伺服电动缸选型指南
伺服系统各部分的选型顺序和选型方法

伺服系统各部分的选型顺序和选型方法
伺服系统的选型顺序和选型方法可以按照以下步骤进行:
1. 确定应用需求:首先需要确定伺服系统的应用需求,包括所需控制的运动类型(如位置、速度、力等)、所需的精度和稳定性要求、负载特性等。
2. 选择适当的伺服驱动器:根据应用需求选择适当的伺服驱动器。
考虑到驱动器的功率、电压和电流要求,以及通信接口和网络支持。
3. 确定适当的伺服电机:根据应用需求选择适当的伺服电机。
考虑到电机的功率、转速范围、转矩输出、尺寸和重量等因素。
4. 选择合适的编码器:根据应用需求选择合适的编码器类型。
常见的编码器类型包括绝对值编码器和增量编码器,根据精度和分辨率要求进行选择。
5. 确定适当的机械传动系统:根据应用需求选择适当的机械传动系统。
考虑到传动比、效率、刚度和反向间隙等因素,选择合适的传动方式,如齿轮传动、皮带传动或直线滚动轴承。
6. 其他选型考虑因素:根据具体应用需求,还可以考虑其他因素,如环境要求、防护等级、温度和振动要求等。
在选型过程中,可以进行性能比较和实际测试,以确保所选的各部分能够满足应用需求。
此外,还可以参考厂商提供的技术
手册、产品规格和应用案例,以及与供应商的交流和咨询,获取更多的信息和建议。
伺服电缸参数

伺服电缸参数伺服电缸是一种通过控制电机转速达到精确定位或高速运动的电动执行器。
它的主要构成部分包括电机、减速器、编码器、控制器等。
伺服电缸的参数决定了其性能和适用范围,下面分别介绍各项参数及其应用。
1. 额定负载额定负载是指伺服电缸能够承受的最大负载,在设计和选型时需要考虑外部负载的大小和性质。
在应用中,如果负载超过了额定负载,会影响伺服电缸的精度和寿命。
因此,选型时要根据实际需要选择适当的额定负载。
2. 行程长度行程长度是指伺服电缸的有效行程,即电缸可以移动的最大距离。
在应用中,需要根据实际需要选择合适的行程长度,以保证系统能够完成预定的动作。
同时,行程长度还会影响电缸的速度和精度等性能指标。
3. 速度范围速度范围是指伺服电缸能够实现的最大和最小速度。
在应用中,需要根据实际需要选择合适的速度范围,以保证系统能够满足预定的动作要求。
同时,速度范围还会影响电缸的加速度和减速度等性能指标。
4. 精度等级精度等级是指伺服电缸在运动过程中的位置精度,通常用编码器的分辨率来表示。
在应用中,需要根据实际需要选择合适的精度等级,以保证系统能够满足预定的精度要求。
同时,精度等级还会影响电缸的定位精度和重复定位精度等性能指标。
5. 控制方式控制方式是指伺服电缸的控制器与外部控制系统的接口方式。
常见的控制方式有模拟控制、数字控制和总线控制等。
在应用中,需要根据实际需要选择合适的控制方式,以保证系统能够满足预定的控制要求。
同时,控制方式还会影响电缸的响应速度和控制精度等性能指标。
6. 工作温度工作温度是指伺服电缸能够正常工作的温度范围。
在应用中,需要根据实际需要选择合适的工作温度范围,以保证系统能够在不同环境下正常工作。
同时,工作温度还会影响电缸的性能和寿命等指标。
7. 防护等级防护等级是指伺服电缸的外壳防护等级,通常用IP等级来表示。
在应用中,需要根据实际需要选择合适的防护等级,以保证系统能够在不同环境下正常工作。
伺服电机选型技术指南

