线性空间和线性变换6

合集下载

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。

本文将介绍线性空间的定义、性质以及线性变换的概念和特性。

一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。

具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。

即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。

2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。

3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。

4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。

线性空间的性质还包括零向量、负向量和线性相关性。

零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。

线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。

二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。

具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。

2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。

线性变换的性质还包括零变换、恒等变换和可逆性。

零变换表示线性变换将所有向量映射为零向量。

恒等变换表示线性变换将每个向量映射为其本身。

可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。

三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。

线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。

6线性空间与线性变换

6线性空间与线性变换

与A中的
对应,就记
在映射下的像, 在下的原像.
返回
上一页
下一页
的像的全体构成的集合称为的像集,记作 (A),即

设A=R, B=R+, (x)=x2+3是R到R+的一个映
射, 它把 x 映射到 x2+3 , 7 是 -2在 下的像.
返回
上一页
下一页
定义6 设U,V是R上的两个线性空间,是V到U 上的一个映射,如果满足
(4) 对任何a∈R+,有 a a 1 a a 1 1 (a-1叫做a的负元素);
(5) 1 a a a ; k (6) k ( a ) k a a (k ) a;
1
(7 ) (k ) a a
(k )

1 x1 0 x2 x3 0 x4 0 1 1 0 0 0 0 1 2 0 x1 x 2 x1 x2 x2 . 1 x3 x3 2 x4 x4
因此 f(x)在基
下的坐标为
返回
上一页
下一页
返回
上一页
下一页
于是
返回
上一页
下一页
在线性空间Vn中取定一个基 ,则Vn中 的向量 与n维数组向量空间Rn中的向量(x1,x2,…xn)之 间有一个一一对应的关系,且这个对应关系保持线性 组合的对应,即设 则
Vn与Rn有相同的结构,称为Vn与Rn同构。 一般地,设V与U是R上的两个线性空间,如果在 它们的元素之间有一一对应关系,且这个对应关系保 持线性组合的对应,那么就说线性空间V与U同构。

线性空间与线性变换

线性空间与线性变换
个实际得 R元n 素对应起来,从而将抽象具体化进行
研究。
大家学习辛苦了,还是要坚持
继续保持安静
*例3 设R22中向量组{Ai}
1 1
0 2
A1 1 2 A2 1 3
3 1 A3 0 1
2 4 A4 3 7
1 讨论{Ai}得线性相关性、 2求向量组得秩与极大线性无关组、 3把其余得向量表示成极大线性无关组得
求 V1 V2, V1 V2.
§1、3 线性空间V与Fn得同构
坐标关系
V
Fn
V得基{1,2,。。。 n}
由此建立一个一一对应关系
V,X Fn, ()=X
(1+2)=(1)+(2) (k)=k()
在关系下,线性空间V与Fn同构。
同构得性质
定理1、3、1:数域F上两个有限维线性空 间同构得充分必要条件就是她们得维数 相同。 同构保持线性关系不变。 应用: 借助于空间Fn中已经有得结论与方法研 究一般线性空间得线性关系。
1. 求从基(I)到基(II)得过渡矩阵C。
2. 求向量 7 3 在基(II)得坐标Y。 1 2
§1、2 子空间
概述:线性空间V中,向量集合V可以有集合得 运算与关系:
Wi V, W1W2, W1W2, 问题: 这些关系或运算得结果就是否仍然为 线性空间 ?
1、 子空间得概念
定义: 设非空集合WV,W ,如果W中得 元素关于V中得线性运算为线性空间,则称W 就是V得子空间。 判别方法:Important Theorem W就是子空间 W对V得线性运算封闭。
定义: T 得秩=dim R(T); T 得零度=dim N(T)
例 (P018) Rn中得变换 T:设A Rn×n就是一个给定 得 矩阵,XRn,T(X)=AX。 (1)T就是线性变换; (2)Ker(T)就是AX=0得解空间; (3)Im(T)=Span{a1,a2,…,a n}, 其中ai就是矩阵A得列 向量;

第六章 线性空间与线性变换

第六章 线性空间与线性变换
(7) (k + l)α=kα+lα , k,l ∈ F ; (8) k(lα )=(kl)α ,
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠

