谈高层建筑结构设计的探讨
对高层建筑结构设计

对高层建筑结构设计的探讨摘要:由于高层建筑越来越多,类型和功能也越来越复杂,使得高层建筑的结构设计也越来越复杂,本文就结构设计中结构选型、结构计算与分析几方面简要总结了一些在结构设计过程要注意的问题。
关键词:高层建筑结构设计结构体系剪力墙前言近年来,高层建筑越来越多,越来越多的人在设计中遇到高层建筑。
掌握高层设计的要点是我们每个结构设计人员所必须的。
经过笔者这些多年来的设计实践,发现在高层建筑结构设计过程中经常出现一些遗漏或错误。
为了避免在钢筋混凝土高层结构设计过程中少犯或不犯这些错误,现将这些常常出现的问题总结如下:1 高层建筑结构设计1.1 水平荷裁成为决定因素。
一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比。
1.2 轴向变形不容忽视。
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大。
1.3 侧移成为控制指标。
随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控翩在某一限度之内。
2 剪力墙设计2.1钢筋混凝土抗震墙的延性和破坏形态与墙体的高宽比和超静定次数密切相关。
2.1.1为了提高抗震墙的变形能力,避免发生剪切破坏.对于一道截面较长的抗震墙,应该利用洞口没置弱连粱,使墙体分为小开口墙、多肢墙或单肢墙,并使每个墙段的高宽比不小于2。
所谓弱连粱,是指在地震作用下各层连粱的总约束弯矩不大于陔墙段总地震弯矩的20%;连梁不能太强,以免水平地震作用f某个墙肢出现全截面受拉,这是比较危险的。
但是,考虑到耗能.连粱又不能太弱、连梁弱到成为一般小粱时,墙肢就变成单肢墙,而单肢墙的延性很差.仅为多肢墙的一半,且单肢墙仅具有一道抗震防线,超静定次数少.在地震作用下是很不利的。
对高层建筑结构设计中几个问题的探讨

对高层建筑结构设计中几个问题的探讨摘要:适用、安全、经济、美观、便于施工是进行建筑结构设计的原则,只有在结构设计中努力追求这五个方面的平衡,才能设计出符合使用者需求的建筑,才能在建筑建设中体现出最佳的经济效益和社会效益。
本文从高层建筑角度对结构设计的几个问题进行探讨。
关键词:高层建筑结构设计设计要点需注意问题结构设计通常在建筑设计之后,其应满足、实现建筑设计的各种要求,而不能破坏建筑设计的整体性。
当然,结构设计对建筑设计的满足不能超自身能力的范围,以避免建造的建筑不安全、经济、合理。
可以说,建筑设计能否实现结构设计起到一定的决定作用,从这个角度来说,建筑结构设计的重要性是不言而喻的。
下面就高层建筑结构设计几个常见问题加以探讨。
1、对高层建筑结构设计要点的分析高层建筑结构受风和地震影响较大,这两种荷载都是随机振动,具有很强的复杂性和不确定性。
因此,在进行高层建筑结构设计时,除了通过数学、力学等的分析外,还应考虑概念设计。
结构的概念设计就是从结构的宏观整体出发,着眼于结构的整体反应,运用对建筑结构已有的知识去处理结构设计中遇到的问题,即注意总体布置上的大原则,又考虑关键部位的细节设计,从而达到设计的合理。
具体可以从以下几点出发:1.1 平面设计应简单、规则平面形状简单、规则的凸平面的建筑,其风载体型系数较小,能有效减小高层建筑的风压,有利于抗风;平面简单、规则、对称、长宽比较小的建筑,抗震性能较好。
建筑平面简单、规则、对称均匀易实现有利于抗震的结构平面布置。
若平面形状不对称均匀时,应设置剪力墙进行调整。
1.2 竖向体型设计高层建筑结构的竖向体型应采用对侧向力不太敏感的形状,应使结构具有抵抗外荷载作用的能力,同还应考虑经济合理性。
1.3 竖向传力体系设计传力体系直接反映结构沿竖荷载传递路径和建筑的使用性能。
在设计时应控制建筑的高宽比、抗侧刚度均匀无突变、锚固深度等。
1.4 整体性原则高层建筑结构设计时,应确保结构连续性和构件连续可靠,做到构件节点的承载力不低于其连接构件的承载力,满足地震作用下的强度要求和大变形延性要求,是整体建筑结构始终保持其整体性。
关于高层建筑结构设计的探讨

