轧制原理
(轧制理论)轧制原理PPT

❖ 氧化铁皮在咬入时端部与轧辊冲击易脱落,露出金属表面使 摩擦系数增大,而其他部分摩擦系数较低.
二者作用的结果使 kx项数值较小
αy =kx*α=(1.5—1.7)α 实际生产中端部咬入出现打滑现象不能建立稳定轧制
Δh/2
式中 R ---- 轧辊半径。
h R RCos
2
h D(1 COS )
cos 1 h D
sin =1 h
2 2R
sin
22
h
R
上式在 100 150 适用
α
A B
D C
Δb/2
变形区任意断面高度hx
hx hx h D(1 co形的表示方法
❖ 变形程度的意义
矩形件变形前后的尺寸
1)轧制时绝对变形量(压下,延伸,宽展)表示
❖ 绝对压下量:Δh=H-h ❖ 绝对延伸量:Δl=l -L ❖ 绝对宽展量:Δb=b -B
❖ 式中 h ,H —— 轧件轧后、轧前高度; l,L—— 轧件轧后、轧前长度;
b,B—— 轧件轧后、轧前宽度;
2 1
)
E1
E1
2
2q
1- E
2 2
2
西奇柯可公式
轧制过程的三阶段
一 咬入阶段
1 咬入阶段:轧件前端与轧辊接触的瞬间起到前 端达到变形区的出口断面(轧辊中心连线)称为咬入 阶段。
2 特点:
(1)轧件的前端在变形区有三个自由端(面),仅后 面有不参与变形的外端(或称刚端) (2)变形区的长度由零连续地增加到最大值。 (3)变形区内的合力作用点、力矩皆不断的变化。 (4)轧件对轧辊的压力由零值逐渐增加到该轧制条件 下的最大值。 (5)变形区内各断面的应力状态不断变化。
轧制原理第一章第一讲

3) 稳定轧制阶段 轧件前端运行出轧辊后,一般情况下就不存在咬入问题了,
。 故此时为稳定轧制阶段,见图1(c)
a
(a)
(b)
(c)
图1 轧制过程三阶段示意
F0 1F1,F1 2 F2,F2 3 F3 ,Fn1 n Fn
而
n
F0 Fn 12 3 n
i
n p
i 1
有
p n
③ 压下率之间的关系
这里指积累压下率与道次压下率(与)之间的关系,根据定
义,积累压下率为 道次压下率为
h0 hn h0
1
h0 h0
h1
2
h1 h2 h1
n
1.1.2 变形区基本参数计算
1. 压下,宽展及延伸变形
设工件在轧制前的尺寸为及(断面积),轧制后变为及 (断面积),则变形区内的高度、宽度及长度方向的变形 参数可列为下表1-1
表1-1 各种变形参数的表示
压下
绝对变形 相对变形 变形系数 对数变形系数
h H h e1 h H H h
lnH h
2. 各参数之间的关系 ① 变形系数之间的关系:
根据体积不变条件,有 H B L h b l 1
h b l 1, 1 1, 也即 ln 1 ln ln 0
H BL
可见变形系数之间满足体积不变条件。
② 延伸系数之间的关系 这里指总延伸系数、道次延伸系数、平均延伸系数,即三者 之间的关系。根据定义,有
宽展 b b B e2 b B b B
lnb B
延伸 l l L e3 l L l L
轧制的原理

轧制的原理
轧制是一种重要的金属加工方法,它通过辊轧将金属坯料压制成所需形状和尺寸的工件。
轧制的原理主要包括塑性变形、应力变形和金属流动等几个方面。
首先,塑性变形是轧制的基本原理之一。
