、极差极差是指一组数据中最大数据与最小数据的差。
极差=最大值-最小值。
反映这组数据的变化范围。
2、方差的概念 在一组数据,,,,21n x x x Λ中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
即:])()()[(1222212x x x x x x ns n -++-+-=Λ即:“先平均,再求差,然后平方,最后再平均”方差反映一组数据的波动大小,方差值越大,波动越大,也越不稳定或不整齐。
(2)计算公式(Ⅱ):]')'''[(12222212x n x x x ns n-+++=Λ 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x ns n-+++=Λ 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
初中数学数据分析知识点(详细全面)

第五讲、数据分析一、数据的代表(一)、(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”。
注:如果有n 个数n x x x ,,,21 的平均数为x ,则①n ax ax ax ,,,21 的平均数为a x ; ②b x b x b x n +++,,,21 的平均数为x +b ; ③b ax b ax b ax n +++,,,21 的平均数为a x b +。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
(3)平均数的计算方法 ①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x k k ++=2211,其中n f f f k =++ 21。
③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x '11=,a x x '22=,…,a x x n n '=。
)'''(1'21n x x x nx +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
(4)算术平均数与加权平均数的区别与联系①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1)。
初中数学八下《数据的分析》知识点

初中数学八下《数据的分析》知识点数学八年级下册《数据的分析》知识点课标要求:本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想.单元\章节内容分析:全章共分三节:20.1数据的集中趋势.本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。
本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。
为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用.接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等.对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义.在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征.20.2数据的波动本节是研究刻画数据波动程度的统计量:极差和方差.教科书首先利用温差的例子研究了极差的统计意义.方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究.首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的.随后,又介绍了利用计算器的统计功能求方差的方法.本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题.20.3课题学习体质健康测试中的数据分析.教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”.这个“课题学习”选用了与学生生活联系密切的体质健康问题.由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。
八年级数学《数据的分析-》知识点

八年级数学《数据的分析-》知识点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学《数据的分析-》知识点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学《数据的分析-》知识点的全部内容。
第4题图4元3元2元③②① 八年级数学下册《数据的分析》知识点知识梳理1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键.2。
平均数当给出的一组数据,都在某一常数a 上下波动时,一般选用简化平均数公式,其中a 是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3。
众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4。
极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s 2=)2+(x 2-)2+…+(x n -)2];标准差= 方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
能力训练一、选择题(本大题共分12小题,每小题3分共36分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是( ) A 。
最新初中数学数据分析知识点(详细全面)讲解学习

最新初中数学数据分析知识点(详细全面)讲解学习
学习资料
精品文档第五讲、数据分析
一、数据的代表
(一)、(1)平均数:。
注:
(2)加权平均数:
,
(3)平均数的计算方法
①定义法:。
(4)算术平均数与加权平均数的区别与联系
①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1
)。
②区别:算术平均数就是简单的把所有数加起来然后除以个数。
而加权平均数是指各个数所占的比重不同,按照相应的比例把所有数乘以权值再相加,最后除以总权值。
(二)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。
(注:不是唯一的,可存在多个)
(三)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
(注:
(一)极差:
(1)概念:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
(2)意义:能够反映数据的变化范围,是最简单的一种度量数据
波动情况的量,极差越大,波动越大。
(二)方差:
(1)概念:(2)意义:衡量数据波动大小的量,方差越大,数据的波动越大;方差越小,数据的波动越小,数据的波动越稳定。
初二数学数据的分析所有知识点和常考题及提高练习难题(含解析)

