测量平差基础课件

合集下载

测量误差与平差(1)

测量误差与平差(1)
1. 有界性
在一定的观测条件下,偶然误差的绝对值不会超过一 定的限值。 (这个限值不是固定的,与观测条件有关)
例如,某项试验中,在相同的观测条件下共观测了358个三角形
的全部内角,计算出每个三角形的和角真误差(即闭合差,三角之
和与180º之差)。分别对正、负误差按绝对值由小到大排列,然后
以d△=3″为误差区间统计各区间的误差个数k,并计算其相对 个数(k / n,也称作频率,n=358 )。结果列于下表:
一般函数形式的误差传播定律:
设有一般函数:
Z f (x1, x2,, xn)
式中,x1、x2、……xn为互相独立的观测值,相应的中 误差分别为mx1、mx2、 …… mxn;Z是各观测值的函数。 经推导(教材P150),函数Z的中误差计算式为:
mZ2
(
f x1
)
2
mx21
(
f x2
)
2
mx22
2、倍乘函数:
▪ 函数表达式:
z kx
▪ 函数中误差为:
▪函数中误差为:
mZ2
m2 x1
m2 x2
m2 xn
ห้องสมุดไป่ตู้
mz k mx
3、线性函数: ▪ 函数表达式:
z k1 x1 k2 x 2 kn x n
▪ 根据误差传播律有:
mZ2
k12mx21
k22mx22
kn2
m2 xn
求观测值函数中误差的步骤
四. 精度及其衡量指标 (一).精度的含义 精度是指一组观测误差分布的密集或离散的程度。 若分布集中,即小误差多、大误差少,则说明该组
观测值的质量好、精度高;反之,精度就低。 据此可判别下图中哪组观测精度相对较高。

测量平差基础

测量平差基础

§1—1观测误差当对某量进行重复观测时,就会发现,这些观测值之间往往存在一些差异。

例如,对同一段距离重复丈量若干次,量得的长度通常是互有差异。

另一种情况是,如果已经知道某几个量之间应该满足某一理论关系,但当对这几个量进行观测后,也会发现实际观测结果往往不能满足应有的理论关系。

例如,从几何上知道一平面三角形三内角之和应等于180。

,但如果对这三个内角进行观测,则三内角观测值之和常常不等于180。

,而有差异。

在同一量的各观测值之间,或在各观测值与其理论上的应有值之间存在差异的现象,在测量工作中是普遍存在的。

为什么会产生这种差异呢?不难理解,这是由于观测值中包含有观测误差的缘故。

观测误差的产生,原因很多,概括起来有以下三方面:1.测量仪器测量工作通常是利用测量仪器进行的。

由于每一种仪器只具有一定限度的精密度,因而使观测值的精密度受到了一定的限制,例如,在用只刻有厘米分划的普通水准尺进行水准测量时,就难以保证在估读厘米以下的尾数时完全正确无误;同时,仪器本身也有一定的误差,例如,水准仪的视准轴不平行于水准轴,水准尺的分划误差等等。

因此,使用这样的水准仪和水准尺进行观测,就会使水准测量的结果产生误差。

同样,经纬仪、测距仪等的仪器误差也使三角测量、导线测量的结果产生误差。

2.观测者由于观测者的感觉器官的鉴别能力有一定的局限性,所以在仪器的安置、照准、读数等方面都会产生误差。

同时,观测者的工作态度和技术水平,也是对观测成果质量有直接影响的重要因素。

3.外界条件观测时所处的外界条件,如温度、湿度、风力、大气折光等因素都会对观测结果直接产生影响;同时,随着温度的高低,湿度的大小,风力的强弱以及大气折光的不同,它们对观测结果的影响也随之不同,因而在这样的客观环境下进行观测,就必然使观测的结果产生误差。

上述测量仪器、观测者、外界条件三方面的因素是引起误差的主要来源。

因此,我们把这三方面的因素综合起来称为观测条件。

第五章 测量误差及测量平差.

