方程组与不等式组知识点

合集下载

线性方程组与不等式

线性方程组与不等式

线性方程组与不等式线性方程组和不等式是数学中常见的概念和问题类型,它们在实际生活和各个领域中都有广泛的应用。

本文将从基本概念入手,逐步介绍线性方程组和不等式的定义、解法以及一些实际问题的应用。

一、线性方程组的定义与解法线性方程组是由一组线性方程构成的方程组。

线性方程的一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b,其中a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为变量,b为常数。

为了解决线性方程组,在解法上可以使用消元法、代入法或矩阵法等。

其中,消元法是一种常用的解法。

消元法的基本思路是通过不改变方程组解集的操作,将线性方程组逐步化为简化的形式。

具体步骤如下:1. 化简:将线性方程组化为行简化阶梯形式,即将系数矩阵转化为行阶梯形矩阵。

2. 消元:从最后一行开始,逐行进行消元操作,通过倍乘和相减操作将系数矩阵化为最简形式。

3. 回代:从最后一行开始,逐行进行回代操作,通过代入求解出每个变量的值,得到方程组的解集。

需要注意的是,线性方程组的解不一定存在,或者存在无穷多个解。

通过解方程组可以得到变量的具体取值,从而解决相应的问题。

二、线性不等式的定义与解法线性不等式是包含线性函数或变量的不等关系的数学表达式。

一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b(或≥、<、>)。

解线性不等式的方法主要有图解法和代入法。

图解法利用平面直角坐标系,将不等式绘制成直线或线段,然后根据不等式的性质找到使其成立的解集。

代入法则是通过将不等式中的变量替换为特定的常数,然后求解得到不等式的解集。

与线性方程组不同的是,线性不等式的解集通常是一个区域或者是所有满足不等式条件的点的集合。

解线性不等式可以帮助我们确定变量的取值范围,解决约束条件下的问题。

三、线性方程组与不等式的应用线性方程组和不等式在实际问题中有广泛的应用,涵盖了许多不同领域。

以下是一些常见的应用场景:1. 经济学:线性方程组可以用来描述供求关系、成本与收益关系等经济问题,如经济平衡、市场均衡等。

方程与不等式知识结构图

方程与不等式知识结构图

方程(组)与不等式(组) 知识结构表方程: 含有未知数的等式叫做方程.方程的解:能使方程两边的值相等的未知数的值,叫做方程的解.解方程: 求方程的解的过程叫做解方程.定义: 只含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.(1) 一元一次方程 解法: 去分母、去括号、移项、合并同类项、系数化为1.定义: 含有两个未知数,且未知项的次数都是1的整式方程,叫做二元一次方程.由这样的几个方(2) 二元一次方程(组) 程所组成的方程组叫做二元一次方程组.方程组里各个方程的公共解叫做这个方程组的解.分类 解法: 基本思想是消元,基本方法是代入消元法、加减消元法.方程(组) 定义:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.它的一般形式为02=++c bx ax (0≠a ).(3)一元二次方程 解法; 直接开平方法、配方法、因式分解法、求根公式法.根的判别式(ac b 42-=∆):当0>∆时,一元二次方程有两个不相等的实数根;当0=∆时,一元二次方程有两个相等的实数根;当0<∆时,一元二次方程没有实数根.以上结论,反之亦成立.方 定义:分母中含有未知数的方程叫做分式方程.程 (4)分式方程 解法:其基本思想是将分式方程转化为整式方程,其方法是运用等式性质在方程两边同乘以最简公分母.解与 分式方程必须要验根.有时也可采用换元法.不 应用: 一般步骤:①审清题意,找出等量关系;②设未知数;③列出方程(组);④解方程(组);⑤检验方程(组)的根;⑥作答. 等式 不等式:用不等号表示不等关系的式子叫做不等式.不等式的解: 使不等式成立的未知数的值叫做不等式的解.有关概念 不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.解不等式:求不等式的解集的过程,叫做解不等式.性质1: 如果a >b ,那么a +c >b +c ,a -c >b -c .不等式的性质 性质2: 如果a >b ,并且c >0,那么ac >bc .性质3: 如果a >b ,并且c <0,那么ac <bc .: 只含有一个未知数,且未知数的最高次数是1的不等式.不等式(组) 一元一次不等式 解法: 基本步骤是:去分母、去括号、移项、合并同类项、系数化为1.特别要注意当系数化为1时, 不等式两边同乘以(或除以)同一个负数,不等号的方向必须改变.分类 定义: 几个未知数相同的一元一次不等式所组成的不等式组叫做一元一次不等式组.一元一次不等式组 解法: 求出不等式组中每一个不等式的解集,再求出解集的公共部分.解集有如下规律: 同大取大;同小取小;大小小大取中间;大大小小题无解.应用: 解不等式(组)在实际问题中的应用,关键是使学生能从实际问题中抽象出数量关系,列出不等式(组),建立不等式模型,通过转化为纯数学问题来解决实际应用问题.在列不等式时还要密切关注题中的不等关系,如“至少”,“至多”,“不大于”,“不小于”等等.。

