镍氢电池性能与技术要求
镍氢电池的优势与劣势动力电池产品分析

镍氢电池的优势与劣势动力电池产品分析动力电池是指用于储存并释放电能以为电动机提供动力的电池。
镍氢电池作为一种常见的动力电池,具有其独特的优势和劣势。
本文将对镍氢电池的优势和劣势进行分析,并与其他类型的动力电池进行比较。
一、镍氢电池的优势1. 高能量密度:相比于铅酸电池和镍镉电池,镍氢电池具有较高的能量密度。
这意味着在相同体积或重量下,镍氢电池可以存储更多的电能,从而提供更长的续航里程。
2. 长寿命:镍氢电池具有较长的寿命,并且能够进行更多的充放电循环。
相比之下,镍镉电池的寿命更短,并且铅酸电池需要更频繁的维护和更换。
3. 环保友好:镍氢电池不含有对环境有害的重金属,如镉和铅。
相比之下,镍镉电池中的镉是一种有毒金属,对环境和人体健康构成潜在威胁。
4. 快速充电:镍氢电池具有快速充电的能力。
相比于其他类型的动力电池,镍氢电池可以在较短的时间内完成充电过程,提供便捷的使用体验。
5. 安全性高:镍氢电池相对较安全,不会像锂电池那样容易引发火灾或爆炸。
这使得镍氢电池在很多关键领域,如航空航天领域,得到广泛应用。
二、镍氢电池的劣势1. 重量较大:镍氢电池相对较重,这对于一些需要追求轻量化设计的应用来说,可能会带来一定的不便。
2. 低电压平台:镍氢电池的电压平台较低,这对于某些高电压需求的电子设备可能不适用。
3. 存储容量衰减:随着使用时间的增加,镍氢电池的存储容量会逐渐下降。
这意味着一段时间后,电池需要更频繁地充电,以维持其正常使用。
4. 价格较高:相比于铅酸电池,镍氢电池的价格较高。
这增加了产品成本,并可能限制其在大规模应用中的普及程度。
三、镍氢电池与其他动力电池的比较分析与铅酸电池相比,镍氢电池具有更高的能量密度、更长的寿命和更好的环保性能。
然而,铅酸电池的成本较低,并且在一些传统的动力电池应用中仍然具有一定的竞争力。
与镍镉电池相比,镍氢电池具有更好的环保性能和更长的寿命。
镍镉电池虽然具有较高的能量密度,但铁镍电池在环保性能上更具优势,逐渐减少了镍镉电池在市场上的份额。
电动道路车辆用镍氢电池和模块 安全要求-最新国标

目次1范围 (4)2规范性引用文件 (4)3术语和定义 (4)4一般测试要求 (5)4.1测量设备的精度 (5)4.2一般测试条件 (6)5电气测量 (7)5.1一般充电条件 (7)5.2容量 (7)5.3充电状态的调整 (7)6安全测试 (8)6.1通用要求 (8)6.2机械测试 (8)6.3温度测试 (10)6.4电气测试 (11)电动道路车辆用镍氢电池和模块安全要求1范围本文件规定了电动道路车辆(EV)用镍氢(Ni-MH)电池和模块安全性能的测试和验收。
,包括纯电动汽车(BEV)和混合电动汽车(HEV)。
本文件的目的是为了确保,在电动道路车的正常运行下,电池系统在预期使用和合理可预见的误用情况下的基本安全性能。
本文件不适用于镍氢(Ni-MH)电池在运输和储存过程中的安全性评估。
注:在本文件中,电池的所有描述都适用于模块测试。
2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本使用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T2900.41电工术语原电池和蓄电池(GB/T2900.41-2008,IEC60050-482:2003,IDT)GB/T19596电动汽车术语GB38031电动汽车用动力蓄电池安全要求IEC61434含碱性或其他非酸性电解质的二次电池和电池碱性二次电池和电池组标准中电流指定指南(IEC61434-1996Secondary cells and batteries containing alkaline or other non-acid electrolytes-Guide to designation of current in alkaline secondary cell and battery standards)3术语和定义GB/T2900.41、GB/T19596界定的及下列术语和定义适用于本文件。