伺服电机选型技术指南伺服电机是一种能够控制位置、速度和力矩的电机,被广泛应用于自动化控制系统中。
伺服电机的选型十分重要,它直接影响到系统的性能和稳定性。
本文将为大家介绍伺服电机的选型技术指南。
一、了解应用需求在选型之前,首先需要了解应用的需求和要求。
包括但不限于电机的扭矩要求、转速要求、精度要求等。
这些要求将指导我们在选型时考虑哪些因素,并帮助我们找到最适合的伺服电机。
二、根据工作负载选择电机类型根据应用的负载特性,我们可以选择适合的电机类型。
常见的伺服电机类型包括直流伺服电机(DC Servo Motor)、交流伺服电机(AC Servo Motor)、步进电机(Stepper Motor)等。
根据负载特性(如惯性、摩擦力矩等)选择合适的电机类型,以保证系统能够提供足够的扭矩和速度。
三、考虑动态性能伺服电机的动态性能非常重要,尤其是对于需要高速定位控制的应用。
动态性能主要由响应时间、加速时间和减速时间决定。
响应时间是指系统从接收到指令开始到开始变化的时间,加速时间和减速时间分别是将电机从静止状态加速到工作速度和从工作速度减速到静止状态所需的时间。
根据应用的需求,选择合适的动态性能指标,确保系统的响应速度和准确性。
四、考虑系统稳定性伺服系统的稳定性对于一些高精度和高速度应用非常重要。
系统的稳定性与伺服电机的增益和带宽有关。
增益是指系统对输入信号的放大倍数,带宽是指系统能够输出到给定频率的能力。
增益和带宽应根据系统的性能要求进行调整,以保证系统的稳定性和可靠性。
五、考虑环境条件环境条件也是选择伺服电机的重要因素。
包括但不限于温度、湿度、尘土等。
特殊的环境条件可能需要选择具有防护性能的电机,以确保电机的正常运行和寿命。
六、查看技术参数和规格在选型之前,我们还需要查看伺服电机的技术参数和规格。
包括额定电压、额定功率、最大扭矩、最高转速等。
同时,还需要了解电机的接口和控制方式,以确保电机可以与控制系统兼容。
伺服电机选型手册

SM 110-020-30 LFB 2 Nm 3000 rpm 0.6Kw SA3L04C SA3L06B SA3H10C
SM 110-040-30 LFB 4 Nm 3000 rpm 1.2Kw SA3L06B SA3L10B SA3H10C
SM 130-040-25 LFB 4 Nm 2500 rpm 1.0Kw SA3L06B SA3L10B SA3H10C
SM 130-050-25 LFB 5 Nm 2500 rpm 1.3Kw SA3L06B SA3L10B SA3H10C
SM 130-060-25 LFB 6 Nm 2500 rpm 1.5Kw SA3L06B SA3L10B SA3H10C
转矩-转速图(T—M图1图2-A(图2-B图3-A(图3-B
额定转矩(Nm 1.3 2.4 3.3
A(mm 128 150 165
B(mm 500 500 500
转矩-转速图(M-n:
图1
图2-A图2-B
图3-A图3-B注:A区间连续工作区;B区间短时工作区;图X-A为SFC配置,图X-B为SFC+配置。
4:表示驱动器软件订制标志。
伺服电机主要参数BONMET伺服驱动器型号
电机系列电机型号额定转矩额定转速额定功率SFC配置SFC+配置高压配置ห้องสมุดไป่ตู้
SM型伺服电机40系列
SM 40-001-30LFB 0.1Nm 3000rpm 0.03Kw SL10A SA3L04C SA3H10C
SM 40-002-30LFB 0.13Nm 3000rpm 0.05Kw SL10A SA3L04C SA3H10C
电动缸选型说明

