统计学复习笔记

合集下载

统计学 笔记

统计学 笔记

以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。

变量:用来描述数据的名称或符号。

数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。

参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。

描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。

直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。

平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。

标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。

概率与概率分布
概率:描述随机事件发生的可能性大小的数值。

概率分布:描述随机变量取值的概率规律的函数。

常见的概率分布有二项分布、泊松分布、正态分布等。

参数估计与假设检验
点估计:用单一的数值估计未知参数的值。

区间估计:用一定的置信水平估计未知参数的范围。

假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。

常见的假设检验方法有t检验、卡方检验、F检验等。

相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。

回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。

常见的回归分析方法有线性回归、逻辑回归等。

统计学各章节期末复习知识点归纳(原创整理精华,考试复习必备!)

统计学各章节期末复习知识点归纳(原创整理精华,考试复习必备!)

统计学原理与实务各章节复习知识点归纳(考试复习资料精华版-根据历年考试重点以及老师画的重点原创整理)第一章总论重点在“第三节:统计学中的基本概念”考点一:掌握以下四组概念(含义及举例)——肯定考一个名词解释!①总体、总体单位(统计)总体:是由客观存在的,具有某种共同性质的许多个别事物构成的整体。

总体单位:构成总体的个别事物。

②标志、标志值及分类标志:说明总体单位特征的名称。

分类:Ⅰ按性质不同a.品质标志:说明总体单位的品质特征,一般用文字表现。

(有些品质标志虽然以数量表现,但实质表现产品质量差异。

例如产品质量的具体表现未“一等、二等、三等”。

)b.数量标志:说明总体单位的数量特征。

只能用数值来表现。

Ⅱ按变异情况可变标志:当一个标志在各个总体单位表现不尽相同时称为可变标志不变标志:……都相同……不变标志。

标志值:标志的具体表现。

③变量、变量值变量:指数量标志。

变量值:指数量标志值,具有客观存在性。

④指标的含义及分类(统计)指标:是综合反映统计总体某一数量特征的概念和数值,简称指标。

a.按其反映总体现象内容不同:数量指标(绝对数,绝对指标,总量指标),质量指标(相对数或平均数,相对指标和平均指标)。

b.按其作用不同:总量指标,相对指标和平均指标。

c.按反映的时间特点不同:试点指标和时期指标d.计量单位的特点:实物指标、价值指标和劳动指标。

★指标和标志的区别与联系:区别:①标志是说明总体单位特征的名称;指标是说明总体的数量特征;②标志既有反映总体单位数量特征的,也有反映总体单位品质特征;而指标只反映总体的数量特征;③凡是统计指标都具有综合的性质,而标志一般不具有。

联系:①许多指标由数量标志值汇总而得;②指标与数量标志可随统计研究目的而改变;课后习题:社会经济统计学研究对象的特点是:数量性、总体性、变异性。

统计研究运用的方法主要包括:大量观察法、统计分组法、综合指标法、统计模型法标志值就是标志表现。

第二章统计调查考点一:统计报表的分类①填报内容和实施范围:国家、部门和地方统计报表②调查范围:全面、非全面③报送周期长短:日报、旬报、月报、季报、半年报和年报④填报单位:基层、综合报表考点二:“普查”的含义普查:是普遍调查的简称。

统计学复习知识点

统计学复习知识点

统计学复习知识点一、统计学的基本概念统计学是一门研究数据收集、整理、分析和解释的学科。

它帮助我们从数据中获取有用的信息,做出合理的决策,并对现象进行描述和预测。

首先要了解总体和样本的概念。

总体是我们所研究的全部对象的集合,而样本则是从总体中抽取的一部分用于观察和分析的对象。

例如,要研究全国所有大学生的身高情况,全国大学生就是总体,而从其中抽取的部分大学生则构成了样本。

变量是统计学中的重要概念,它可以分为定性变量和定量变量。

定性变量是指不能用数值表示的变量,如性别(男、女)、职业(教师、医生等);定量变量则是可以用数值表示的变量,又分为离散型变量(如班级人数)和连续型变量(如身高、体重)。