镍氢低温电池标准

镍氢低温电池标准一、概述镍氢低温电池是一种使用在低温环境下的电池,其工作原理是利用镍氢材料作为电池的正负极活性物质,通过氢离子的迁移和电子的传递来产生电流。
由于其具有较高的能量密度、较长的使用寿命和环保等优点,因此在航空航天、军事、极地科考等领域得到了广泛的应用。
二、标准组成镍氢低温电池标准主要由以下几个部分组成:1. 电池尺寸和重量:根据使用环境和要求,规定了电池的尺寸和重量,以确保电池的便携性和适用性。
2. 电池性能:包括电池的电压、容量、充放电性能、循环寿命等,以确保电池在使用过程中能够满足实际需求。
3. 电池安全:规定了电池的安全性能,包括过充电、过放电、短路等安全防护措施,以确保电池在使用过程中的安全性。
4. 电池环境适应性:根据使用环境的特点,规定了电池在不同温度、湿度、气压等环境条件下的适应性要求,以确保电池在实际使用中的可靠性。
5. 电池试验方法:规定了电池的各项性能和安全性能的试验方法,以及环境适应性试验的具体操作步骤,以确保试验结果的准确性和可靠性。
三、标准特点镍氢低温电池标准具有以下特点:1. 针对性强:根据低温环境下电池使用的特点,制定了专门的性能指标和试验方法,以满足实际使用的需求。
2. 全面性:标准涵盖了电池的尺寸、重量、性能、安全和环境适应性等方面的要求,对电池的设计和生产具有全面的指导意义。
3. 试验方法科学:标准中规定的各项试验方法科学严谨,可操作性强,能够准确地反映电池的性能和安全性。
4. 与国际接轨:标准在制定过程中参考了国际上相关的电池标准,与国际标准接轨,有利于提高我国电池产品的国际竞争力。
5. 更新及时:随着技术的不断进步和应用需求的不断提高,标准会及时进行修订和更新,以保证标准的时效性和适用性。
四、应用范围镍氢低温电池标准适用于在低温环境下使用的镍氢电池的设计、生产和检验。
具体应用范围包括但不限于以下几个方面:1. 航空航天领域:用于卫星、空间站等航天器的能源供应,要求电池具有较高的能量密度和可靠性。
iec 镍氢电池标准

IEC镍氢电池标准引言镍氢电池(Nickel Metal Hydride Battery,简称Ni-MH电池)作为一种可充电电池,具有高能量密度、环保无污染等优点,在现代社会中被广泛应用。
为保证其安全性和性能,国际电工委员会(International Electrotechnical Commission,简称IEC)制定了一系列的标准和规范来规范镍氢电池的开发、生产和使用。
IEC镍氢电池标准的制定IEC镍氢电池标准的制定是由IEC下的技术委员会、工作组和专家组共同完成的。
这些组织和个人在制定标准的过程中,充分考虑了镍氢电池的特性、相关技术的发展和国际市场的需求。
标准的制定过程遵循一定的程序,一般包括以下几个步骤:1.标准需求确定:通过调研市场需求、分析相关技术和产品的特性,确定制定标准的必要性和范围。
2.技术讨论和研究:召集技术委员会、工作组和专家组成员,进行相关技术的讨论和研究,收集相关的资料和数据。
3.标准草案编写:根据研究结果和技术讨论,编写IEC镍氢电池标准的草案,包括标准的名称、范围、术语和定义、测试方法和指标等内容。
4.标准审查和修改:将标准草案提交给相关单位和个人进行审查和修改,包括技术审查、语言审查和法规审查等。
通过多次修改和讨论,确保标准的准确性和可行性。
5.标准发布和实施:经过审查和修改后,将标准正式发布,并根据标准的内容和要求,实施在镍氢电池的开发、生产、销售和使用过程中。