(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-线性空间与线

同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-线性空间与线

第6章线性空间与线性变换6.1本章要点详解本章要点■线性空间的定义与性质■维数、基与坐标■基变换与坐标变换■线性变换■线性变换的矩阵表示式重难点导学一、线性空间的定义与性质1.两种运算(1)加法运算设V是一个非空集合,R为实数域.如果在V中定义了一个加法,即对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作γ=α+β.(2)数乘运算在V中又定义了一个数与元素的乘法(简称数乘),即对于任一数λ∈R与任一元素α∈V,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα.2.线性空间定义设V是一个非空集合,R为实数域.如果在V中取任意两个元素α,β∈V,加法运算和乘法运算满足以下八条运算规律(设α、β、γ∈V,λ、μ∈R):(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中存在零元素0,对任何α∈V,都有α+0=α;(4)对任何α∈V,都有α的负元素β∈V,使α+β=0;(5)1α=α;(6)λ(μα)=(λμ)α;(7)(λ+μ)α=λα+μα;(8)λ(α+β)=λα+λβ,则V称为线性空间,又称向量空间.3.线性空间的性质(1)零向量是唯一的;(2)任一向量的负向量是唯一的,α的负向量记作-α;(3)0α=0,(-1)α=-α,λ0=0;(4)如果λα=0,则λ=0或α=0.4.子空间(1)定义设V是一个线性空间,L是V的一个非空子集,如果L对于V中所定义的加法和数乘两种运算也构成一个线性空间,则L称为V的子空间.(2)定理线性空间V的非空子集L构成子空间的充分必要条件是:L对于V中的线性运算封闭.二、维数、基与坐标1.维数与基在线性空间V中,如果存在n个向量,满足:(1)线性无关;(2)V中任一向量α总可由线性表示,则就称为线性空间V的一个基,n称为线性空间V的维数.注:维数为n的线性空间称为n维线性空间,记作V n.2.坐标设是线性空间V n的一个基.对于任一向量α∈V n,总有且仅有一组有序数,使这组有序数就称为向量α在这个基中的坐标,并记作3.同构设V与U是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,则线性空间V与U同构.三、基变换与坐标变换1.基变换定义设α1,…,αn及β1,…,βn是线性空间V n中的两个基,有(6-1)把α1,…,αn这n个有序向量记作(α1,…,αn),记n阶矩阵P=(p ij),利用向量和矩阵的形式,式(6-1)可表示为(6-2)式(6-2)称为基变换公式,矩阵P称为由基α1,…,αn到基β1,β2,…,βn的过渡矩阵.又β1,β2,…,βn线性无关,故过渡矩阵P可逆.2.坐标变换公式设V n中的向量α在基α1,…,αn中的坐标为(x1,x2,…,x n)T,在基β1,β2,…,βn 中的坐标为.若两个基满足关系式(6-2),则有坐标变换公式四、线性变换1.定义设V n,U m分别是n维和m维线性空间,T是一个从V n到U m的映射,若映射T满足:(1)任给α1、α2∈V n(从而α1+α2∈V n),有T(α1+α2)=T(α1)+T(α2);(2)任给α∈V n,λ∈R(从而λα∈V n),有T(λα)=λT(α).则T称为从V n到U m的线性映射,又称线性变换.2.线性变换基本性质(1)T0=0,T(-α)=-Tα;(2)若则;(3)若α1,α2,…,αm线性相关,则Tα1,Tα2,…,Tαm亦线性相关,反之不成立;(4)线性变换T的像集T(V n)是一个线性空间,称为线性变换T的像空间;(5)使Tα=0的α的全体N T={α|α∈V n,Tα=0}也是一个线性空间,且N T称为线性变换T的核.五、线性变换的矩阵表示式1.定义设T是线性空间V n中的线性变换,在V n中取定一个基α1,α2,…,αn,如果这个基在变换T下的像为记,上式可表示为其中则A就称为线性变换T在基α1,α2,…,αn下的矩阵.2.定理设线性空间V n中取定两个基α1,α2,…,αn;β1,β2,…,βn,由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩阵为P,V n中的线性变换T在这两个基下的矩阵依次为A和B,则B=P-1AP.6.2配套考研真题解析本章为非重点,暂未编选考研真题,若有最新真题会及时更新.。

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。

本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。

一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。

2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。

3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。

4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。

5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。

6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。

7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。

8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。

9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。

线性空间的例子包括n维向量空间和函数空间等。

它们满足上述定义中的所有条件。

二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。

2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。

3. 线性变换T将零向量映射为目标线性空间的零向量。

线性变换的例子包括平移、旋转和缩放等。

它们保持向量空间的线性结构和线性关系。

三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。

给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。

考研高数总复习第七章线性变换第六节

考研高数总复习第七章线性变换第六节

同时,
A 这就是说, -1(0) 对加法与数量乘法是封闭的. A A A 因为 (0) = 0,所以 0 -1(0) ,即 -1(0) 是非 空的. 所以 A -1(0) 是 V 的子空间.
A A 秩 A V 的维数称为 的 , -1(0) 的维数称为 A 的零度.
例 1 在线性空间 P[x]n 中,令 D ( f (x) ) = f (x) .
又 r 是A V 的维
数也即 A 的秩, s - r = n - r 是 A -1(0) 的维数,即
A 的零度. 因而
A 的秩 + A 的零度 = n .
证毕
推论 对于有限维线性空间的线性变换,它是
单射的充分必要条件为它是满射.
证明 显然,当且仅当 A V = V,即 A 的秩
为 n 时, A 是满射; 另外,当且仅当 A -1(0) = {0}
定义线性变换 A 如下:
A (1 , 2 , …, n ) = (1 , 2 , …, n ) A . 下面来证明, A 在一组适当的基下的矩阵是 (1) .
这样,由
定理 4 设线性空间 V 中线性变换 A 在两组