在轧制过程中,金属坯料受到辊轧的挤压和拉伸作用,从而使其发生塑性变形。
金属坯料的晶粒在受力的作用下发生滑移和再结晶,从而改变了原来的形状和尺寸,最终形成所需的工件。
其次,应力变形也是轧制的重要原理之一。
在轧制过程中,金属坯料受到的应力会引起其内部结构和形状的变化。
通过合理控制轧制过程中的应力分布和应力状态,可以实现金属坯料的塑性变形和加工成形,从而得到符合要求的工件。
另外,金属流动也是轧制的关键原理之一。
在轧制过程中,金属坯料受到辊轧的挤压和变形,金属内部的晶粒和晶界会发生流动和重组,从而改变了金属的形状和结构。
通过合理控制金属的流动和变形,可以实现金属坯料的加工成形,从而得到满足要求的工件。
总的来说,轧制的原理是通过塑性变形、应力变形和金属流动等方式,将金属坯料加工成所需形状和尺寸的工件。
在轧制过程中,需要合理控制轧制参数和工艺流程,以确保金属的加工质量和工件的精度。
同时,还需要注意金属的热处理和表面处理,以提高工件的性能和表面质量。
通过对轧制原理的深入理解和掌握,可以更好地应用轧制技术,实现金属加工的高效、精密和可靠。
轧制原理-第三章变形区金属的流动课件

加强轧制过程的智能化和自动化
研究智能化和自动化技术在轧制过程中的应用, 以提高生产效率和产品质量。
THANKS FOR WATCHING
感谢您的观看
优化轧制工艺参数的方法
1 2 3
实验优化法
通过实验测试不同的轧制工艺参数组合,找到最 优的参数组合,以达到最佳的金属流动效果和产 品质量。
数值模拟法
利用数值模拟软件对轧制过程进行模拟,预测不 同参数下的金属流动和产品质量,指导实际生产 中的参数优化。
人工智能法
利用人工智能算法对大量历史数据进行分析和学 习,找到最优的工艺参数组合,实现快速优化。
厚向应变
金属在厚度方向上的长度变化。
轧制过程中的应力-应变关系
真实应力-应变曲线
描述了金属在轧制过程中的应力与应变之间的关系,是材料力学 性能的重要指标。
加工硬化
随着应变的增加,金属的屈服强度增加的现象,影响金属的进一步 变形。
流动应力曲线
描述金属在轧制过程中的应力与应变行为,对于确定轧制工艺参数 和优化产品质量具有重要意义。
轧制力对变形区金属流动的影响
力增大,金属流动阻力增大
随着轧制力的增大,变形区内金属所受的应力增加,流动阻力增大,导致金属流动速度减缓。
流动不均匀性改善
轧制力的增大有助于改善变形区内金属流动的不均匀性。这是因为较大的轧制力可以减小因应变速率差异引起的 流动不均匀性问题。
05
实际生产中的变形区金 属流动控制
轧制原理-第三章变形 区金属的流动课件
目 录
• 引言 • 变形区金属流动的规律 • 轧制过程中的应力与应变 • 轧制工艺参数对变形区金属流动的影响 • 实际生产中的变形区金属流动控制 • 结论与展望
轧制定义和基本原理

1. 变形区主要参数
• R-轧辊半径 • α—咬入角 • L—变形区长度,是接触弧(α对应
的弧度)的水平投影 • h0, h1—轧件入口厚度和轧后厚度 • L0, L1 —轧件轧制前后的长度 • b0, b1 —轧件轧制前后的宽度
工艺参数的定义
hh0h12R(1co)s压 下 量
R2R2h2
4. 按轧制产品成形特点分类
一般轧制
特殊轧制 周期轧制