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结在数学的学习中,方程与不等式是非常重要的内容,它们在解决实际问题中有着广泛的应用。

下面我们将通过一些具体的例题来深入理解方程与不等式的解法,并对相关知识点进行总结。

一、方程的解法方程是含有未知数的等式,求解方程的目的就是找出未知数的值,使得等式成立。

1、一元一次方程形如 ax + b = 0(a ≠ 0)的方程叫做一元一次方程。

例:解方程 3x + 5 = 14解:首先,将常数项移到等号右边:3x = 14 5,即 3x = 9然后,将系数化为 1:x = 9 ÷ 3,解得 x = 3知识点总结:解一元一次方程的一般步骤为:去分母(若有)、去括号、移项、合并同类项、系数化为 1。

2、二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组叫做二元一次方程组。

例:解方程组x + y = 5 ①2x y = 1 ②解:①+②得:3x = 6,解得 x = 2将 x = 2 代入①得:2 + y = 5,解得 y = 3所以方程组的解为 x = 2,y = 3知识点总结:解二元一次方程组的基本思想是消元,常用方法有代入消元法和加减消元法。

3、一元二次方程形如 ax²+ bx + c = 0(a ≠ 0)的方程叫做一元二次方程。

例:解方程 x² 4x + 3 = 0解:因式分解得:(x 1)(x 3) = 0所以 x 1 = 0 或 x 3 = 0解得 x₁= 1,x₂= 3知识点总结:一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。

求根公式为 x =b ± √(b² 4ac) /(2a)。

二、不等式的解法不等式是用不等号表示两个数或表达式之间关系的式子。

1、一元一次不等式形如 ax + b > 0 或 ax + b < 0(a ≠ 0)的不等式叫做一元一次不等式。

例:解不等式 2x 1 < 5解:移项得:2x < 5 + 1,即 2x < 6系数化为 1 得:x < 3知识点总结:解一元一次不等式的步骤与解一元一次方程类似,但要注意不等式两边乘或除以同一个负数时,不等号的方向要改变。

知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备02 方程与不等式(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。