IEC镍氢电池标准的内容IEC镍氢电池标准的内容主要包括以下几个方面:1.术语和定义:标准中明确了一些在镍氢电池领域中的术语和定义,如容量、循环寿命、内阻等,以便于规范对这些概念的理解和应用。
2.技术要求:标准规定了镍氢电池的技术要求,包括电池的容量、充放电性能、循环寿命、安全性能等。
这些要求确保了电池在正常使用条件下的可靠性和安全性。
3.标准测试方法:为了验证和评估镍氢电池的性能,标准提供了一系列的测试方法,包括容量测试、循环寿命测试、内阻测试等。
镍氢电池与镍镉电池在动力应用中的性能对比

镍氢电池与镍镉电池在动力应用中的性能对比随着科技的进步和对环境保护的关注,电动动力系统逐渐替代传统的燃油动力系统成为未来发展的趋势。
而在众多的电池类型中,镍氢电池和镍镉电池是两种常见的可充电电池。
本文将就这两种电池在动力应用中的性能进行对比,并分析其优点和缺点。
首先,我们来看看镍氢电池。
镍氢电池具有较高的能量密度,相对于镍镉电池来说,镍氢电池在相同体积和质量下可以存储更多的电能。
这使得镍氢电池在动力应用中可以提供更长的续航里程,使得电动车等设备能够更加持久地使用。
此外,镍氢电池的充放电效率较高,能够在充电和放电过程中减少能量损失。
镍氢电池还有较高的循环寿命,可以进行数千次的充放电循环,相对于镍镉电池来说更加耐用。
然而,镍镉电池也有其自身的优势。
首先,镍镉电池具有较高的储能密度,相对于镍氢电池来说,在相同体积和质量下可以存储更多的能量。
这使得镍镉电池在动力应用中可以提供更大的功率输出,适合用于一些对功率要求较高的设备,例如电动工具等。
此外,镍镉电池的电压稳定性较好,在高温和低温环境下仍然能够维持较稳定的电压输出。
镍镉电池还具有较低的内阻,能够提供较大的瞬态电流输出,满足某些特殊应用的需求。
然而,同时我们也不能忽视这两种电池存在的一些不足之处。
镍氢电池在高温下容易发生热失控现象,可能会引发安全隐患。
而镍镉电池中的镉元素对环境有一定的污染,使用和处置过程需要对镉元素进行特殊处理,以确保环境的安全。
此外,镍氢电池和镍镉电池在充电速度方面都存在一定的限制,相对于锂离子电池来说充电时间较长,这也在一定程度上限制了它们的应用。
综上所述,镍氢电池和镍镉电池在动力应用中各具优势。
对于需要长续航里程的应用,镍氢电池是一个不错的选择,而对于对功率要求较高的应用,镍镉电池则更为适合。
在实际应用中,我们需要充分考虑到实际需求,综合各种因素,选择合适的电池类型。
未来,随着科技的不断进步,电池技术也将得到进一步的创新和改进,为动力应用提供更加高效、环保的解决方案。
高功率镍氢电池-会议

做动力电池的最佳供应商 高功率镍氢电池的性能和应用李玮江苏春兰清洁能源研究院有限公司二〇一四年四月做动力电池的最佳供应商公司概况简介公司是集研发、生产、销售于一体的专业生产高能动力锂离子电池和镍氢电池及其管理系统的高科技企业。
承担了国家科技部十五、十一五 和十二五“863”计划课题的研发。
主要产品:8Ah-200Ah系列化动力电池及其管理系统产品。
申请专利58项,已获得发明专利14项和软件著作权4项 。
做动力电池的最佳供应商获得国家科学技术进步二等奖做动力电池的最佳供应商 电动车用电池性能的需求分析做动力电池的最佳供应商●动力电池及其管理系统是电动车的关键零部件/关键技术●电动车的节油性能、运营成本、使用寿命等很大程度上取决于动力电池及其管理系统做动力电池的最佳供应商 电动车用动力电池的基本要求安全、能量、功率、寿命、成本:取决于电池体系的成分和结构设计,即高能量与倍率特性、寿命、安全、稳定性的相兼容。
不是采用最先进的性能指标而是采取最可靠的技术集成组合做动力电池的最佳供应商 电动车电池应用的配置策略做动力电池的最佳供应商 不同类型电池充放电深度与寿命的关系根据使用条件、寿命要求和功率与能量比值(P/E)等考量,镍氢电池适合于高频次、浅充放循环的混合动力城市公交工况做动力电池的最佳供应商 油耗目标:2020年与国际接轨(乘用车平均5L/100Km)新能源汽车技术进步和发展的路线图性能可靠稳定的HEV在大面积充电网络等基础设施还没完全建立起来之前作为先期应用技术,现实的节能效果似乎更适合些 。