数据可以分为观测数据和实验数据。

观测数据是通过观察、测量等方式收集到的数据,而实验数据则是通过控制实验条件得到的数据。

二、数据收集数据收集是统计学的第一步。

常见的数据收集方法有普查和抽样调查。

普查是对总体中的每一个个体进行调查,能得到全面准确的信息,但成本高、耗时费力。

抽样调查则是从总体中抽取一部分样本进行调查,具有省时省力、成本低的优点,但需要注意抽样的科学性和代表性。

抽样方法包括简单随机抽样、分层抽样、系统抽样和整群抽样等。

简单随机抽样是完全随机地抽取样本;分层抽样是将总体按照某些特征分成若干层,然后从每层中分别抽样;系统抽样是按照一定的规则抽取样本;整群抽样是将总体分成若干群,然后抽取若干群作为样本。

在收集数据时,要确保数据的准确性和完整性,避免误差和缺失值。

三、数据整理收集到的数据往往是杂乱无章的,需要进行整理。

整理数据的第一步是对数据进行审核,检查数据的准确性和完整性。

然后对数据进行分类和编码,以便于后续的分析。

数据的分组是整理数据的重要环节。

可以按照变量的类型和取值进行分组。

对于定量变量,可以采用等距分组或不等距分组的方法。

等距分组是将数据按照相等的区间进行分组,不等距分组则是根据数据的特点和研究目的,采用不同的区间长度进行分组。

统计学原理笔记

统计学原理笔记

统计学原理笔记
一、统计学的基本概念
- 统计学的定义与目的
- 数据的类型:定性数据与定量数据
- 统计学的两个主要分支:描述统计学与推断统计学
二、数据的搜集与整理
- 数据来源:调查、实验、观察等
- 数据搜集方法
- 数据整理与清洗:缺失值处理、异常值处理、数据转换等
三、描述统计学
- 数据的集中趋势度量:均值、中位数、众数
- 数据的离散程度度量:极差、方差、标准差
- 数据的分布形态:偏态与峰态
四、概率与概率分布
- 概率的基本概念与性质
- 随机变量与概率分布
- 常见的概率分布:正态分布、二项分布、泊松分布等
五、抽样与抽样分布
- 抽样的基本原理
- 抽样误差的来源与控制
- 抽样分布与中心极限定理
六、统计推断
- 点估计与区间估计
- 假设检验的基本概念与步骤
- 常见的假设检验方法:t检验、χ²检验等
七、相关与回归分析
- 相关分析的概念与方法
- 简单线性回归分析的原理与应用
- 多元线性回归分析的原理与应用
八、统计学在实际问题中的应用
- 市场调查与营销分析中的应用
- 财务与投资分析中的应用
- 医学与生物统计学中的应用
九、统计软件的应用
- 常用的统计软件介绍与使用
- 数据分析与结果解释的演示分析
十、统计学的限制与误用
- 统计学的限制与局限性
- 统计学误用的情况与注意事项
- 如何正确应用统计学方法进行数据分析。

大一统计学笔记整理

大一统计学笔记整理

大一统计学笔记整理1. 统计学导论- 统计学的定义:统计学是一门研究如何收集、整理、分析和解释数据的科学- 统计学的应用领域:从商业到医学、社会科学到自然科学等各个领域都需要统计学的应用- 统计学的基本概念:总体、样本、参数和统计量- 统计学的研究方法:描述统计和推断统计- 数据的收集方式:观察法和试验法- 数据的分类:定量数据和定性数据- 描述统计的主要指标:频数、频率、平均数、中位数、众数、标准差和方差2. 数据的整理与呈现- 数据的整理:数据表、频数分布表和频数分布图- 数据的呈现:直方图、饼图、折线图、散点图和箱线图- 数据的处理:缺失数据的处理、异常值的处理和数据的变换3. 正态分布与抽样分布- 正态分布的性质:钟形曲线、对称性、均值和标准差的关系- 标准正态分布:Z分数和Z表的使用- 中心极限定理:大样本时抽样分布近似服从正态分布- 抽样分布的概念:样本均值的抽样分布、样本比例的抽样分布等- 样本均值的抽样分布:抽样误差、标准误和置信区间4. 统计推断与假设检验- 统计推断的基本思想:从样本推断总体- 参数估计:点估计和区间估计- 假设检验:零假设和备择假设、显著性水平、P值和拒绝域- 单样本检验:均值的假设检验和比例的假设检验- 双样本检验:两个独立样本均值的假设检验和配对样本均值的假设检验5. 回归与相关分析- 简单线性回归:回归方程、回归系数的估计和拟合优度- 多重线性回归:多元回归方程、多重共线性和变量选择- 相关分析:皮尔逊相关系数、斯皮尔曼等级相关系数和点双相关系数注意:以上内容仅为大一统计学的基础知识,详细内容和推导公式可参考相关教材和课堂讲义。