新课标中考复习专题方程组与不等式组要点

新课标中考复习专题方程组与不等式组要点

中考复习专题-------方程(组)与不等式(组)班级姓名第1课时 一元一次方程复习一、考点分析1. 判断一个方程是否是一元一次方程要抓住三点:⑴方程是整式方程;⑵化简后方程中只含有一个未知数;⑶经整理后方程中未知数的次数是1.2. 方程的基本变形:①方程两边都加上或减去同一个数或整式,方程的解不变; ②方程两边都乘以或除以同一个不等于零的数,方程的解不变. 二、一些固定模型中的等量关系:①数字问题:abc 表示一个三位数,则有10010abc a b c =++②行程问题:甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程甲走的时间=乙走的时间;甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间的距离 ③工程问题:各部分工作量之和 = 总工作量; ④储蓄问题:本息和=本金+利息⑤商品销售问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价或商品售价=商品成本价×(1+利润率) 三、典型例题例1. 已知方程2x m -3+3x=5是一元一次方程,则m= . 例2. 已知2x =-是方程ax 2-(2a -3)x+5=0的解,求a 的值. 例3. 解方程2(x+1)-3(4x -3)=9(1-x ).例4 解方程 1.6122030x x x x +++=例 5. 参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,•保险公司制度的报销细则如下 )A. 2600元B. 2200元C. 2575元D. 2525元例6. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为__________立方米.例7. 足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分,请问:⑴前8场比赛中,这支球队共胜了多少场? ⑵这支球队打满14场比赛,最高能得多少分?⑶通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?例8. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.四、习题精炼:1. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A 、28 B 、33 C 、45 D 、572. 下列各方程中,是一元一次方程的是( )A 、3x+2y=5B 、y 2-6y+5=0C 、x x 1331=- D 、3x -2=4x -7 3. 已知y=1是方程2-yy m 2)(31=-的解,则关于x 的方程m (x+4)=m (2x+4)的解是( )A 、x=1B 、x=-1C 、x=0D 、方程无解4. 某种商品的进价为1200元,标价为1750元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5﹪,则至多可打( )A 、6折B 、7折C 、8折D 、9折5 母亲26岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的3倍. 此时母亲的年龄为( ) A 、39岁 B 、42岁 C 、45岁 D 、48岁6. 欢欢的生日在8月份.在今年的8月份日历上,欢欢生日那天的上、下、左、右4个日期的和为76,那么欢欢的生日是该月的 号.7. 一家商店将某型号彩电先按原售价提高40﹪,然后在广告中写上“大酬宾,八折优惠”. 经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款. 求每台彩电的原价格.第2课时 一元一次不等式和不等式组一、复习要点:1、了解一元一次不等式(组)的有关概念,掌握不等式的性质;2、会用数轴表示不等式(组)的解集,会求特殊解;3、熟悉一元一次不等式(组)的解法;4、能根据具体问题中的不相等关系列出一元一次不等式(组)解决实际问题. 二、精选例解【例1】(2010·宁德)解不等式2151132x x -+-≤,并把它的解集在数轴上表示出来. 【变式训练】1、解不等式2313284x x +-+≥- 考点二 一元一次不等式组的解法【例2】解不等式组3012123x x x -≤⎧⎪--⎨->⎪⎩考点三 【例3】(2010·威海)求不等式组13325122(43)xx x x +⎧->-⎪⎨⎪-≤-⎩的整数解.【变式训练】3、不等式组4231 33 2(1)31x xx x⎧-<-⎪⎨⎪-≤-⎩的整数解有 .考点四不等式(组)与方程(组)之间的联系【例4】已知方程组2315x y kx y k-=⎧⎨+=-⎩的解x与y的和为负数,求k的取值范围.【变式训练】4、若不等式组2123x ax b-<⎧⎨->⎩的解集为11x-<<,那么(1)(1)_____.a b+-=考点五不等式(组)的应用【例5】服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服,该店订购这两款运动服,共有哪几种方案?三、习题精选:1、不等式50x--≤的解集在数轴上表示正确的是()2、不等式组201xx-<⎧⎨≥⎩的解集为()A.12x≤<B.1x≥C.2x<D.无解3、不等式组2752312x xxx-<-⎧⎪⎨++>⎪⎩的整数解是.4、关于x的方程4132x m x-+=-的解是负数,则m的取值范围是.5、一个两位数,十位数字与个位数字的和是6,且这两位数不大于42,则这样的两位数共有个.6 、一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满。

方程组与不等式组知识点总结

方程组与不等式组知识点总结

方程组与不等式组知识点总结一、方程组。

1. 二元一次方程组。

- 定义。

- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

把两个含有相同未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来,组成的方程组叫做二元一次方程组。

例如x + y=5 2x - y = 1。

- 解法。

- 代入消元法。

- 步骤:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,如对于方程组y = 2x - 3 3x+2y = 8,由第一个方程y = 2x - 3,将y代入第二个方程得3x+2(2x - 3)=8,然后解这个一元一次方程求出x的值,再把x的值代入y = 2x - 3求出y的值。

- 加减消元法。

- 步骤:当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。

例如对于方程组3x+2y = 11 5x - 2y = 13,将两个方程相加得(3x + 2y)+(5x - 2y)=11 + 13,即8x=24,解得x = 3,再把x = 3代入3x+2y = 11求出y的值。

2. 三元一次方程组。

- 定义。

- 含有三个未知数,并且含有未知数的项的次数都是1的整式方程组成的方程组叫做三元一次方程组。

例如x + y+z = 6 2x - y+z = 3 3x + 2y - z=4。

- 解法。

- 思路是通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程求解。

例如先消去z,可以将第一个方程x + y+z = 6与第三个方程3x + 2y - z = 4相加得到4x+3y = 10,再将第一个方程x + y+z = 6与第二个方程2x - y+z = 3相减得到-x + 2y=3,这样就得到了一个二元一次方程组4x + 3y=10 -x+2y = 3,然后用二元一次方程组的解法求解。