电动缸选型说明————————————————————————————————作者:————————————————————————————————日期:名称 :503电动高低机方案设计报告编 号密 级 阶段标记 会签编 制 校 对 审 核 标 审 批 准西安方元明科技发展有限公司内容摘要:本报告对高低机方案设计过程进行了阐述,完成高低机整体方案设计报告编写。
主方案设计总体技术设计题词更改单号更改日期更改人更改办法更改栏1概述此装置用于完成某设备的高低动作,从而进行此姿态稳定伺服高低机(以下简称高低机)的设计。
2主要技术指标2.1性能指标1)推力:不小于5000N;2)初始安装长度:791±1mm;3)跨距:520mm;4)最长长度:≥1369mm(前连接耳处的螺纹可实现调节);5)速度:8mm/s;6)额定电压:24VDC、36VDC、48VDC;2.2环境适应性1)-40℃-55℃正常工作;2)淋雨试验:6mm/h;3)冲击实验:加速度30g;4)三防要求:湿热、盐雾、霉菌;5)符合空投和空载运输要求。
2.3组成和功能要求2.3.1组成此装置由左右高低机、蜗轮蜗杆箱、行星减速器、直流伺服电机、传动轴、手摇装置等组成。
其中高低机主要包含缸筒、滚珠丝杠副、推杆等。
其结构布局图如下图所示:2.3.2功能要求1) 机械自锁;2)手摇机构具备两种速度,手摇速比1:1和1:2;3)手旋螺母微调及锁紧功能。
3总体技术设计3.1结构组成本次设计中将高低机分为三大部分,分别是:伺服电机、蜗轮蜗杆箱、缸体等。
缸体主要包括滚珠丝杠副、轴承组、推杆、缸筒等。
3.2工作原理工作原理为:伺服电机旋转,通过减速器、蜗轮蜗杆传动机构带动丝杠副旋转;丝杠螺母径向限位,在丝杠旋转力矩的驱动下,丝杠螺母与电动高低机推杆一起做往复直线运动。
4主要部件的选型计算4.1滚珠丝杠副根据技术协议中额定推力不小于5000N ,满载速度不小于8mm/s 的要求对电动缸使用的滚珠丝杠副进行选型计算。
伺服电机分类与选型流程

伺服电机分类与选型流程伺服电机定义:伺服电机定义伺服电机是指控制伺服系统机械部件运行的发动机,是辅助电机的间接变速装置。
根据电源的不同,分为直流伺服电机和交流伺服电机。
伺服电机的选择应考虑负载机构、动作方式、负载惯性、定位精度、使用环境等。
伺服电机分类与选型流程?一、伺服电机分类伺服电机定义:伺服电机定义伺服电机是指控制伺服系统中机械部件运行的发动机,是辅助电机的间接变速装置。
它分为直流伺服电机和交流伺服电机。
它们在功能上的区别:交流伺服更好,因为它是由正弦波控制的,并且具有较小的转矩波动。
直流伺服为梯形波。
但是直流伺服系统相对简单且便宜。
看到这里,你可能会认为伺服电机没有任何特点:简单来说,伺服电机可以实现精确控制。
它还将反馈尽可能多的信息,以实现所谓的闭环。
编码器会反馈,看看它是否真的旋转了这么多,所以控制精度更高普通电动机通电时转动,不通电时停止。
除了转弯,如果它有任何功能,它是积极的和消极的。
二、提供伺服电机选择流程 1.负载机构(确定机构类型及其详细数据,如滚珠丝杠长度、滚珠丝杆直径、行程、滑轮直径等) 2.动作模式(确定控制对象的动作模式,时间与速度的关系;将控制对象的运动模式转换为电机轴上的动作模式;确定操作模式,包括加速时间(ta)、匀速时间(tu)、减速时间(td)、停止时间(ts)、循环时间(tc)、运动距离(L)等参数) 3.定位精度(确认编码器脉冲数是否满足系统要求的分辨率)伺服电机分类与选型流程?伺服电机由带刷直流电机驱动。
直流电机比交流电机更容易控制,体积更小,价格低廉,因此以前广泛使用。
然而,随着价格的降低,随着电机控制技术的发展,交流使用电机的机会越来越少。
伺服电动缸行程调节方法与注意事项