第五章 测量误差及测量平差.
第五章 测量误差及测量平差
• §5.1 测量误差概述 • §5.2 衡量测量精度的指标 • §5.3 误差传播定律
• §5.4 等精度观测的直接平差
§5.1 测量误差概述
一、误差的现象及定义 二、误差来源 三、误差的分类
误差现象
A
距离多次丈量 三角形内角和
l1≠ l2≠ l3 , … ∠A+∠B+∠C≠180°
例如:分别丈量两段不同距离,一段为100m,
一段为200m,中误差都是0.02m。此时是否能认
为两段距离观测结果的精度相同?
• 为了更客观地反映实际测量精度,必须引入 相对误差的概念。
三、相对误差
相对误差K:中误差的绝对值 m 与相应观测值 D 之比,通常以分母为 1 的分式来表示,称其为相对 (中)误差。即:
lt l0 l (t t 0 )l0
思考: 水准仪—— i角
分析产生的主要原因:是仪器设备制造不完善。
水准仪:视准轴不平行于水准管轴(i角)
hAB
i ( S后 S前)
结论:i角误差与前后视距差成正比。
注意:系统误差具有积累性,对测量成果影响较大。
消除和削弱的方法: (1)用计算的方法加以改正;
K m D 1 D m
一般情况,角度、高差的误差用 m表示,量距误 差用K表示。 与相对误差相对应,真误差、中误 差、容许误差称为绝对误差。
[ 例 ] 已 知 : D1=100m,
m2=±0.01m,求: K1, K2
m1=±0.01m , D2=200m,
解:
K1 m1 D1 0.01 1 100 10000
2 y
mZ m m
2 x

(测量平差课件)第6章第1讲(点位误差)

(测量平差课件)第6章第1讲(点位误差)

E
2 2 x 2 c 2 ( o E ) s y 2 s 2 ( i n E ) x s y 2 i 2 n E )(
x2(co2sco2sEsi2nsi2nE12si2nsi2nE)
y2(si2nco2sEco2 s si2nE12si2nsi2nE) xy(si2nco2sEco2 s si2nEsi2nsi2nE)
Q xc x 2 o sQ ys y 2 in Q xs y 2 in
p
p
2 02Q
p
0 2 (Q xc x 2 o Q sys y2 in Q xs y 2 i) n
y
任意方向上的位差
ˆ 2 ˆ0 2 ( Q xc x2 o Q s ys y2 i n Q xs y2 i) n
6.2 点位误差
三、位差的极大值 E和极小值 F
ˆ 2 ˆ0 2 ( Q xc x2 o Q s ys y2 i n Q xs y2 i) n
d d(Q xc x 2 o s Q ys y 2 in Q xs y i2n ) 0 0
2 Q x c x0 o s0 i s 2 Q n y c y0 o s0 i s 2 Q n x c y 2 o 0 0 s
(2)简便方法: c2 o0 s1 c22 o0s ,s2 in 0 1 c22 o0s
Q ( Q x1 x c 2 2 o 0 s Q y1 y c 2 2 o 0 s Q xs y2 i0 ) n 1 2 ( Q x x Q y) y ( Q x x Q y) y c2 o 0 s 2 Q xs y2 i0 n
点位方差
2 xPE [x ˆ(PE (x ˆP)2 )]E [x ˆ(Px ~ P)2]E [ 2 x]

