2017高中自主招生考试数学试卷1
(完整)自主招生数学试题及答案,推荐文档

2017年自主招生数学试题(分值: 100分 时间:90分钟)一、选择题(本大题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1、若对于任意实数,关于的方程都有实数根,则实数的a x 0222=+--b a ax x b 取值范围是( )A ≤0B ≤C ≤D ≤-1b b 21-b 81-b 2、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE∥AC,已知S △BDE ∶S △CDE =1∶3,则S △DOE ∶S △AOC 的值为( )A .1∶3B .1∶4C .1∶9D .1∶163、某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高(如图所示)。
已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为300,在C 处测得电线杆顶端A 得仰角为450,斜坡与地面成600角,CD=4m ,则电线杆的高(AB)是( )A .mB .mC .mD .12m )344(+)434(-)326(+4、如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过( )秒时,直线MN 和正方形AEFG 开始有公共点。
A .53 B .12 C .43 D .23(第2题图) (第3题图) (第4题图)5、如图,在反比例函数的图象上有一动点A ,连接AO 并延长交图象的另一支于xy 2-=点B ,在第一象限内有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数的图xky =象上运动,若tan∠CAB=2,则k 的值为( )A. 2B. 4C. 6D. 86、如图,O 是等边三角形ABC 内一点,且OA=3,OB=4,OC=5.将线段OB 绕点B 逆时针旋转600得到线段O′B,则下列结论:①△AO′B 可以由△COB 绕点B 逆时针旋转600得到;②∠AOB=1500;③6AOBO'S =+四边形6AOB AOCS S +=△△是( )A.②③④B.①②④C.①④D.①②③O'OCB A(第5题图) (第6题图)二、填空题(本大题共6小题,每小题5分,共30分)7、已知方程组,且,则的取值范围是 。
(完整版)2017高中自主招生考试数学试卷1

2017高中自主招生考试数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A. m >3 B.m≥3C.m≤3D. m<32.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()(2)(3)A.B.C. 0.3 D.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.等分D.随C点移动而移动4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1B.4﹣2C.3﹣2D.2﹣25.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.6.(3分)如图(6),已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A. 6圈B. 6.5圈C. 7圈D. 8圈7.(3分)二次函数y=ax2+bx+c的图象如下图(7),则以下结论正确的有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()(6)(7)(8)A. 2个B. 3个C. 4个D. 5个8.(3分)如图8,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,如果,那么△ABC的内切圆半径为()A. 1 B.C. 2 D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)与是相反数,计算=_________.10.(3分)若[x]表示不超过x的最大整数,,则[A]=_________.11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=_________.(11)(12)12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD 的最小值为_________.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是_________.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是_________.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是_________cm.(15)(16)16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是_________cm.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q 点坐标;若不存在,说明理由.18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC 交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.21.(15分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C 的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.。