不知道大家还有没有印象,我们在伺服电动缸选型的时候,是要确定电动缸行程的,从中我们可以看出行程在我们选型、使用中都是非常关键的参数。
而我们加工的产品是多样性的,所以需要的电动缸行程也就会有差异了,那么如何调整伺服电动缸行程呢?下面森拓电动缸厂家就来告诉这个问题的操作方法,这样大家就能合理的设置电动缸行程,这对确保设备的正常运行和安全性有很大作用!一、伺服电动缸行程调节方法:机械限位开关调节法:机械限位开关是伺服电动缸行程调节的常用方法之一。
通过调整限位开关的位置,可以限制伺服电动缸的行程范围。
具体操作步骤如下:1、确定伺服电动缸的起始位置和终止位置;2、调整限位开关的位置,使其与伺服电动缸的行程范围相匹配;3、测试伺服电动缸的行程是否符合要求,如有需要,可进行微调。
编码器反馈调节法:编码器反馈调节法是一种更精确的行程调节方法。
通过编码器的反馈信号,可以实时监测伺服电动缸的位置,从而进行行程的调节。
具体操作步骤如下:1、安装编码器,并与伺服电动缸连接;2、设置编码器的起始位置和终止位置;3、根据编码器的反馈信号,调整伺服电动缸的行程范围;4、测试伺服电动缸的行程是否符合要求,如有需要,可进行微调。
控制器调节法:控制器调节法是一种更智能化的行程调节方法。
通过控制器的设置,可以实现伺服电动缸行程的精确控制和调节。
具体操作步骤如下:1、连接伺服电动缸和控制器,并进行初始化设置;2、根据实际需求,设置伺服电动缸的起始位置和终止位置;3、通过控制器的操作界面,调节伺服电动缸的行程范围;4、测试伺服电动缸的行程是否符合要求,如有需要,可进行微调。
二、伺服电动缸行程调节注意事项:1、安全性:在进行伺服电动缸行程调节时,务必确保设备处于停机状态,并采取相应的安全措施,避免意外伤害的发生。
2、精确性:行程调节需要精确地确定起始位置和终止位置,以确保伺服电动缸的行程范围符合实际需求。
在调节过程中,应使用精确的测量工具和仪器,避免误差的产生。
伺服电动缸选型标准

伺服电动缸选型标准
伺服电动缸的选型标准主要涉及负载、速度、行程、安装方式等参数。
具体如下:
1. 负载:这是决定电动缸输出力大小的关键因素,直接关系到电动缸所使用的缸体大小和是否需要加减速机以及导程的大小。
2. 速度:速度参数影响电动缸的工作节奏和效率,需要根据实际应用的要求来确定。
3. 行程:指的是电动缸活塞能够移动的最大距离,这个参数取决于应用场合中所需的动作范围。
4. 安装方式:不同的设备和应用场景可能需要不同的安装方式,这影响了电动缸的结构和接口设计。
5. 电机扭矩:电机的输出扭矩越大,电动缸的输出力也越大。
电机扭矩可以通过相关的计算公式得到,例如:T=9550*电机功率/电机额定转数。
6. 减速比和丝杆导程:这些参数与电动缸的输出力和精度有关,减速比越大,输出力越大;丝杆导程则影响电动缸的位移精度和速度。
在选型时,还需要考虑到实际应用环境的特殊要求,如温度、湿度、防尘防爆等。
此外,还应参考相关的国家标准或行业标准,确保所选产品符合技术规范和安全要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、电机输出扭矩与电动缸输出力的关系
F = T*η*2π*R/L
F:电动缸输出力,单位:kN T:电机输出扭矩,单位:Nm R:减速比L:丝杆导程,单位:mm
η:效率(一般选择电动缸的总效率为85%,但是效率根据实际使用工况会有变化,请注意) 2、电动缸的寿命计算
电动缸的寿命一般指电动缸内部使用的丝杆寿命,可以分为两个部分,一是丝杆的疲劳寿命,它可以通过计算得出;另一个是使用寿命,取决于使用条件(如温度、灰尘、使用润滑的种类和定期添加的频率等等)。
使用寿命往往通过经验得出。
以下是电动缸的疲劳寿命计算方法。
L10=(Ca/Fm)3*S
L10:电动缸的寿命,单位:km Fm:电动缸承受的平均负载,单位:kN
Ca:丝杆螺母的基本额定动负载,单位:kN(可通过丝杆样本查出) S:丝杆导程,单位:mm
3、平均负载的计算
平均负载是指电动缸在一个工作循环中,综合在各个不同工作区间的力、速度和时间后得出的
立方平均值。
那么电动缸的平均负载的计算公式如下。