初二数学数据的分析知识点常考题与提高练习与压轴难题(含解析)【知识点】1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:x1x2x nn使用:当所给数据x,x2,,,x n中各个数据的重要程度相同时,一般使用该公式计算平均数.12、加权平均数:若n个数x,x2,,,x n的权分别是w1,w2,,,w n,则1xwxwxw1,叫做这n个数的加权平均数.122nnwww12n使用:当所给数据x1,x2,,,x n中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。
【相似题练习】1.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.﹣3.5B.3C.0.5D.﹣32.8个数的平均数12,4个数的平均为18,则这12个数的平均数为()A.12B.13C.14D.153.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.aB.a+3C.aD.a+154.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2 天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆5.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.6.成成在满分为100分的期中、期末数学测试中,两次的平均分为90分,若按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,则成成的学期数学成绩可能是()A.85B.88C.95D.100第1页(共14页)4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.【相似题练习】1.某市主城区2016年8月10日至8月19日连续10天的最高气温统计如表:最高气温(℃)38394041天数3214则这组数据的中位数和平均数分别为()A.39.5,39.6B.40,41C.41,40D.39,412.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定3.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6B.3.5C.2.5D.14.在我县中学生春季田径运动会上,参加男子跳高的16名运动员的成绩如下表所示:成绩(m)1.501.601.651.701.751.80人数133432这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,35.小王班的同学去年6﹣12月区孔子学堂听中国传统文化讲座的人数如下表:月6789101112份人46324232273242数则该班去年6﹣12月去孔子学堂听中国传统文化讲座的人数的众数是()56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.54【知识点】1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:2122 sxxxxx n12n x 2意义:方差(2s)越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a时,其平均数、中位数、众数也增加a,而其方差不变;②当一组数据扩大k倍时,其平均数、中位数和众数也扩大k倍,其方差扩大k2倍.【相似题练习】1.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是()人数135701083金额(元)20000015000080000150001000080005000A.极差是195000B.中位数是15000C.众数是15000D.平均数是150002.在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是()A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环3.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/01234周)人数(单位:人)14622A.中位数是2B.平均数是2C.众数是2D.极差是24.某赛季甲、乙两面运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()C .甲得分的方差大于乙得分的方差D .甲得分的最小值大于乙得分的最小值5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们2的成绩如表:甲乙丙丁平均分8.58.28.58.2 方差1.81.21.21.1 最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A .丁B .丙C .乙D .甲 2,则a+2,b+2,c+2的平均数和方差分别是() 6.若a ,b ,c 这三个数的平均数为2,方差为s A .2,s2B .4,s 2C .2,s 2+2D .4,s 2+42,第2组数据:52,54,56,58的方差为S 22,第3组数据: 7.已知第1组数据:1,3,5,7的方差为S 12,则S 2,S 2,S 2的大小关系是()2016,2015,2014,2013的方差为S 31232>S 22>S 12B .S 12=S 22<S 32C .S 12=S 22>S 32D .S 12=S 22=S32 A .S 3 【知识点】 统计量的选择平均数、众数、中位数都是用来描述数据集中趋势的量。
初二数学数据的分析知识点总结

初二数学数据的分析知识点总结初二数学数据的分析知识点总结数据的分析将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数(mode)。
一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据2.整理数据3.描述数据4.分析数据 5.撰写调查报告初中数学知识点大全之数据的分析,看过的同学肯定已经熟知了吧,接下来还有更多的数学知识点营养大餐等着同学们来汲取吸收呢。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的`数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
八年级数学《数据的分析》知识点归纳与例题