成都外国语学校2017年高中自主招生数学真卷(一)

成都外国语学校2017年高中自主招生数学真卷(一)(考试时间:120分钟 满分:150分)A 卷(共100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、如图,是一个单心圆曲隧道的截面,如果路面AB 宽为10米,净高CD 为7米,那么所在半径OA 为 ( ) A 、5米 B 、377 C 、375D 、7米第1题图 第2题图 第3题图2、在正方形网络中,∠AOB 如图放置,则cos ∠AOB 的值为 ( ) A 、55 B 、255 C 、12D 、2 3、如图是一个立方体的表面展开图,已知立方体的每一个面上都有一个实数,且相对两数互为倒数,那么代数式b ca-的值等于 ( ) A 、34- B 、14- C 、1 D 、344、把多项式2212xy x y -+-分解因式的结果是 ( ) A 、(1)(1)x y x y +--+ B 、(1)(1)x y x y --+- C 、(1)(1)x y x y ---+ D 、(1)(1)x y x y +-++5、在一个地球仪的赤道上用铁丝打一个箍,现将地球仪的半径增大1米,需增加m 米的铁丝,假设地球赤道上也有一个铁箍,同样地球半径增大1米,则需要增加n 米的铁丝,则m 与n 的大小关系是 ( ) A 、m>n B 、m<n C 、m=n D 、不能确定6、已知一组数据7,6,x ,9,11的平均数是9,那么x 等于 ( ) A 、3 B 、10 C 、12 D 、97、如图,在矩形ABCD 中, AB=2,BC=1,动点P 从点B 出发,沿路线B →C →D 做匀速运动,那么△APB 的面积S 与点P 运动的路程之间的函数图像大致是 ( )第7题图A B C D8、点P 在第一象限内,P 到x 轴的距离是4,到y 轴的距离是3,点P 的坐标是 ( ) A 、(—4,3) B 、(—3,—4) C 、(—3,4) D 、(3,4)9、若α、β是方程2220070x x +-=的两实数根,则23ααβ++的值是 ( )A 、2007B 、2005C 、—2007D 、401010、如图,在ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆CA 、CB 分别相交于P 、Q ,则线段PQ 长度的最小值是 ( ) A 、4.75 B 、4.8 C 、5 D 、42第10题图二、填空题(本大题共5小题,每小题4分,共20分。
芜湖一中 2017年高一自主招生考试数学试卷及答案

C. 2
D. 13
二、填空题(本大题共 6 个小题,每小题 8 分,共 48 分,请把正确答案写在答题卡上)
7.若 x 为实数,且满足 (x2 x 1)(x2 x 3) 5 ,则 x2 x =
.
8.已知实数 a 、 b 满足 (a 1)2 (a 6)2 10 | b 3 | | b 2 | ,则 a b 的取值范围
2
芜湖一中 2017 年高一自主招生考试
数学答题卷
一、选择题(每小题 6 分,共 36 分)
题号
1
2
3
4
5
6
答案
二、填空题(每小题 8 分,共 48 分)
7.
8.
9.
0
10.
11.
12.ቤተ መጻሕፍቲ ባይዱ
0
三、.解答题(本大题共 5 小题,满分 66 分,写出必要的解答过程。)
13. (本小题满分 12 分)设 m 是不小于 1的实数,使得关于 x 的方程 x2 2(m 2)x m2
(Ⅰ).求这条抛物线的表达式; (Ⅱ).连结 OM,求∠AOM 的大小; (Ⅲ).如果点 C 在 x 轴上,且△ABC 与△AOM 相似,求点 C 的坐标.
第 14 题图
4
15.(本小题满分 12 分)从 1,2,…,9 中任取 n 个数,其中一定可以找到若干个数(至少一个, 也可以是全部),它们的和能被 10 整除,求 n 的最小值.(写出详细过程才给分)
为
.
9.当 n 1, 2, 3,, 2017 时,二次函数 y (n2 n)x2 (2n 1)x 1 的图象与 x 轴所截得的线
2017年南通市启东中学自主招生数学试卷(含答案)

多少千米? 23.(10 分)如图,平面直角坐标系中,四边形 OABC 为矩形,点 A、B 的坐标 分别为(6,0),(6,8).动点 M、N 分别从 O、B 同时出发,以每秒 1 个单位 的速度运动.其中,点 M 沿 OA 向终点 A 运动,点 N 沿 BC 向终点 C 运动.过点 N 作 NP⊥BC,交 AC 于 P,连接 MP.已知动点运动了 x 秒. (1)P 点的坐标为多少;(用含 x 的代数式表示) (2)试求△MPA 面积的最大值,并求此时 x 的值; (3)请你探索:当 x 为何值时,△MPA 是一个等腰三角形?你发现了几种情况? 写出你的研究成果.
第 2 页(共 19 页)
11.(4 分)计算:
= .
12.(4 分)如图,某计算装置有一数据输入口 A 和一运算结果的输出口 B,下 表是小明输入的一些数据和这些数据经该装置计算后输出的相应结果:按照这个 计算装置的计算规律,若输入的数是 10,则输出的数是 . A12 3 4 5 B 2 5 10 17 26
19.(6 分)当 a= ,b=2 时,计算:
÷( ﹣ )的值.