医学统计学复习笔记

医学统计学复习笔记

统 计1. 统计工作步骤: 研究设计、收集资料、整理资料、分析资料 。

2. 定量资料: 以定量值表达每个观察单位的某项观察指标,如血脂、心率等,各观察值 间只有量的差别,有连续性。

3. 定性资料: 以定性方式表达每个观察单位的某项观察指标,如血型、性别等,各观察 值间有质的区别,无连续性。

4. 等级资料: 以等级方式表达每个观察单位的某项观察指标,如疗效等级,各观察值间 有质的区别,无数值大小5. 总体:是指按照研究目的所确定的研究对象中所有观察单位某项指标取值的集合。

分 为有限和无限两种。

6. 样本:是指从研究总体中随机抽取具有代表性的部分观察单位某项指标取值的集合。

7. 同质性:同一总体或其样本的观察单位在取值方面必须有相同的性质,称为同质性。

8. 描述某总体特征的指标称为参数;描述样本特征的指标称为统计量。

9. 概率:是指随机事件发生的可能性的大小的一个度量,常用 P 表示,其小于等于 0.05 时称为小概率事件。

10. 变异: 是以具有统治性的观察单位为载体, 某项观察指标在其观察单位之间现实的 差别。

包括同质事物间的、不同观察单位间的、同一单位不同阶段的差别。

11. 整理数据最有效的形式是频数分布,根据频数分布可以初步判断指标分布的特征是 集中趋势还是离散趋势, 发现某些特大或特小的可疑值,揭示资料分布类型,便于资 料进一步分析。

12. 频数分布分为对称分布和非对称分布, 非对称分布又称为偏态分布, 包括正偏态(大 ——小)和负偏态(小——大) 。

13. 集中趋势指标: 1) 算术均数(Xbar ),最适合单峰对称资料; 2) 几何均数(G),如 抗体滴度、细菌计数,应用于等比数列、对数数列; 3)中位数(M )和百分位数,适 用于偏态分布、开口资料、分布不明资料。

14. 离散趋势指标: 1)全距(R ),又称极差,极差大说明变异度大; 2)四分位间距; 3) 方差和标准差(s ),标准差大离散程度大,及波动明显; 4) 变异系数 CV=标准差/均 数,可应用于单位不同的两组资料或均数相差悬殊的两组资料。

统计学笔记

统计学笔记

统计学笔记
《统计学笔记》
一、什么是统计学
统计学是一门多学科而又多方面的学科,它主要是用数量分析、观察和描述社会、经济、文化的发展状况,以及研究不同社会群体的分布及其变化趋势,因此,统计学也可以看作是统计工作的一个分支。

二、统计学的基本原理
1.观测:统计学是通过收集、汇总、分析、解释社会经济现象和变化趋势,以及利用数据来研究社会变迁的科学。

2.计数:统计学依靠对某一特征的计数活动,来观察和评价社会的现状,比如,人口的数量、分布及变化趋势;经济的数量、分布及变化趋势等。

3.分类:统计学分为初步统计、定性统计和定量统计三大分类。

初步统计是按照某种规律对原始数据进行整理,定性统计是通过对现有数据进行定性研究,定量统计是通过对原始数据进行定量研究来获取信息。

三、统计学的基本方法
1.抽样:抽样是统计学中最重要的方法之一,它是定性统计中的有效手段,它可以概括一类特定的群体,从而提高统计学的准确性。

2.统计算法:统计算法是统计学手段中的一部分,它使用计算机来分析大量的数据,求出结果的准确度和可靠性。

3.图表:图表是统计学工具中最常用的一种,它可以多种类型的
数据进行归纳和综合,从而清晰地描述一类信息的特点和变化趋势。

四、统计学的应用
统计学在社会经济发展方面有着重要的应用。

第一,它可以反映社会的发展状况;第二,它可以作为经济规划和政策制定的重要依据;第三,它可以作为科学研究的重要工具;第四,它可以作为政府部门间预测及推理的基础;第五,它可以作为企业决策的工具,等等。