数据的分析一、 统计学的几个基本概念 1. 平均数加权平均数:(1)“权”表示数据的重要程度;(2)当n 个数n x x x ,,,21 的权重分别为n w w w ,,,21 ,则这n 个数的加权平均数为nnn w w w w x w x w x ++++212211;2. 众数(1)定义:一组数据中出现次数最多的数据(2)众数可以没有也可以有多个,要是都是出现一次的话那就没有众数,要是都出现多次而且次数都一样的话那就是有多个众数。
3. 中位数将一组数据从大到小(从小到大)排列,若数据的个数是奇数,则称处于中间位置的数是中位数;若数据的个数是偶数,则称中间两个数据的平均数是中位数。
4. 极差(1)极差=最大值-最小值。
(2)用来反映这组数据的变化范围。
5. 方差与标准差(1)方差表示一组数据偏离平均值的情况,计算公式是()()()[]222211x x x x x x nn -++-+-(2(3)方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中, 包装机包装的茶叶质量最稳定。
2. 甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm ,它们的方差依次为S 2甲=0.162,S 2乙=0.058,S 2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
3. 一组数据:2,-2,0,4的方差是 。
4. 在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比。
初三(3)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:分组 频率 49.5~59.5 0.04 59.5~69.5 0.04 69.5~79.5 0.16 79.5~89.5 0.34 89.5~99.5 0.42 合计1根据以上信息回答下列问题:(1)该班90分以上(含90分)的调查报告共有________篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占_________%;(3)补全频率分布直方图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据的分析知识导图基础知识点k kx f ++)叫做1x ,2x ,…,(第二类).其中1,2x ,…,将一组数据按照大小顺序排列,如重点题型1【平均数】例题1:(1(2)求这30名同学捐款的平均数.(3)若该校共有720名学生,估计捐款数不低于20元的学生有多少名?变式练习1-1:本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?变式练习1-2:某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为km/h.【数据的分析】重点题型2例题2:某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)25 26 21 17 28 26 20 25 26 3020 21 20 26 30 25 21 19 28 26(1(2)上述数据中,众数是 万元,中位数是 万元,平均数是 万元; (3)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.变式练习2-1:某中学初三(1)班、(2)班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:(1(2(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?说明理由.变式练习2-2:在植树节当天,10个小组植树的株数见下表:则这10个小组植树株数的方差是____________.(2)补全右面折线统计图;(3)请你根据下面两个要求对这两种瓜果在去年3月份至8月份的销售情况进行分析:①根据平均数和方差分析;②根据折线图上两种瓜果销售量的趋势分析.两步一回头1.四个数据8,10,x ,10的平均数与中位数相等,则x 等于( )A .8B .10C .12D .8和122则这10A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米 D .26厘米,26厘米3. 16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是() A .平均数 B .极差 C .中位数 D .方差 4A .平均数B .众数C .中位数D .方差 5A .甲 B .乙 C .丙 D .丁问题探究例题3:阅读理解:市盈率是某种股票每股市价与每股盈利的比率(即:某支股票的市盈率=该股票当前每股市价 该股票上一年每股盈利).市盈率是估计股票价值的最基本、最重要的指标之一.一般认为该比率保持在30以下是正常的,风险小,值得购买;过大则说明股价高,风险大,购买时应谨慎.应用:某日一股民通过互联网了解到如下三方面的信息:①甲股票当日每股市价与上年每股盈利分别为5元、0.2元乙股票当日每股市价与上年每股股盈利分别为8元、0.01元20 20 30 28 32 35 38 42 40 44根据以上信息,解答下列问题:(1)甲、乙两支股票的市盈率分别是多少?(2)该股民所购买的15支股票中风险较小的有几支?(3)求该股民所购15支股票的市盈率的平均数、中位数与众数;(4)请根据丙股票最近10天的市盈率画出折线统计图,并依据市盈率的有关知识和折线统计图,就丙股票给该股民一个合理的建议.变式练习3:为了了解甲、乙两同学对“字的个数”的估计能力,现场对他们进行了5次测试,测试方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下:(1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.拓展延伸1.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资.今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )A .平均数和中位数不变B .平均数增加,中位数不变C .平均数不变,中位数增加D .平均数和中位数都增加2.