20.(6 分)已知正方形和圆的面积均为 S,求正方形的周长 l1 和圆的周长 l2(用 含 S 的代数式表示,并指出它们的大小). 21.(8 分)如图,在 Rt△ABC 中,∠B=36°,D 为 BC 上一点,AB=AC=BD=1, (1)求 DC 的长. (2)利用此图求 sin18°的精确值.
24.(10 分)已知:关于 x 的方程①x2﹣(m+2)x+m﹣2=0 有两个符号不同的实 数根 x1,x2,且 x1>|x2|>0;关于 x 的方程②mx2+(n﹣2)x+m2﹣3=0 有两个有 理数根且两根之积等于 2.求整数 n 的值.
2017年普通高中招生考试数学试卷1

第17题图第18题图
18.在直角坐标系中,正方形 、 、…、 按如图所示的方式放置,其中点 …、 均在一次函数 的图象上,点 …、 均在x轴上.若点 的坐标为(1,1),点 的坐标为(3,2),则点A4的坐标为_________.
∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°
∴四边形AECF是平行矩形;……………8分
(3)添加∠ACB=90°………………10分
27.解:(1)、∵AB是⊙O的直径, ∴∠ADB=90° 即AD是底边BC上的高.
又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点………3分
22.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与BC的长度之和等于OA的长度.
(1)求∠CBO的度数;
(2)求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
21.解:(1)因为方程有两个不相等的实数根,所以根的判别式△=b2-4ac=(-4)2-4(k-2)×2=16-8k+16=32-8k>0,解得:k<4,因为是一元二次方程,所以k-2≠0,解得:k≠2,综上所述,k的取值范围是k<4且k≠2;……………4分
(2)k取符合条件的最大整数是3,代入含有k的方程得:x2-4x+3=0,即(x-3)(x-1)=0,解得:x1=3,x2=1,当x=3时,9+3m-1=0,解得:m= .当x=1时,1+m-1=0,解得:m=0.故m=0或 ………………8分
芜湖一中 2017年高一自主招生考试数学试卷及答案

C. a ≤1
D. a 1
2.反比例函数
y
2 x
,当
x≤3
时,y
的取值范围是
A.y≤
2 3
B.y≥ 2
3
C.y≥ 2 或 y<0
3
2 D.0<y≤ 3
3.下图是同一副扑克中的 4 张扑克牌的正面,将它们正面朝下洗匀后,合放在桌上,小明从
最上面连续抽出 2 张,则抽到点数为“鳖十”(点数之和为 10)的概率是( )
BC OM
33
②如图 4,当 BC OA 3 时, BC 3BA 3 2 3 6 .此时 C(8,0)........12 分 BA OM
图3
图4
15.(本小题满分 12 分) 从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部), 它们的和能被10整除,求n的最小值.(详细过程才给分) 解:当n=4时,数1,3,5,8中没有若干个数的和能被10整除............................3分 当n=5时,设a1,a2,…,a5是1,2,…,9中的5个不同的数. 若其中任意若干个数,它们的和都不能被10整除,则a1,a2,…,a5中不可能同时出现1和9; 2和8;3和7;4和6. 于是a1,a2,…,a5中必定有一个数是5. 若a1,a2,…,a5中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10), 故含7; 于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾. 若a1,a2,…,a5中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20), 故含3; 于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾. 综上所述,n的最小值为5........................................................................................12分 注:若本题只有答案,无过程,可给3分;有答案,但过程不严谨者可给4~6分,只有过程 严谨齐全才能得满分。
浙江省2017自主招生数学模拟试卷(一)及答案

浙浙江省2017自主招生数学模拟试卷(一)姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为()千克.A.2×10﹣4B.0.2×10﹣5C.2×10﹣7D.2×10﹣62.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C. D.3.下列计算正确的是()A.(a4)3=a7B.3﹣2=﹣32C.(2ab)3=6a3b3D.﹣a5•a5=﹣a104.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=kx﹣k的大致图象是()A. B.C.D.5.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()6.下列命题中,真命题的个数是()①同位角相等; ②经过一点有且只有一条直线与这条直线平行;③长度相等的弧是等弧; ④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个7.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.59.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长10.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:其中正确的个数是( ).A.1个B.2个C.3个D.4个11.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文的26个字母a、b、c,…,z依次对应1、2、3,…,26这26个自然数(见表格),当明码对应的序号x为奇数时,密码对应的序号;当明码对应的序号x为偶数时,密码对应的序号.