关于高层建筑结构设计的探讨摘要:随着城市化发展以及建筑用地的紧张,高层建筑将日益增多。
高层建筑的结构设计不仅应保证高层建筑具有足够的安全性,还应保证结构的经济性、合理性。
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。
关键词:高层建筑结构设计探讨中图分类号:tu318文献标识码: a 文章编号:1高层建筑结构设计的概念高层建筑结构设计是针对高层建筑特性的建筑结构设计:在满足安全、适用、耐久、经济和施工可行的要求下,按有关设计标准的规定,对建筑结构进行总体布置、技术经济分析、计算、构造和制图工作,并寻求优化的过程。
2高层建筑结构设计的特点2.1水平力是设计主要因素在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。
而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。
因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。
另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
2.2侧移成为控制指标与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。
随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
2.3抗震设计要求更高有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
2.4轴向变形不容忽视高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。
高层建筑钢筋混凝土的结构设计分析

高层建筑钢筋混凝土的结构设计分析随着城市化进程的不断加快,高层建筑已经成为城市发展的重要标志和特色之一。
高层建筑的结构设计不仅影响建筑的稳定性和安全性,还直接关系到建筑的经济性和实用性。
在高层建筑的结构设计中,钢筋混凝土结构因其优良的性能和适应性,已经成为了主流选择。
本文将就高层建筑钢筋混凝土的结构设计进行分析,并探讨其设计要点和特点。
一、高层建筑的结构特点1.1. 高层建筑的承载力要求高高层建筑一般具有较大的自重和风荷载,同时还需要承受地震和动荷载等多种外部力的作用。
高层建筑的结构设计要求具有较高的承载能力和抗震性能。
1.2. 高层建筑的结构形式多样为了满足不同的使用需求和设计要求,高层建筑的结构形式多样,包括框架结构、筒体结构、框筒结构、悬挑结构等。
不同的结构形式对于结构设计和构件设计都有不同的要求。
1.3. 高层建筑的变形和挠度要求严格高层建筑的变形和挠度控制直接关系到建筑的使用性能和外观效果。
结构设计需要根据建筑的使用功能和外观要求合理控制建筑的变形和挠度。
1.4. 高层建筑的材料和施工要求高高层建筑的结构设计对材料和施工质量有较高的要求,需要选择具有高强度和耐久性的材料,并严格控制施工工艺和质量。
二、钢筋混凝土结构设计要点2.1. 结构稳定性钢筋混凝土结构的稳定性是结构设计的首要考虑因素。
在高层建筑的结构设计中,需要采用适当的结构形式和构件布局,合理分配荷载,确保结构的稳定性和可靠性。
2.2. 抗震性能高层建筑通常处于地震频繁的地区,因此抗震性能是结构设计的重要考虑因素。
钢筋混凝土结构在设计中需要采用合理的抗震措施,包括设置剪力墙、增加节点刚度和采用横向抗力系统等,提高建筑的抗震性能。
3.1. 结构形式选择在高层建筑的结构设计中,需要根据建筑的使用功能和周边环境选择合适的结构形式。
一般情况下,高层建筑常采用框架结构或筒体结构,以满足较高的承载能力和抗震性能要求。
3.2. 支撑系统设计高层建筑的支撑系统设计是结构设计中的关键环节。
高层结构设计中存在的问题及设计方法