测量平差第八章

测量平差第八章

• 令:
V T PV 2K T ( AV Bx转 W置) 后2K得ST (Cx WX )
x
2K
T
B
2K
T S
C
0
V QAT K
2V T P 2K T A 0 V
BT K CT KS 0
§8.2 基础方程和它的解
• 于是统一平差模型的基础方程为
(1) A V B xW 0
• 令:
V T
PV
2K T
( AV
B转x置 W后) 得2K
T S
(Cx
WX
)
x
2K
T
B
2K
T S
C
0
V QAT K
2V T P 2K T A 0 V
BT K CT KS 0
§8.2 基础方程和它的解
• 或者
N aa
cc
BT
uc
0
sc
B
cu
0
uu
C
su
0
cs
CT
us
0
ss
K
cn n1 cu u1 c1 c1
(2)
C
su
x
u1
WX
s1
0 s1
(3) V Q AT K n,1 n,n n,c c,1
(4) BT u,c
K CT
c,1 u,s
Ks
s1
0
u ,1
§8.2 基础方程和它的解
• (3)、若选u<t,且未知数参数独立,条件方程中含
未知参数x ,线性形式为A V B x。W 这0时基础方程(2)
多只能列出t个函数独立的参数。在不选择参数时,
一般条件方程数c等于多余观测数 ,r 若n又t选用了

测量平差-获奖课件

测量平差-获奖课件

2 X1
D XX
2 X
2
X1
2 X
n
X1
2 X1X 2
2 X2
2 XnX2
2 X1X n
2 X2Xn
2 Xn
若有X旳t个函数:
z1
Z
t1
z2
KX
K0
zt
k11 k12
K
tn
k21
k22
kt1 kt 2
1n
k2n
ktn
k10
K0
k20
t1 kt0
DZZ
1
xe
(
x)2 2 2
dx
2
数学期望旳传播规律:
常数c旳数学期望为E(c)=c
随机变量X乘以常数c,则有 ECX CEX
随机变量X1, X 2,, X之n 和旳数学期望为
EX1 X2 Xn EX1 EX2 EXn
相互独立旳随机变量 X1, X 2,,X 之n 积旳数学期望为:
二、协因数传播律
Y FX F 0 Z KX K 0
由协方差传播律得:
DYY F DXX F T DZZ K DXX K T DYZ F DXX K T
2 0
DYY
F
2 0
DXX
FT
2 0
DZZ
K
2 0
DXX
KT
2 0
DYZ
F
2 0
DXX
KT
即:
QYY F QXX F T QZZ K QXX K T QYZ F QXX K T
例4:设有函数, Z t ,1
F1
t,n
X
n,1
F1
t,r

误差理论与测量平差基础

误差理论与测量平差基础

0

N bb

BT
N
1 aa
B
误差理论与测量平差基础



N
1 bb
(C
T
K
S
We )
(5)
将(5)式代入(1)式的第二式,得
CN bb1C T K S

CN
W 1
bb e
Wx
0
因为
Ncc

CN
C 1
bb
T
为满秩方阵,所以
KS

N
1 cc
(Wx

CN
W 1
bb e
)
将(6)式代入(5)式,得
(6)