1 , 2 , … , n ,
(6)
1 , 2 , … , n
(7)
下的矩阵分别为 A 和 B,从基 (6) 到 (7) 的过渡矩
=A0=0.
A 因 r+1 , r+2 , … , s 属于 -1(0) ,故
A A A r+1 = r+2 = … = s = 0 .
A 又 i = i ,i = 1 , 2 ,… , r .
于是上式就变成
l11 + l22 + … + lrr = 0 .

线性空间及线性变换

线性空间及线性变换
i
是V1的一组基, 1 , 2 , , l 是V2的一组基.
(1) V1+V2的基与维数. 令矩阵 A ( 1 , 2 , , k , 1 , 2 , , l ) ,求A的秩,则 V1+V2的维数等于A的秩r,A中r个线性无关的列即为 V1+V2的基. (2) V1∩V2的基与维数. 令 x 1 1 x 2 2 x k k y 1 1 y 2 2 y l l ,解这 个方程组求它的一个基础解系: (xi1,xi2,…,xik,yi1,yi2,…,yil)/,i=1,2,…,d,d=k+l-r,则 z y i=1,2,…,d是V1∩V2的一组基, V1∩V2的维数等于 d=k+l-r. 4.线性变换的值域与核 线性变换/A的值域 / AV { y | y V , y / A , V } ,/A的 核/A-1(0)={y|y∈V,/Ay=0}.
二、基本方法 1.V1,V2是线性空间V的两个子空间,证明V=V1△V2 只要证明以下两点: (1)V1∩V2={0}; (2)dimV=dimV1+dimV2. 2.求线性空间V的基与维数,可先找到V的一个生成 元组 , , , ,然后证明 , , , 线性无关.
f ( ) ( 1 ) ( 2 )
r1 r2
生成
( s )
rs
则V可分解为A的不变子空间的直和
V=V1 △V2△…△Vs,其中: V i
是A属于 i 的根子空间.
{ X | ( i I A) i X 0, X V }
r
2.子空间的性质 我们用dimV表示线性空间V的维数. (1) 设V1和V2是线性空间V的子空间,则 dimV1+dimV2=dim(V1+V2)+dim(V1∩V2). (2) 设V1,V2,…,Vm是线性空间V的真子空间,则必存 在 V ,使 V ,1 i m , (3) 设V1=L(u1,u2,…,um),v1,v2,…,vr是V1中的r个线性 无关的向量,且r<m,则可以从u1,u2,…,um中去掉r个向 量,使剩下的m-r个向量与v1,v2,…,vr合在一起仍生成 子空间V1. 3.子空间的和与交的基与维数的求法 设V1和V2是线性空间V的子空间, 1 , 2 , , k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

到基B2的过渡矩阵A.
解:

β1 β2
e1 e 2 0 2e
2
e3 e3

β1
β2
β3 e1
e2
1 1 1
e3 0 2 1.
β3 0 0 4e3
0 0 4
即得自然基B1到 基B2的过渡矩阵
1 1 1 A 0 2 1.
0 0 4
A 是1, 2, 3 按列排成的矩阵。
定理6.2 设基B1变为基B2的变换矩阵为A ,
0 0
1 0
1 1 1 0
1 1
0 A ,得 A 1
1
0
1 1
0 1
0 0
1 0
1
1 2
1
1 1
0 0
1. 1
1 1 111 0 1 0 1 1
j 1
n
n
x jη j 0
j 1
只有零解即 aij x j 0
j 1
只有零解
|A| 0.
定义6.2 两组基B1=(1, 2,, n)和B2=( 1, 2,, n)
的关系,用矩阵的形式表示为
a11 a12 a1n
(1, 2,, n)=(1, 2,, n)
a21
a22
a2n
an1
定义6.1 设有序向量组B={1, 2,, n} ℝ n,若 B 线