施压轧制 弯曲成形
5. 按轧制产品形状分类
板带材轧制 管材轧制 型材轧制 线材轧制
一、板带材轧制
(1) 板带材 板带材是板材和带材的总称。
板材指裁剪成定尺长度品的产 带材板卷成卷生产供应
板带材的几何外形特征用宽厚比B/H表征。 B/H的大小代表了生产技术的难度。
咬入条件—轧件与轧辊接触后,轧辊能把轧件拉入辊缝进行 轧制的必要条件。
1. 开始咬入的情况 轧辊与轧件的受力关系如图所示
N—施加轧件上的力 T—摩擦力 Nx , Tx分别为其水平分量
- 轧件作用力方向与出 口区间的夹角
- 轧件端部与出口的夹 角
N—施加轧件上的力 T—摩擦力 Nx ,Tx分别为其水平分量
(2)分类 ① 板带材按厚度分为三大类:
中4 ~ 20 mm
中 厚 板
厚
20
~
60 mm
薄 板
和
带材
特厚 02
60 mm ~ 4 mm
极
薄带
材
和薄
材
0 001 ~ 0 2 mm
② 按用途可分为:
造船板、锅炉、桥梁、压力容器、汽车、镀层(镀锡、锌)、电工、 屋面、深冲等。
③ 按材料类别
此时的咬入条件为:
轧制成型的原理和应用

轧制成型的原理和应用1. 轧制成型的定义轧制成型是一种常用的金属加工方法,通过将金属材料置于压力下经过辊道滚动进行加工,使其形状、尺寸和性能发生变化。
轧制成型广泛应用于金属材料的加工和制造行业。
2. 轧制成型的原理轧制成型的原理主要包括下面几个方面:•压力作用:通过辊子施加在金属材料上的压力,使其发生塑性变形。
•辊子的旋转:辊子的旋转运动产生了与金属材料之间的相对运动,从而使金属材料在辊子间流动并受到压力作用。
•金属材料的塑性变形:在压力作用下,金属材料开始发生塑性变形,其原子开始发生位移和重排,使得材料的形状、尺寸和性能发生改变。
•辊子的几何形状:辊子的几何形状对于金属材料的塑性变形起着重要的作用。
辊子的形状和尺寸可以通过调整来实现对金属材料的不同处理效果。
3. 轧制成型的应用轧制成型在金属加工和制造行业中具有广泛的应用。
下面列举了一些主要的应用领域和示例:3.1. 金属材料的压延轧制成型是金属材料压延加工的主要方法。
通过轧制,可以将金属材料加工成不同形状和尺寸的板材、带材、棒材等。
常见的应用领域包括:•钢铁工业:生产钢板、钢带、钢棒等常见的钢材产品。
•铝工业:生产铝板、铝带等铝材产品,广泛用于建筑、航空航天等领域。
•铜工业:生产铜板、铜带等铜材产品,常用于电子、电气等领域。
3.2. 金属材料的轧制加工轧制成型还可以用于金属材料的进一步加工,以改变其性能和形状。
以下是一些常见的轧制加工应用:•冷轧:通过冷却的辊子对金属材料进行轧制,以改变其形状和尺寸。
常用于钢材和铝材的加工。
•热轧:在高温下对金属材料进行轧制,以改变其形状和尺寸。
热轧常用于钢材的加工。
•拉拔:将金属材料通过辊子拉伸和变形,以改变其形状和尺寸。
常用于铜材和铝材的加工。
3.3. 其他应用领域除了上面提到的压延和轧制加工应用之外,轧制成型还具有其他一些应用领域:•硬度调控:通过调整轧制过程中的轧制力和温度,可以调控金属材料的硬度和强度,达到不同的应用要求。
轧制成型的原理和应用

轧制成型的原理和应用轧制成型是指利用轧机对金属材料进行加工变形的一种方法。