做动力电池的最佳供应商 高功率电池的研究和设计要素由于普遍存在车辆制动时,大电流能量反馈接受能力的问题,尤其在电池荷电量(SOC)接近满态值时,因此不同程度地影响了整车的节油效率。
针对此现象,以往解决该问题的技术路线,通常是在设计和配置上采用提高电池的容量来弥补功率特性应用的需求,这样的方法虽然能有所改善电池的大电流接受能力。
镍氢电池知识大全

铅酸电池(Sealed)
电压:2V
使用寿命为:200~300次
放电温度为:0度~45度
充电温度为:0度~45度
备注:就是一般车用电瓶(它是以6个2V串联成12V的),免加水的电池使用寿命长达10年,但体积和最量是最大的。
AA、AAA都是说明电池型号的。
例如:
AA就是我们通常所说的5号电池,一般尺寸为:直径14mm,高度49mm;
AAA就是我们通常所说的7号电池,一般尺寸为:直径11mm,高度44mm。
以下是来自:电池直销网的补充
另附电池知识若干:
说说常见的“AAAA,AAA,AA,A,SC,C,D,N,F”这些型号
镍氢电池和镍镉电池外形上相似,而且镍氢电池的正极与镍镉电池也基本相同,都是以氢氧化镍为正极,主要区别在于镍镉电池负极板采用的是镉活性物质,而镍氢电池是以高能贮氢合金为负极,因此镍氢电池具有更大的能量。同时镍氢电池在电化学特性方面与镍镉电池亦基本相似,故镍氢电池在使用时可完全替代镍镉电池,而不需要对设备进行任何改造。
只有一个A表示型号的电池不常见,这一系列通常作电池组里面的电池芯,我经常给别人换老摄像机的镍镉,镍氢电池,几乎都是4/5A,或者4/5SC的电池芯。标准的A(平头)电池高度49.0±0.5mm,直径16.8±0.2mm。
其实上镍氢充电电池和锂离子充电电池的记忆效应是十分轻微的,并不值得我们去注意它。
(请注意看到这里时,就不要利用充电器的放电功能对镍氢充电电池和锂离子充电电池进行放电动作,尤其是锂离子充电电池,由于本身的材质因数,并不允许电池本身能够承受充电器的强制放电。如果你硬要对锂离子充电电池进行放电,最终将导致电池损坏。)另外,你使用需放电的镍镉充电电池,那么建议你,不论使用电池的次数是否频繁,最好每隔两、三个月左右就对镍镉充电电池进行一次充放电,这样可以确保镍镉充电电池的记忆效应对电池的影响减到最低状态。
镍氢电池基础知识

正极基体:发泡镍(约1.6--1.7mm厚),或冲孔镀镍 钢带 (0.06--0.08mm厚) 正极集流体:镍带(约0.1mm厚)
镍氢电池结构——负极
负极基体:铜网、钢网(约 0.22~0.32mm厚) 钢带(约0.04~0.08mm厚)
负极物质: MH:吸氢合金 HPMC :羟丙基甲基纤维素 TEN:保水增稠 SBR :丁苯橡胶 ,粘结剂
4.3 镍氢电池结构
• 正极: 活性物质(Ni(OH)2) 、导电剂、溶剂、粘结剂、基 体。 • 负极: 活性物质(储氢合金粉)、 粘合剂、溶剂、导电 剂、基体 • 隔膜:PP+PE • 电解液:KOH+LiOH • 外壳:钢壳、盖帽、极耳
镍氢电池结构——正极
焊点:(约4~8个) 正极物质:球镍+亚钴+PTFE
研制金属氢化物-镍电池
低压氢镍电池
(-)MHKOH或NaOH NiOOH(+)
正极活性物质: NiOOH(三价镍的氢氧化物)
负极活性物质: 储氢合金(MH)
电解液: KOH/NaOH
隔膜: 采用多孔维尼纶无纺布或尼龙无纺布 额定电压: 1.2V
低压镍氢电池的发展
+ 20世纪60年代,PHilips实验室发现LaNi5系多元储氢合金材料具 有可逆的吸放氢性能;
Capacity charge(%)
由图看出,环境温度越高,充电电压越低.