(
N
1 bb

N bb1C T
N
cc1CN
1 bb
)We

N bb1C T
N
W 1
cc x
(7)
按(7)式求出参数估值后,将(4)式代入(2)式,得
V


P
1
AT
N
1 aa
(W

Bxˆ)
误差理论与测量平差基础
三、精度评定
LL
ˆ
2 0
V T PV r
V T PV cus

N
cc1CN
1 bb
B
T
N
1 aa
A
QLL
AT

N
cc1CN
1 bb
B
T
QKS Xˆ

N
cc1CN
1 bb
BT
N
1 aa
AQLL

测量平差误差理论的基本知识

测量平差误差理论的基本知识

5
0.014
2
0.006
0
0
177
0.495
误差绝对值
个数 (k)
相对个数(k/n)
91
0.254
81
0.226
66
0.184
44
0.123
33
0.092
26
0.073
11
0.031
6
0.017
0
0
358
1.000
①在一定的条件下,偶然误差的绝对值不会超 过一定的限度;(有界性)
②绝对值小的误差比绝对值大的误差出现的机 会要多;(密集性)
极限误差的作用: 区别误差和错误的界限。
第四节 误差传播定律及应用
在实际工作中,有许多未知量 不是直接观测的,而是通过观测值 计算出来的,观测值中误差与观测 函数中误差之间的关系定律,称为 误差传播定律。
倍数函数
函数形式:
Z=kx
式中Z为观测值的函数,k为常数(无误差),x为观测值
中误差关系式:
3.2
m1 ,m2说明第一组的精度高于第二组的精度。
说明:中误差越小,观测精度越高
相对误差
相对误差K 是中误差的绝对值m与相应 观测值D之比,通常以分子为1的分式 来表
示,称其为相对(中)误差。即:
m
K
1
D
D
m
一般情况 :角度测量没有相对误差,只有距 离测量才用相对误差来评定。
[ 例 ] 已 知 : D1=100m, m1=±0.01m , D2=200m, m2=±0.01m,求: K1, K2 解:
因为A、B两点间的高差等于各测站的观测 高差之和,即:hAB=h1+h2+…+hn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量平差基础课件
测量误差与数据处理
2
物理实验基本程序和要求
1.实验课前预习
(1)预习与本实验相关的全部内容。 (2)写出预习报告(实验题目、目的、原理、
主要计算公式、原理简图),准备原始实验 数据记录表格。
2.课堂实验操作
(1)上课需带实验讲义、笔、尺、计算器等。 (2)必须在了解仪器的工作原理、使用方法、 注意事项的基础上,方可进行实验。
22
总面积=1
23
三、测量结果最佳值—算术平均值
多次测量求平均值可以减小随机误差
x1 nn i 1 Nhomakorabeaxi
算术平均值是真值的最佳估计值
24
§3 实验中错误数据的剔除
1. 拉依达判据
• 对于服从正态分布的随机误差,出现在 ±S区间内概率为68.3%,与此相仿,同 样可以计算,在相同条件下对某一物理 量进行多次测量,其任意一次测量值的 误差落在 -3S到+3S区域之间的可能性 (概率)。其值为
3
(3)仪器安装调试后经教师检查无误后方可进 行实验操作。
(4)注意观察实验现象,认真记录测量数据, 将数据填入实验记录表格,数据须经指导老师
检查及签字。 (5)实验后请将使用的仪器整理好,归回原处。
经教师允许后方可离开实验室。 (6)课后按要求完成实验报告,并在下次实验时
交来。
4
第一章 目 录
1、真值:待测量客观存在的值
真值
(绝对)误差:xxx0
测量值
相对误差:
Ex
x 100%
x0
10
• 相对误差常用百分比. 表示。它表示绝对 误差在整个物理量中所占的比重,它是 无单位的一个纯数,所以既可以评价量 值不同的同类物理量的测量,也可以评 价不同物理量的测量,从而判断它们之 间优劣。如果待测量有理论值或公认值, 也可用百分差来表示测量的好坏。即:
(xi x)2 n1
21
2.标准偏差的物理含义
S x 的物理意义:
Sx
(xi x)2 n1
作任一次测量,随机误差落在区
间(Sx,的Sx概)率为 6。8.3%
P ( 2Sxx2Sx)0.954
P ( 3Sxx3Sx)0.997
S小x ,小误差占优,数据集中,重复性好。 S x 大,数据分散,随机误差大,重复性差。
f (x)
随机误差介于 [x,xd(x)]
小区间内的概率为:
f(x)d(x)
随机误差介于区间
-a 0 a x
(-a,a)内的概率为
a
P(axa)f(x)d(x) a
(-a,a)为置信区间、P为置信概率 17
f (x)
满足归一化条件
总面积=1
f (x)d(x)1
可以证明:
0
x
P ( x)f(x)dx ()0.683
P ( 2 x2 )0.9543
P ( 3 x3 )0 .997极限误差
18
19
正态分布特征:
f (x)
①单峰性
②对称性
③有界性
④抵偿性
0
x