按上述规定,将明码“bird”译成密码是()A.bird B.nove C.sdri D.nevo12.已知函数y=,则下列函数图象正确的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)13.﹣1的相反数是__________,倒数是__________.14.若x<2,化简+|3﹣x|的正确结果是.15.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有 人.16.已知在平面直角坐标系中,点A (﹣3,﹣1)、B (﹣2,﹣4)、C (﹣6,﹣5),以原点为位似中心将△ABC 缩小,位似比为1:2,则点B 的对应点的坐标为 . 17.如图,正方形ABCD 的边长为1,分别以A .D 为圆心,1为半径画弧BD 、AC ,则图中阴影部分的面积__________________18.如图,在▱ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处.若△FDE 的周长为5,△FCB 的周长为17,则FC 的长为__________.三 、解答题(本大题共8小题,共78分) 19.计算:60sin 32)2(201593⨯+-++20.先化简22522()443x x x x x x +++⨯+++,然后选择一个你喜欢的数代入求值.21.某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)23.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.24.观察下表:我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为________,第4格的“特征多项式”为__________,第n格的“特征多项式”为________________;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16.①求x,y的值;②在此条件下,第n个特征多项式是否有最小值?若有,求出最小值和相应的n值.若没有,请说明理由.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DA B.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.26.如图,抛物线y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A.N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.答案解析一、选择题1.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 002=2×10﹣6;故选:D.2.分析:根据轴对称图形与中心对称图形的概念求解.解:A.不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.3. 分析:根据幂的乘方法则:底数不变,指数相乘可得(a4)3=a12;根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得3﹣2=;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得(2ab)3=8a3b3,根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得﹣a5•a5=﹣a10.解答:解:A.(a4)3=a12,故原题计算错误;B、3﹣2=,故原题计算错误;C、(2ab)3=8a3b3,故原题计算错误;D、﹣a5•a5=﹣a10,故原题计算正确;故选:D.4. 分析:首先根据一元二次方程有两个不相等的实数根确定k的取值范围,然后根据一次函数的性质确定其图象的位置.解:∵关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,∴(﹣2)2﹣4(﹣k+1)>0,即k>0,∴一次函数y=kx﹣k的图象位于一、三、四象限,故选B.5. 分析:设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.6. 分析:根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.7. 分析:直接根据方差的意义求解.解:∵S>S>S>S,∴四个班体考成绩最稳定的是甲班.故选A.8. 分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.9. 分析:分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.10. 分析: ①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.11. 分析:根据明码与密码的对应关系,分别求出bird四个字母所对应的密码字母,即可得解.解:b对应2,y=+13=14,对应的密码是n,i对应9,y==5,对应的密码是e,r对应18,y=+13=22,对应的密码是v,d对应4,y=+13=15,对应的密码是o,所以,明码“bird”译成密码是nevo.故选D.12. 分析:y=x2+1在x≥﹣1时的性质和y=在x<﹣1时的性质,选出正确选项即可.解:y=x2+1,开口向上,对称轴是y轴,顶点坐标是(0,1),当x≥﹣1时,B、C、D正确;y=,图象在第一、三象限,当x<﹣1时,C正确.故选:C.二、填空题13. 分析:根据相反数与倒数的概念解答即可.解:∵﹣1的相反数是1,∵﹣1=﹣,∴﹣1倒数是﹣.故答案为:1,﹣.14. 分析:先根据x的取值范围,判断出x﹣2和3﹣x的符号,然后再将原式进行化简.解:∵x<2,∴x﹣2<0,3﹣x>0;∴+|3﹣x|=﹣(x﹣2)+(3﹣x)=﹣x+2+3﹣x=5﹣2x.15.分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.解答:解:根据题意得:1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.16. 分析:根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.解:∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).17. 