初级统计复习笔记整理—统计学基础知识

初级统计复习笔记整理—统计学基础知识

第一章统计学和数据第一节统计学的含义及其应用统计学:关于数据的一门学问所关注的是大量可重复事物现象数量特征总体:研究的全部个体或数据的集合往往只有一个,特征唯一确定的,但未知的样本:从总体中抽取的一部分元素构成的集合不唯一,不确定,特征已知的样本量n:构成样本的元素的数目统计方法:描述统计:搜集、处理和描述推断统计:利用样本数据推断总体特征(参数估计和假设检验)第二节统计学发展简史古典统计学:国势学派—H·康令“显著事项”、有统计学之名,无统计学之实政治算术学派—威廉·配第(统计学创始人),有统计学之实,无统计学之名近代统计学:A·凯特勒(统计学之父)现代统计学:哥塞特—推断统计学先驱者费雪—推断统计学建立者第三节变量与数据观察数据:客观现象....观测得到无人为控制和条件约束实验数据:科学实验环境下得到的数据第四节数据的搜集↓↓↓直接来源(一手数据/原始数据):统计调查(观测数据)实验(实验数据):实验组和对照组的产生是随机的,匹配的。

间接来源(二手数据/次级数据):由其他人搜集和整理得到的统计数据公开出版的数据未公开发表的数据网络爬取的数据搜集数据方式:1.询问(访谈):面访(面对面交谈)、邮寄、计算机辅助电话调查、座谈会、个别深入访谈2.观察实验:观察法(调查对象没有意识到的情况下)、实验法第五节数据的误差↓抽样误差:不可避免,概率抽样中能计量并控制......总体内部差异越大,误差越大样本容量越大,误差越小重复抽样误差大于不重复抽样,分层抽样误差小于其他抽样非抽样误差:不能通过增大样本量加以控制抽样框误差,应答误差,无回答误差,计量误差(登记错误)第二章 数据描述第一节用统计量描述数据集中趋势平均数...①② 受极端值影响 主用于数值型数据 数据对称分布时应用 中位数...③/分位数...④ 不受极端值影响.......主用于顺序数据....... 数据分布偏斜程度较大时应用众数..⑤ 主用于分类数据中位数不能用于分类数据...........众数、中位数和平均数的关系:均值在哪边就是往哪边偏众数中位数均值对称分布众数中位数均值 左偏分布....众数中位数均值右偏分布....公式① 算术平均数简单平均数(未分组):x =x 1+x 2+ ···+x nn =∑x in i=1n加权平均数(分组):x=x 1f 1+x 2f 2+ ···+x k f kf 1+f 2+ ···+f k=∑x i f i k i=1∑f ik i=1有分组取组中值为平均数,若有开口组, 上开口组....:组中值=该组上限-(下组上限-下组下限)/2 下开口组....:组中值=该组下限-(上组上限-上组下限)/2② 几何平均数简单(每个数据只出现一次):G =√x 1·x 2·… ·x n n=√∏x n加权(每个数据出现不止一次):G =√x 1f 1·x 2f 2·… ·x n f n f 1+f 2+···+f n =√∏x f ∑f x③ 中位数 n 是奇数:M e=x n+12n 是偶数:M e =12[x(n 2)+x (n 2+1)]下限公式:M e=L +∑f2−S m−1f m·dL :中位数所在组上限 ∑f :各组频数之和 S m−1:中位数所在组以前各组的累计频数 d :中位数所在组组距 上限公式....:M e =U −∑f2−S m+1f m·dU :中位数所在组下限 f m :中位数所在组的频数 S m+1:中位数所在组以后各组的累计频数④ 分位数:Q L =(n +1)/4 Q M =2(n +1)/4 Q U =3(n +1)/4⑤ 众数下限公式:M 0=L +∆1∆1+∆2·d 上限公式:M 0=U −∆2∆1+∆2·d∆1:众数所在组的频数与前一组频数之差 ∆2:众数所在组的频数与后一组频数之差公式⑥异众比率V r=1−f0∑f i(f0:众数组的频数)⑦极差/全距R=max(x i)−min (x i)⑧四分位距:Q d=Q U−Q L⑨平均差未分组:MAD=∑|x i−x|n已分组:MAD=∑|x i−x|f∑f⑪离散系数总体:Vσ=σx̅样本:V s=sx̅⑫标准分数z i=x i−x̅sz的均值=0 标准差s=1(z=1.2,说明观察值比平均值大1.2倍s)偏态系数(SK)⑬峰值系数(K)⑭SK=0对称SK<0左偏SK>0右偏正态分布K<0扁平分布K>0尖峰分布公式⑬偏态系数未分组:SK=n∑(x i−x̅)3 (n−1)(n−2)s3已分组:SK=n∑(M i−x̅)3f ins3⑭峰态系数未分组:K=n(n+1)∑(x i−x̅)4−3[∑(x i−x̅)2]2(n−1) (n−1)(n−2)(n−3)s4已分组:K=∑(M i−x̅)4f ins4−3第二节用表格描述数据频数分布表分组→频数分组数K=1+log(n) log(2)K:组数n:数据个数2K>n组距=全距/组数各组组距=上限-下限各组组中值=(上限+下限)/2等距数列:每一组距相等,研究的现象变动比较均匀...........