其原理是利用轧机上的连续动作轧辊对金属材料进行间歇式挤压,使其产生塑性变形,达到获得所需形状和尺寸的目的。
轧制成型的应用广泛,包括金属材料的加工和制造业等领域。
准备工作包括准备金属材料、选取轧机和准备工作台等。
首先,金属材料被切割成适当的长度,并在轧机上选择的轧辊对其进行预压和预热。
这有助于减少材料的硬度和提高塑性,以便进行后续的轧制操作。
轧制过程是指将金属材料送入轧机,经过连续动作的轧辊挤压,使其产生塑性变形。
轧辊由电机驱动,通过齿轮箱和轴承装置与金属材料传递压力。
金属材料在轧辊之间经历多次挤压和伸展,使其形成所需的形状和尺寸。
轧制过程中,轧辊的直径、形状和布置等因素会影响金属材料的变形和厚度控制。
处理过程是指轧制后的成品进行热处理、冷处理和表面处理等工艺,以达到所需的性能和表面质量要求。
热处理包括退火、正火、淬火等方法,用于调整材料的晶粒结构和提高其强度、硬度等性能。
冷处理是指通过冷却和应力处理等方法,进一步提高材料的硬度和抗疲劳性能。
表面处理用于改善金属材料的耐腐蚀性能、外观和装饰效果。
在金属加工领域,轧制成型广泛应用于钢铁、有色金属等金属材料的加工。
其中,钢铁轧制是最常见的应用之一,主要用于生产各种型钢、钢筋等建筑材料。
此外,铝、铜、钛、镁等有色金属的轧制也非常重要,用于生产各种铝型材、铜箔、钛板等产品。
在制造业中,轧制成型用于生产各种金属制品。
例如,汽车工业中的车身和发动机零部件、航空航天工业中的飞机零部件、电子工业中的散热器等。
此外,轧制成型还用于各种管道、容器、锅炉、轴承及压力容器等的生产。
总之,轧制成型作为加工金属材料的重要方法,具有高效、精度高和成本低等优点。
通过合理的轧辊的设计和选择,可以实现对金属材料的变形控制和形状调整,以满足不同行业对于金属制品的需求。
轧钢的基本原理

轧钢的基本原理
1、热轧原理:从炼钢厂出来的钢坯还仅仅是半成品,必须到轧钢厂去进行轧制以后,才能成为合格的产品。
从炼钢厂送过来的连铸坯,首先是进入加热炉,然后经过初轧机反复轧制之后,进入精轧机。
轧钢属于金属压力加工,说简单点,轧钢板就像压面条,经过擀面杖的多次挤压与推进,面就越擀越薄。
在热轧生产线上,轧坯加热变软,被辊道送入轧机,最后轧成用户要求的尺寸。
轧钢是连续的不间断的作业,钢带在辊道上运行速度快,设备自动化程度高,效率也高。
从平炉出来的钢锭也可以成为钢板,但首先要经过加热和初轧开坯才能送到热轧线上进行轧制,工序改用连铸坯就简单多了,一般连铸坯的厚度为150~250mm,先经过除磷到初轧,经辊道进入精轧轧机,精轧机由7架4辊式轧机组成,机前装有测速辊和飞剪,切除板面头部。
精轧机的速度可以达到23m/s。
2、冷轧原理:与热轧相比,冷轧厂的加工线比较分散,冷轧产品主要有普通冷轧板、涂镀层板也就是镀锡板、镀锌板和彩涂板。
经过热轧厂送来的钢卷,先要经过连续三次技术处理,先要用盐酸除去氧化膜,然后才能送到冷轧机组。
在冷轧机上,开卷机将钢卷打开,然后将钢带引入五机架连轧机轧成薄带卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝板带箔生产供坯方式
连续铸轧优势: 连续铸轧生产线在资金投入少、流程短、能耗低、建设周期短、成品率高、生产成