不等式组与方程组的关系

不等式组与方程组的关系

不等式组与方程组的关系在数学中,不等式与方程都是常见的数学表示形式。

不等式组与方程组是由多个不等式或方程组成的集合,它们在数学问题的建模和解决中起着重要的作用。

本文将探讨不等式组与方程组之间的关系,并分析其在实际问题中的应用。

一、不等式组的定义与特点不等式组是由多个不等式组成的集合,通常用符号“≤”或“≥”来表示。

不等式组中的每个不等式都是一个条件,通过满足这些条件,我们可以得到一组解或一组满足特定条件的值。

不等式组与方程组的主要区别在于,不等式组的解不一定是精确的数值,而是一组可能的解范围。

不等式组的解可以用区间或集合来表示,而方程组的解则是精确的数值。

二、方程组的定义与特点方程组是由多个方程组成的集合,通常用符号“=”来表示。

方程组中的每个方程都是表示等式的条件,通过满足这些条件,我们可以得到一组精确的数值解。

与不等式组不同,方程组的解只有一个或者没有解。

方程组的解可以用具体的数值表示,或者用变量表示。

三、1. 联立问题不等式组与方程组之间存在联立的问题。

当我们在解决实际问题时,常常需要同时考虑多个条件,这时就需要联立不等式组与方程组。

通过联立不等式组与方程组,可以得到满足所有条件的解。

例如,在求解一个实际问题中,我们可能需要考虑某个物品的价格与折扣的关系,这时就可以使用一个不等式组来表示物品价格的范围,再联立一个方程来表示折扣情况,从而得到合适的购买方案。

2. 不等式组的应用不等式组在实际问题中有很广泛的应用。

例如,在线性规划中,我们常常需要求解满足一组约束条件的最优解,这时就可以将约束条件表示为不等式组,通过解不等式组来求解最优解。

此外,在经济学、生物学和工程学等领域,不等式组也被广泛应用于模型的建立和解决中。

3. 方程组的应用方程组在实际问题中同样有着重要的应用。

例如,在电路分析中,我们常常需要联立多个方程来描述电路中的电流和电压关系,从而求解电路中的未知量。

方程组也被广泛应用于数学建模和计算机科学中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 方程(组)与不等式(组)
方程与方程组解法总结
一元一次方程等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程的解法
(1)配方法
(2)分解因式法
(3)公式法
解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-
a b ,二根之积=
a c 也可以表示为1x +2x =-a
b ,21x x =a
c 。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根;
III 当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
难点提示:
1.一元二次方程的根的判别式:
△=b 2+4ac ,当△>0 方程有两个不相等的实数根;当△=0 时 方程有两个相等的实数根;当△<0 方程没有实数根。

2.根与系数的关系:
若一元二次方程2ax +bx+c=0(a≠0)的两根为12,x x ,则1x +2x =- a
b
,1x 2x ·= a
c 。

反过来,以12,x x 为根的一元二次方程是(x-1x )(x-2x )=0,展开代入两根和与两根积,仍得到方程 2
ax +bx+c=0(a≠0)。

特殊的:对二次项系数为1的方程2x +px+q=0的两根为12,x x 时,那么1x +2x =-p ,1x . 2x =q 。

反之,以1x ,2x 为根的一元二次方程是:(x-1x )(x-2x )=0,展开代入两根和与两根积,仍得到方程:2x +px+q=0。

3.解分式方程的数学思想是转化为整式方程,方法为去分母法和换元法。

注意事项:
1.不等式的基本性质中 不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

用式子表示:如果a>b ,且c<0,那么ac<bc(或 < ),所以在解不等式时,注意”系数化为1”这一步。

2.不等式解集的表示方法。

用数轴表示:它的优点是数形结合、直观形象,尤其是在解较复杂的不等式或解不等式组时,易于找到正确的答案。

在数轴上表示不等式的解集时,要注意:当解集包括端点时,在端点处画实心圆圈,否则,画空心圆圈。

3.根的判别式应用极为广泛,主要有以下几方面:
(1)不解方程,判断根的情况,步骤是:①化方程为一般形式,确定a,b,c 的值;②计算2b -4ac ,并确定它的符号;③用定理判断根的情况。

(2)给出根的情况,求方程中字母系数的取值范围。

解题步骤是:①化方程为一般形式,确定a,b,c 的值;②求判别式,它是含有字母系数的代数式;③根据题目所要满足的条件列出方程或不等式;④解方程或不等式,确定字母取值范围。

注意:当二次项系数也含有字母时,要根据题设条件判断二次项系数是否可以等于0,这一点往往容易忽视,造成错误,应特别小心。

4.把二次三项式2ax +bx+c 分解因式时,先求出方程2
ax +bx+c=0的两个根12,x x ,再将二次三项式改写成2ax +bx+c=0 如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档