1 lim n n
n i1
xi
0
20
二、随机误差估算—标准偏差
误差:xi xi x0 偏差:xi xi x
标准偏差:
xi2 (n)
n
标准误差
Sx
德拉作为基本单位,其他物理量(如力、能
量、电压、磁感应强度等)均作为这些基本单
位的导出单位。
7
2.测量的分类
按方法分类: • 直接测量
• 间接测量
按条件分类:
√ • 等精度测量
• 非等精度测量
8
直接测量 L3.15cm
测量
数值 单位
间接测量
m r 2h
L3.15
9
二、误差 任何测量结果都有误差!
26
2.肖维勒准则
• 对于服从正态分布的测量结果,其偏差出现在±3S附 近的概率已经很小,如果测量次数不多,偏差超过 ±3S几乎不可能,因而,用拉依达判据剔除疏失误差 时,往往有些疏失误差剔除不掉。另外,仅仅根据少 量的测量值来计算S,这本身就存在不小的误差。因此
当测量次数不多时,不宜用拉依达判据,但可以用肖 维勒准则。按此判据给出一个数据个数n相联系的
3S
P (3S,3S) f( x)d x9.79 % 3 S
25
• 如果用测量列的算术平均替代真值,则
测量列中约有99.7%的数据应落在区间
内,如果有数据出现在此区间之外,则 我们可以认为它是错误数据,这时我们
应把它 舍去,这样以标准偏差Sx的3倍
为界去决定数据的取舍就成为一个剔除 坏数据的准则,称为拉依达准则。但要 注意的是数据少于10个时此准则无效。
13
3、测量的精密度、准确度、精确度
1)精密度。表示重复测量所得数据的相互 接近程度(离散程度)。
2)准确度,表示测量数据的平均值与真值 的接近程度。
。 3)精确度。是对测量数据的精密度和准确
度的综合评定。
14
• 以打靶为例来比较说明精密度、准确度、精确度三者
之间的关系。图中靶心为射击目标,相当于真值,每
第1节 测量与误差 第2节 随机误差的处理 第3节 实验错误数据的剔除 第4节 测量不确定度及估算 第5节 有效数字及运算规则 第6节 实验数据处理基本方法
5
§1 测量与误差
一、测量
1、测量的含义 • 测量就是借助仪器将待测量与同类标准量进行比
较,确定待测量是该同类单位量的多少倍的过程 称作测量。测量数据要写明数值的大小和计量单 位。
次测量相当于一次射击。
(a)准确度高、 精密度低
(b)精密度高、 (c)精密度、准确
准确度低
度均高
15
§2 随机误差的处理 一、随机误差的正态分布规律
大量的随机误差服从正态分布规律
误差 xxx0
f ( x)
概率密度函数
f (x) 1 e2x22 2
标准误差
lim
xi2
n n
0
x
正态分布
16
f (x)的物理意义:
• 倍数→ 读数+单位→数据
• 测量的要素:对象,单位,方法,准确度。
6
• 在人类的发展历史上,不同时期,不同的国家, 乃至不同的地区,同一种物理量有着许多不同 的计量单位。如长度单位就分别有码、英尺、 市尺和米等。为了便于国际交流,国际计量大 会于1960年确定了国际单位制(SI),它规定 了以米、千克、秒、安培、开尔文、摩尔、坎
系数Gn,当已知数据个数n,算术平均值和测量列标准
百分 E0测 差公 量 公 认 值 认 值 1值 0% 0
11
2、误差的分类
系统误差 恒定性
可用特定方法来消除或减小
随机误差 随机性
可通过多次测量来减小
12
系统误差 保持不变或以可预知方式变化的误差分量 来源:①仪器固有缺陷;
②实验理论近似或方法不完善; ③实验环境、测量条件不合要求; ④操作者生理或心理因素。
相关文档
最新文档