本低。 连续铸轧劣势:
合金单一(1XXX、8011、3003等);铸轧因缺少铸锭均匀化工序,使铸轧板在组 织结构、晶粒均匀性、表面质量和深冲加工性能上与热轧板存在较大差距。 产品主要用途: 普通铝板带和铝箔毛料。
最多为美国,其产能100万吨/年,产量67万吨/年。
铝板带箔生产供坯方式
单机架热轧一种经典的热轧形式, 如图 1-1 所示,采用一台可逆式热轧 机将铸锭轧至目标厚度,即热粗轧和 热精轧都在同一台轧机上进行,具有 投资少成本低的优点,年生产能力一 般 15 万吨左右。轧机的结构形式有二 辊可逆式热轧机和四棍可逆式热轧机 两种,前者一般用于生产民用 1xxx 、 3xxx 和个别 5xxx 系软合金板、带材。 后者根据产品的种类分为两类,一类 是专门轧制几种软合金,产品专一; 另外一类为万能式的,可以轧制多种 变形铝合金产品。根据其卷取机的配 臵情况可分为单机架出口带卷取的可 逆式热轧和单机架双卷取可逆式热轧。
图 1-1单机架可逆式热轧机
铝板带箔生产供坯方式
单机架双卷取可逆式热轧如图 1-2 所示,在轧机的前后方都配有相应的 卷取装臵,当铸锭开坯到20mm左右, 通过卷取装臵卷取后,带卷轧制1-2道 次(即精轧)至所需要的厚度。该热 轧生产方式是上世纪80年代发展起来 的,以四辊为主。由于带材卷取前坯 料比较薄,轧制温度比较低,板形控 图 1-2 单机架双卷取可逆式热轧 制比较难;且由于带材在辊道上不断 往复运动,容易造成表面损伤,影响 表面质量。
铝板带箔生产供坯方式
热轧一般是指在金属再结晶或强回复温度以上进行轧制; 将粗大的铸造晶粒破碎、显微疏松愈合、减少或消除铸造显 微组织缺陷、将铸造组织改变为形变组织,改善金属的加工 性能。由于热轧通常采用强应变、大压下、高速轧制,为保 障高速、连续化和自动化生产创造了条件。热轧供坯生产能 力大,并且可生产所有牌号的变形铝及铝合金板带产品和薄 板、铝箔等的坯料,适应所有铝板带消费领域的要求,产品 在深冲性能、表面质量及精度控制等各方面都有较大的优势。
铝板带箔生产供坯方式
热轧与铸轧两法相比,各有优劣,从目前总体技术来看, 热轧供坯坯已占全部板带坯料的86%,铸轧料仅为14%。美国、 日本生产的铝板带产量已占世界总产量的50%以上,他们供的 几乎全部是热轧坯料。近十年来,我国新建铝板带加工生产线 绝大部分采用铸轧供坯,占可用于现代化冷轧机供坯统计能力 的51.8%,热轧产品只占铝板带消费的20%左右,与实际需求 结构相距甚远。
冷轧
• 概念:再结晶下的轧制,但一般理解为使用 常温轧制材料的轧制。 • 优点:见热轧的缺点 • 缺点:见热轧的优点
工艺流程图
轧机图片
冷 轧 机
冷连轧 热 轧 机
冷轧机模型
常用冷轧机的形式
可逆式HS冷轧机的设备布置
可逆式六重冷轧机结构简图
0
六 重 轧 机 的 结 构
六 重 CVC 轧 机
双卷取热轧生产线具有结构紧凑、 自动化控制水平较高的特点,但仍难 甚至不能生产具有国际市场竞争能力
铝板带箔生产供坯方式
图 1-3 “1+1”双机架热轧机
“1+1”双机架热轧是将相 距一定距离的两台可逆热轧机 (1台热粗轧机和1台热精轧机) 串联起来构成双机架热轧,形 成热连轧的雏形(如图 1-3所 示)。它是将单机架热轧道次 和时间合理分配到两台轧机, 有利于辊型控制,产品精度比 单机架更高,其产能是单机架 的1.5~1.7倍。