无关,且 ℝn 中任意一个向量 均可以由 B 线性表示为 =a11 + a22 ++ ann
则称 B是ℝn 的一组基(或基底),有序数组(a1, a2,,an)是
向量 关于基 B(或在基B下)的一组坐标(坐标向量),记作 ℝn 的基B不=是(a唯1, a一2,的,,an而) 或在给B=定(a基1,下a2的,坐,a标n)T是, 唯一确定的。
1=(1, 0, 0)T, 2=(1, 1, 0)T, 3=(1, 1, 1)T. 已知在基 B1下的坐标为x=(1, 0, 2)T,求在基B2下的坐标y 。
解法1 先求B1到B2的过渡矩阵A。 (1, 2, 3) = (1, 2, 3) A
1 1 1 1 0 1
1 0 111 1 1 1 2 1
解 设B = (x1, x2,, xn)T, = x11+x22 ++ xnn, 即
(a1, a2,, an)= x1 (1, 1, ,1)+ x2 (0, 1, ,1)+ + xn (0, 0, , 1),
x1 a1

x1 x2 a2
x1 x2 xn an
解这个方程组,得
x1 = a1, x2 = a2 a1, , xn = anan-1 .
x2
= (1,, n)
y2
xn
yn
代入
(1,, n)= (1,, n) A
α1,
α2 , ,
y1
αn
A
y2
α1
,
yn
α2 , ,
y1
αn
A
y2
yn
,
由于 在基 B1= (1,, n)
下的坐标是唯一的,所以 x= A y 或 y=A1 x.
例6.3 已知ℝ3的两组基B1={1, 2, 3}, B2={1, 2, 3} 为: 1=(1, 1, 0)T, 2=(0, 1, 1)T, 3=(1, 0, 1)T ;
an2
ann
称矩阵A=(aij)nn为基B1变为基B2的变换矩阵 (或过渡矩阵) 。
A是可逆的。
A 的第 j 列是 j 在基{1, 2,, n}下的坐标。
例6.2 已知 B2= {1, 2, 3}是ℝ3一组基, 1=(1, 1, 1)T ,
2=(0, 2,1)T, 3=(0, 0, 4)T。求 ℝ3 的自然基B1={e1, e2, e3}
n
x jη
j
0 只有零解。
j 1
n
由 η j aijαi ( j 1,2,,n )
i 1
交换次序
n
n
n
nn
x jη j x j ( aijαi ) ( aij x j )αi 0
j 1
j1 i1
i1 j1
因1, 2,, n线性无关,i 的系数全为零,
n
aij x j 0 (i=1,,n)
B1={1, 2,, n}
是 ℝn 的一组基,
a11
a22
a2n
η1 a11α1 a21α 2 an1α n η2 a12α1 a22α2 an2α n η n a1nα1 a2nα 2 annα n
0
an1 an2 ann
证: 1, 2,, n线性无关的充要条件是
1
1
xn
an
解这个方程组,得
x1 = a1, x2 = a2 a1, , ,xn = anan-1 .
所以, 在基 B下的坐标为B=[a1, a2 a1, , anan-1 ]T。
6.1.2 过渡矩阵(变换矩阵)与坐标变换公式
定理6.1 设

则 1, 2,, n
线性无关的充 要条件是
向量 在B1 ,B2下的坐标分别为
ξB1 x ( x1,,xn )T , ξB2 y ( y1,, yn )T ,

A y=x 或 y= A1x
(坐标变换公式)
证:由 =x1 1 + x2 2 ++ xn n= y1 1 + y2 2 ++ yn n
x1
y1
= (1,, n)
Rn 中n个单位向量组成的基称为自然基。 在 ℝ3 中, =a1 i + a2j + a3k. 向量(a1, a2, a3) 是关于自然 基{ i, j, k} 的一组坐标。 ℝ n中的向量 =(a1, a2,,an)T 也是
关于自然基B={e1, e2,, en}的坐标 B。
例6.1 ℝn 有一组基B = {1, 2,, n},其中 1 =(1, 1,,1), 2 = (0, 1,,1), , n = (0, 0,, 1), 求 = (a1, a2,, an) 在基 B下的坐标B 。
第6章 线性空间和线性变换
主要内容: ℝn的基及向量关于基的坐标; 基变换和坐标变换,基过渡矩阵; 线性空间,基底,维数,坐标及线性子空间的概念; ℝn中的线性变换以及它的矩阵表示。 一个线性变换在两组基下的矩阵是相似的。
6.1 ℝn 的及向量关于基的坐标 坐标变换公式
6.1.1 ℝn 的基及向量关于基的坐标
所以, 在基 B下的坐标为B=[a1, a2 a1, , anan-1 ]T。
若将B中向量和都以列向量表示,则可以用矩阵的形式表示为
= x11+ x2 2++ xn n= β1,
β2 , ,
x1
βn
x2
xn
1 0 0 0 x1 a1

1
1
0
0
x2
a2
1 1
相关文档
最新文档