已知1a ,2a ,3a ,4a ,5a 的平均数为8,则另一组数据110a +,210a -,310a +,410a -,510a +的平均数为( )A .6B .8C .10D .123.已知1x ,2x ,3x 的方差是2,平均数是5,则数据123x +,223x +,323x +的方差是 ,平均数是 .4.某校开展读书活动,随机抽查了若干名同学,了解他们半年内阅读名著的情 况,调查结果制作了如下部分图:(1)请求出样本容量,并将条形统计图补充完整;(2)根据以上统计图中的信息,求这些同学半年内阅读名著数量的众数、中位数、平均数(保留小数).(3)你能估计全校2000名同学,在这个读书活动中阅读名著的总数量吗?请指出,并说明理由.5.为了进一步了解八年级学生的身体素质情况,体育老师以八年级(1)班50位学生为样本进行了一分钟跳绳次:请结合图表完成下列问题:(1)表中的a = ; (2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第 组;(4)若八年级学生一分钟跳绳次数(x )达标要求是:160x ≥为优;140160x <≤为良;120140x<≤为合格;120x <不合格.根据以上信息,请你给学校或八年级学生提一条合理化建议: .课堂加油站二战时,美英联军对德国展开了大轰炸.由于德国防空力量强大,美英空军损失惨重,人机皆亡比例达11%.为了降低人机损失,汤姆逊带领研究小组投入到工作中,他们检查了执行任务归来的所有飞机,发现这些飞机的机腹部位都布满了弹痕,而机翼则大都完好无损.故改善机腹,却始终收效甚微.这时,统计学家克里打来电话:“如果你仍然只顾埋头研究改进机腹,花再大的代价也是徒劳!”汤姆逊问:“为什么这样说?”克里笑了:“所有返回的飞机都是机翼完好而机腹被击中,这不正说明飞机机腹受袭还可幸运地返航,而那些机翼受损的飞机则无一能够幸免吗?所以,你要解决的是机翼问题而非机腹!”汤姆逊如醍醐灌顶,他尝试着加固了机翼,果然被击毁的飞机很快减少了.有时事情得不到改善,并非功夫没下够,或许仅仅是没找准问题而已.课后练习1.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是( ) A .4,7 B .7,5 C .5,7 D .3,7 2. 12名学生参加江苏省初中英语听力口语自动化考试成绩如下:28,21,26,30,28,27,30,30,18,28,30,25.这组数据的众数为 .3(1)该班学生考试成绩的众数是 .(2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.课堂小测1.已知数据,,a b c 的平均数为8,那么数据1,2,3a b c +++的平均数是_______.2.在“情系玉树献爱心”捐款活动中,某校九(1)班同学人人拿出自己的零花钱,现将同学们的捐款数整理成3.下列数据5、3、6、7、6、3、3、4、7、3、6的众数是 .4.甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( ) A .100分 B .95分 C .90分 D .85分 5.某地连续9A .24,25 6.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和中位数分别是( )A .7,7B .8,7.5C .7,7.5D .8,67则关于这12..A .中位数 6方B .众数6方C .极差8方D .平均数5方8.一组数据:l2、l3、15、14、l6、l8、19、14.则这组数据的极差是 .9.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( ) A .学习水平一样B .成绩虽然一样,但方差大的学生学习潜力大C .虽然平均成绩一样,但方差小的班学习成绩稳定D .方差较小的学习成绩不稳定,忽高忽低10.一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的( )A .平均数是2B .众数是3C .中位数是1.5D .方差是1.25【参考答案】【基础知识点】【重点题型1】 例题1:(1)330元 (2)11元 (3)96名变式练习1-1:(1)25人;(2)3.7分;(3)4分15人,5分30人 变式练习1-2: 100【重点题型2】例题2:(1)3,5,2,2;(2)26,25,24;(3)不能,此时众数26万元>中位数25万元 变式练习2-1:(1)中位数85,众数100;(2)两班平均数相同,但1班的中位数高,所以1班的成绩较好;(3)如果每班各选2名同学参加决赛,我认为初三(2)班实力更强些,虽然两班的平均数相同,但在前两名的高分区中初三(2)班成绩较好变式练习2-2:0.6 变式练习2-3:(1)8,34;(2)略;(3)①库尔勒香梨与哈密瓜销量的平均数相同,从平均数看来销售情况一样;但是库尔勒香梨与哈密瓜的方差相差很大,因为哈密瓜的方差小,所以哈密瓜的销售情况好于库尔勒香梨.②由折线图可以看出,库尔勒香梨的销售量曲线起伏较大,所以哈密瓜的销售情况好于库尔勒香梨,但库尔勒香梨的销售呈上升趋势.【两步一回头】【问题探究】例题3:(1)甲股票的市盈率为:5÷0.2=25,乙股票的市盈率为:8÷0.01=800 (2)5 支;(3)平均数100,中位数59,众数为80;(4)存在一定风险,建议卖掉;观察市盈率变化情况,若继续增加,可减少持有量变式练习3:(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. (2)可从不同角度分析.例如:①从平均偏差率预测:甲同学的平均偏差率是16%,估计的字数所在范围是84~116;乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117.乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它.【拓展延伸】1.B 2.C 3.8,134.(1)设样本容量为x ,依题意1610032=x ,解得50=x ,即样本容量为50 图形(略,只要画出阅读3册名著的频数是15即可);(2)所求的众数是2,中位数是3,平均数是1.35013010415316281=⨯+⨯+⨯+⨯+⨯;(3)答案不唯一,只要讲请道理即可,如用平均数要去掉半年读30册书的情况. 5.(1)12;(2)略;(3)3;(4)合理即可【课堂小测】【课后练习】1.C2.303.(1)88分 (2)86分(3)不能,因为全班的成绩的中位数是86分,83分低于中位数。