铝板带箔生产供坯方式
多机架连轧是由可逆式热粗轧机和 3~6台热精轧机串 联起来构成多机架连续热轧生产线,如图 1-4 所示,通过 二辊或四辊可逆式热粗轧机往复轧制开坯至 30 - 50mm , 根据后续连轧机架数不同粗轧厚度不相同,然后通过后面 串联的多机架四辊连轧机组轧至所需要的厚度,最后卷取 成带坯。
轧制原理
培训内容
一、轧制基本概念 二、轧制的作用 三、冷轧和热轧的概念
五、工艺流程图
六、轧机图片
七、轧制坯料来源
八、轧制产品常见缺陷及消除方法
一、轧制基本概念
轧制是锭坯依靠摩擦力被拉进旋转的轧辊间,借助于 轧辊施加的压力,使其横断面减小,形状改变,厚度变薄 而长度增加的一种塑性变形过程。根据轧辊旋转方向不同,
铝板带箔生产供坯方式
连续铸轧 连铸连轧 热轧 热连轧
铝板带箔生产供坯方式
铸轧供坯设备简单、占地少、建设速度快、一次性投 资小,从工艺上看不铣面、不需要再加热,铸轧坯可直接 进入现代化冷轧机轧制,节省了可观的能源消耗,属于一 种短流程生产的方式。但铸轧目前生产合金的品种少,主 要以纯铝为主,另外,还包括部分3xxx和低Mg含量的5xxx 铝合金。这些铝合金产品放的表面质量、内部组织和深冲 性能等往往不及热轧的供坯料,因而,高档市场覆盖面受 到较大限制。
图 1-4 多机架串联式
铝板带箔生产供坯方式
一般建设热连轧生产线的目标就是为了实现高效、高质 量热轧卷生产,因此多机架连轧机组都是四辊轧机,而粗轧机 则有二辊和四辊之分。二辊粗轧+多机架热精轧的热连轧生产 线设计比较早,目前全世界只有1+2和1+3式两种,共5条生 产线,这些生产线目前可轧制最大铸锭不超过10吨,并且只能 轧制软铝合金,现代化的紧凑式四辊可逆双卷取单机架热轧机 完全可以取而代之,且降低了投资成本。因此,这种二辊粗轧 +多机架热精轧生产线难以继续发展,而四辊热粗轧+多机架 热精轧的多机架热连轧线不断发展。四辊粗轧的热连轧生产线, 1+2、1+3、1+4、1+5和1+6式都有,全球拥有包括1+1在 内的多机架热轧生产线近50条。
热轧
• 概念:热轧(hot rolling)是相对于冷轧而言的,冷轧是 在再结晶温度以下进行的轧制,而热轧就是在再结晶温度 以上进行的轧制。 • 优点:(1)热轧能显著降低能耗,降低成本。 (2)热轧能改善金属及合金的加工工艺性能,提 高合金的加工性能。 (3)热轧通常采用大铸锭,大压下量轧制,不仅 提高了生产效率,而且提高了轧制速度。 缺点:(1)厚度方向拉伸性能变差,易出现层间撕裂。 (2)对性能产生不利影响。 (3)不能精准控制所需要的力学性能。 (4)尺寸难以控制
轧制又可分为:纵轧、 横轧、斜轧。
轧制时,工作轧辊的转动方
向相反,轧件的纵轴线与轧辊的
轴线相互垂直,这种轧制方法称 为纵轧,是铝合金板、带、箔材 轧制中最常用的方法。
一、轧制基本概念
轧制时,工作轧辊的转动 方向相同,轧件的纵轴线与轧 辊轴线相互平行,这种轧制方 式叫做横扎在铝合金板带材轧 制中很少使用; 轧制时, 工作轧辊的转动 方向相同,轧件的纵轴线与轧辊 轴线成一定的倾斜角度,这种轧 制方式叫斜轧。在生产铝合金管 材和某些异形产品时常用双辊或 多辊斜轧。