不等距/异距数列:每一组距不全相等,研究的对象变动分布均匀,波动幅度很大......“上限不在内”原则第三节用图形描述数据1.直方图用矩形面积表示各组频数分布(面积之和...)....=.总频数对于不等距分组,纵轴必须表示为频数密度(频数..)......../.组距2.箱线图找5个特征点:最大值、最小值、中位数、两个四分位数3.茎叶图类似横置直方图,既反映数据分布,又保留原始数据大致信息4.折线图5.气泡图6.雷达图(蜘蛛图):总的绝对值与图形所围成的区域成正比.................Array 7.散点图:观.察两个变量之间的相关程度和类型最直观的方法.....................8.条形图9.饼图:主要用于结构性问题研究10.环形图:反映多个样本(或总体)之间的结构差异11.帕累托图:双直接坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率按各类别数据出现的频率排序(降序),并画出累计百分比双直角坐标系表示第三章参数估计第一节统计量与抽样分布一、统计量的抽样分布统计量:对样本数量特征的概括性度量不含任何未知参数的样本的函数是一个随机变量不同样本可算出不同的统计量值抽样分布:样本统计量的概率分布仅仅是一种理论分布提供了样本统计量长远而稳定的信息,构成推断总体参数的理论基础点估计:用样本统计量的某个实际取值作为相应的总体参数的估计值的过程常用——用样本均值x̅估计总体均值μ用样本比例p估计总体比例π用样本方差s2估计总体方差σ2总体参数是未知的,但可以利用样本信息来推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学复习笔记
第七章
一、 思考题
1. 解释估计量和估计值
在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准
(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间
在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么
置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为
2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为
其中: 2222α2222)(E z n σα=n z E σα2=
▪与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;
▪与总体方差成正比,总体的差异越大,所要求的样本量也越大;
▪与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

二、练习题
1.从一个标准差为5的总体中采用重复抽样方法抽出一个样本量为40的样本,样本均值为25。

等于多少?
1)样本均值的抽样标准差x x
2)在95%的置信水平下,估计误差是多少?
2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。

1)假定总体标准差为15元,求样本均值的抽样标准误差。

2)在95%的置信水平下,求估计误差。

3)如果样本均值为120元,求总体均值µ的95%的置信区间。

3. 从一个总体中随机抽取n =100的随机样本,得到
=104560,假定总体标准差σ = 85414,试构建总体均值µ的95%的置信区间。

4. 从总体中抽取一个n =100的简单随机样本,得到 =81,s=12。

要求:
1) 构建µ的90%的置信区间。

2) 构建µ的95%的置信区间。

3) 构建µ的99%的置信区间。

5. 利用下面的信息,构建总体均值的置信区间。

1) = 25,σ = 3.5,n =60,置信水平为95%
2) =119,s =23.89,n =75,置信水平为98%
3) =3.149,s =0.974,n =32,置信水平为90%
x x x x x。

相关文档
最新文档