分析:过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF﹣S△ADF可得出其面积,再根据S阴影=2(S扇形BAF﹣S弓形AF)即可得出结论.解:如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为1,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF﹣S△ADF=﹣×1×=﹣,∴S阴影=2(S扇形BAF﹣S弓形AF)=2(﹣+)=2(﹣+)=﹣.故答案为:﹣.18. 分析:根据翻折变换的性质、平行四边形的性质证明AB +BC =11,此为解题的关键性结论;运用△FCB 的周长为17,求出FC 的长,即可解决问题. 解:如图,∵四边形ABCD 为平行四边形, ∴AD =BC ,AB =DC ; 由题意得:AE =FE ,AB =BF ;∵△FDE 的周长为5,△FCB 的周长为17, ∴DE +DF +EF =5,CF +BC +BF =17, ∴(DE +EA )+(DF +CF )+BC +AB =22, 即2(AB +BC )=22,∴AB +BC =11,即BF +BC =11; ∴FC =17﹣11=6, 故答案为6.三 、解答题19. 分析:根据0指数幂、二次根式的化简、特殊角的三角函数值、负指数幂的定义解答 解:原式=3+1﹣8+2×=﹣1. 20.解:原式2522[]2(3)(2)x x x x x x ++=+⨯+++225222(3)(3)(2)x x x x x x x x x +++=⨯+⨯++++2(2)5(3)(2)(3)(2)x x x x x x x x ++=+++++ 3(3)(3)(2)x x x x +=++3(2)x x =+ 当1x =时,原式311(12)==⨯+(x 不能取0,,21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即(10,20)、(10、50)、(20,50),并且它们出现的可能性相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017高中自主招生考试数学模拟试卷
一、选择题(本大题共8小题,每小题3分,共24分.).
1.(3分)若不等式组的解集是x>3,则m的取值范围是()
A .m>3B.m≥3C .m≤3D .m<3
2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()
(2)(3)
A.B.C.0.3D.
3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()
A.到CD的距离保持不变B.位置不变
C.
等分
D.随C点移动而移动
4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()
A.
2﹣1B.
4﹣2
C.
3﹣2
D.
2﹣2
5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()
A.B.C.D.
6.(3分)如图(6),已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()
A.6圈 6.5圈C.7圈D.
B.8圈
7.(3分)二次函数y=ax2+bx+c的图象如下图(7),则以下结论正确的有:①abc>0;
②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()
(6)(7)(8)
A.
2个B.3个C.4个
D.
5个
8.(3分)如图8,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,如果
,那么△ABC的内切圆半径为()
A.1B.C.2D.
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)与是相反数,计算=_________.
10.(3分)若[x]表示不超过x的最大整数,,则[A]=_________.
11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=_________.
(11)(12)
12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD 的最小值为_________.
13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是_________.
14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是_________.
15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是_________cm.
(15)(16)
16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是_________cm.
三、解答题(72)
17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.
(1)求抛物线的解析式;
(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q 点坐标;若不存在,说明理由.
18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,
求车轮从取土处到放土处圆心从M到N所经过的路径长.
19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC 交于点E,BN△AEF与DC交于点F.
(1)猜想:CE与DF的大小关系?并证明你的猜想.
(2)猜想:H是△AEF的什么心?并证明你的猜想.
20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、
E、G.
(1)求菱形的面积;
(2)求证:EF=MN;
(3)求r1+r2的值.
21.(15分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C 的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.。