铝板带箔生产供坯方式
“1+1”配臵方式在多年的实际生产中反映的主要问题有:
① 终轧温度波动大。单机架热精轧需对热粗轧坯料进行3~5道 次可逆轧制,易造成终轧温度波动大,特别是制罐料终轧温 度偏低,达不到卷取后再结晶的目标。 ② 厚度波动大,性能不稳定。由于多道次轧制,造成多次升速、 减速,升减速阶段属于不稳定轧制阶段,这样必然造成头尾 厚度波动大、性能不稳定或不合格。 ③ 表面易损伤。由于多次卷取、开卷,造成热轧卷层间粘伤, 致使热轧表面产生深度缺陷,严重降低PS板和铝箔表面质量, 造成PS板腐蚀后出现白条,铝箔针孔多和轧制时易断带等问 题。
国内铸轧宽幅代表企业:
1900mm(中铝青海分公司9台与湖南创元铝业6台);2300mm(河南淅川铝业2台) 国外铸轧典型代表企业:
连铸连轧工艺特点:
短流程:生产线由1台黑兹莱特连续铸造机与多机架热连轧机列组成,工艺包
铝板带箔生产供坯方式
括连铸、在线热连轧、卷取,直接采用电解铝液,经净化、配置合金后,经连续 铸造机制成15-20mm厚的带坯,再通过多机架热轧机生产成1-2mm的带坯。
节能减排:较铸轧及热轧减少了铝锭重熔、锭坯铣面与锯切和粗轧机开坯轧制 等多道工序,可减少金属消耗、能源消耗、并减少60%的二氧化碳排放量。
产品性能与用途:产品性能优于连续铸轧,接近铸锭热轧带坯。主要用于1系、 8系的铝箔坯料,5系、6系的交通运输用板带箔与3系、5系的建筑用板带箔。
国内已建:伊川电力 国外现状:全球有连铸连轧生产线13条,总产能135万吨/年,分布于5个国家。
铝板带箔生产供坯方式
与单机架相比,双机架在轧制工艺上具有以下特点:
①轧制的带材厚度较薄,带材的长度增加,铸锭 重量加大,可达10多吨;在铸锭重量相同的条 件下,机列的辊道长度可以减少。 ②带材在精轧机上卷轧制时,因带材不与辊道接 触可以避免机械损伤。 ③因卷带张力轧制,可使轧出的带材平整,与单 机架轧机相比,产品质量得到有效的提高。
冷轧常见缺陷
裂边 翘边 错层 塔形 松卷 毛刺 燕窝 塌卷 碰伤 划伤 擦伤 粘伤 振纹/横纹 松树枝花纹 铸轧横纹 非金属压入 金属压入 印痕 孔洞 亮线 白条 乳液痕 起皮 黑条 摩擦腐蚀 腐蚀 黄油斑 压花 压过划痕 晶粒粗大 纸印 油印 变形纹 亮斑 膜不良
覆膜不良 端面花纹 板形不良 打底折印 皱纹 飞边 点焊不良 厚度不均 油污 明暗条纹 废边压入
热轧常见缺陷
错层 裂边 暗斑 黑线条 气泡 辊道划伤 松层
外甩/内甩
乳液痕
辊印
粘伤 黄油斑 起皮
十二、轧制产品常见缺陷及消除方法
铝板带箔生产供坯方式
热轧因铝及铝合金变形抗力低、塑性高、可轧制尺寸 大的铸锭和采用大压下量的特点,轧制过程便于控制,可 充分发挥设备能力,大大减少了金属变形的能耗,提高了 产品的质量和生产效率,降低了产品的成本,由此成为世 界广泛采用的供坯方法。 随着科学技术的飞速发展,精密机械加工、计算机控 制、现代检测等现代化技术已广泛应用于铝及铝合金热轧 设备制造和热轧过程控制之中。随着现代化塑性加工技术 的发展和应用,铝合金板带产品的厚度愈来愈薄,但厂商 对产品的性能/价格比及产品的质量标准要求却愈来愈高。