镍氢电池不同电流充电特性
由图看出,在较高电流充电后期必然出现充电电压 下降和温度上升的现象,由此可以作为快速充电的 控制方法,即用—ΔV和t控制;电流越大,充电电压 越高.
镍氢电池不同电流放电曲线
镍氢电池温度特性
Ni/MH电池在20℃条件下的放电性能最佳。由于低温下(0℃以 下)MH的活性低和高温时(40℃以上)MH易于分解析出H2,致使 电池的放电容量明显下降,甚至不能工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镍氢电池性能与技术要求
2007-07-03 15:56 作者:来源:eNet硅谷动力
[摘要] 镍金属氢化物电池是由贮氢合金负极,镍正极,氢氧化钾电解液以及隔板等组成的可充电电池,它与镍镉电池的本质区别只是在于负极材料的不
镍金属氢化物电池是由贮氢合金负极,镍正极,氢氧化钾电解液以及隔板等组成的可充电电池,它与镍镉电池的本质区别只是在于负极材料的不问。
这种电池的电压和镍镉电池完全相同,为1 2伏。
它可以直接用在使用镍镉电池有器械件上。
镍氢电池的设想在七十年代开始有人提及,大量的研究集中在九十年代,工业化生产从20世纪最后10年的初期开始。
作为负极材料的贮氢合金是由A和B两种金属形成的合金,其中A金属(La,Ti,Zr 等)可以大量吸进氢气,形成稳定的氢化物。
而B金属(Ni,Co,Fe,Mn等)不能形成稳定的氢化物,但氢很容易在其中移动。
也就是说,A金属控制着氢的吸藏量,而B金属控制着吸放氢气的可逆性。
按照合金的晶体结构,贮氢合金可分为AB5型、AB2型、AB型、固溶体型等,其中主要使用稀土金属的是AB5型合金。
AB5型贮氢合金主要由铜镧糸元素和镍组成,同时少量添加铝,锰,钴等。
不是所有的贮氢合金都能作镍氢电池的负极材料。
日本生产镍金属氢化物电池主要是用稀土金属和混合稀土金属作负极,生产的电池占全世界该种电池产最的90%以上,美国主要使用钛银基合金作负极,生产的电池约占全世界产量的5%,生产公司有奥芬尼克和杜拉塞乐等几个公司。
1.镍金属氢化物电池的优越性。
Ni-MH电池具有能量密度高、功率密度高、可快速充放电、循环寿命长以及无记忆效应、无污染、可兔维护、使用安全等特点,被称为绿色电池。
该种电池同镍锅电池相比,性能指标普遍高于镍镉电池;Ni-MH电池的比能量是镍镉电池的1.5—2倍。
电流充放电时,无记忆效应、低温特性好、综合性能优于镍镉电池,同时镍镉电池废电池处理复杂,在能源紧张,环境污染严重的今天,Ni—MH电池显示出广阔的应用前景。
因为极镍电极同镍镉电池完全一样,所以凡是能使用镍镉电池的电器都可以使用镍金属氢化电池;它无毒,利于环保且综合性能优于镍镉电池,它也不会象锂高子电池那样遇潮易爆炸。
因此,近五年来生产发展速度远高于镍镉电池。
2,镍金属氢化物电池水平现状
镍金属氢化物电池与镍镉电池相同点是电压一样。
不同点是自放电率约高。
其它各项性能指标有高有低,有些高于镍镉电池,有些低于锂离子电池。
表 1 详细列出了日本镍金属氢化物电池的性能水平现状。
日本小型贮氢电池性能水平现状
性能参数镉/镍电池镍金属氢化物电池
放电电压 (V) 1.—1.0 1.2—1.0
重量比能量(WH/Kg) 50一60 60—80
体积比能量 (WH/ ) 140一180 240—300
价格 ($/次) 0.06 0.1
能量价格 ($/WH) 0.3 O.4
低温性能 (-2O度,放电%) 5O 5O
自放电 (%/月) 15 20
快速充电 (倍率C) 4 3—20
功率密度 (W/I) 1OOO 1OOO
工作温度 (摄氏度) -4O—45 -40—45 使用寿命 (年) 4—8 4一8
充电控制极限 (V) 1.4 1.4
放电控制电压 (V) 临界0.8 临界0.8。