高层结构设计中存在的问题及设计方法高层结构设计在建筑工程中起着至关重要的作用,它不仅承载着建筑物的重量,还要考虑到风荷载、地震作用等外部力的影响。
在高层结构设计过程中,常常会出现一些问题,例如结构稳定性、梁柱连接、横纵向约束等方面的设计不足,导致结构安全隐患的存在。
本文将就高层结构设计中存在的问题及设计方法进行探讨。
1. 结构稳定性不足高层建筑结构的稳定性是设计的重中之重,但是很多设计中存在着不足之处。
一些设计在结构稳定性方面未考虑周全,导致在自重、风荷载或地震等外部力作用下,结构容易发生倾斜、位移等问题,从而造成安全隐患。
2. 梁柱连接设计不合理梁柱连接设计不合理会导致整体结构的稳定性受到影响,甚至可能发生结构破坏。
在高层结构设计中,梁柱连接的设计需要考虑到承载能力、适应性等因素,因此设计不合理将会对结构的安全性产生负面影响。
3. 横纵向约束设计不足高层建筑结构的横纵向约束是确保结构整体稳定的重要因素,但在设计中常常存在疏漏。
横纵向约束设计不足将导致结构承受外部力作用时产生严重的变形和位移,进而威胁到结构的安全性。
二、高层结构设计方法在高层结构设计过程中,需要对结构的整体稳定性进行充分的分析。
这包括对结构的受力情况、承载能力、变形情况等进行详尽的计算和分析,从而确保结构在受到外部力作用时能够保持稳定。
在高层结构设计中,需要对梁柱连接进行合理的设计优化。
这包括选择合适的连接形式、材料和工艺,确保连接的承载能力和适应性达到设计要求,从而有效地提高结构的安全性和稳定性。
为了确保高层结构的整体稳定,需要加强横纵向约束的设计。
这包括增加结构的横向约束形式、增加约束构件的数量和强度等措施,从而有效地减少结构的变形和位移,确保结构整体的稳定性。
4. 应用新型结构材料在高层结构设计中,可以考虑采用一些新型的结构材料,如钢筋混凝土、钢结构、复合材料等。
这些新型材料具有较高的抗压、抗拉、抗弯等性能,能够有效提高结构的承载能力和稳定性,从而提高结构的安全性。
高层建筑结构设计难点分析

高层建筑结构设计难点分析高层建筑作为城市的地标和象征,其结构设计一直是建筑领域的一个重要课题。
随着城市化进程的不断加快,高层建筑的数量和高度也在不断增加,因此高层建筑结构设计的难点也逐渐凸显出来。
本文将对高层建筑结构设计的难点进行分析,并探讨如何克服这些难点。
一、受力分析复杂高层建筑由于其高度较大,受力分析通常会比较复杂。
在高层建筑的结构设计中,受力分析是基础和关键,只有深入研究高层建筑所承受的荷载和受力状况,才能有效地解决高层建筑结构设计中的难题。
在受力分析方面,高层建筑在不同楼层和不同构件上所受的荷载和力的分布都会有所不同,需要对整个建筑结构进行全方位的受力分析,确保每一个构件都能满足受力要求。
高层建筑的结构设计还需要考虑各种不同作用下的受力情况,包括静载荷、动载荷、风荷载等,这些都增加了受力分析的复杂性。
针对受力分析复杂的难点,结构设计师需要运用先进的受力分析方法和工具,如有限元分析、结构动力学分析等,对高层建筑的受力状况进行准确的模拟和计算,为结构设计提供科学的依据。
二、抗震设计要求高高层建筑所处的地理位置和环境不同,其抗震设计要求也会有所不同。
一般来说,地震是高层建筑面临的最大威胁之一,因此抗震设计是高层建筑结构设计中的一个重要难点。
高层建筑的抗震设计要求通常比较严格,需要考虑地震波的作用、建筑结构的受力状态、结构的位移要求等多个方面。
抗震设计需要考虑建筑结构在地震作用下的变形和破坏情况,要求建筑结构在地震发生时能够安全稳定地承受地震力的作用,减小地震对建筑结构的影响。
对于高层建筑抗震设计的难点,结构设计师需要根据建筑所处地区的地震烈度和其他地质条件,结合抗震设计规范,进行合理的抗震设计方案设计和结构计算。
还需要采用高性能材料和先进技术,提高建筑结构的抗震能力,确保建筑在地震发生时能够安全稳定地运行。
三、构造系统选择和优化高层建筑的构造系统选择和优化也是结构设计的难点之一。
构造系统的选择直接影响到建筑的结构性能和经济性,因此需要根据建筑的形式、功能和受力特点,合理选择和优化构造系统。
高层建筑结构设计问题探讨

高层 建筑 结构设 计 问题 探讨
王伟光 李振 国 ( 黑龙江省西埃迪建筑设计 院, 黑龙 江 哈 尔滨 10 0 ) 50 0
摘 要: 随着高层建筑进一步的发展 , 满足 高层建筑的形式 , 材料 , 力学分析模型都将 日趋复 杂多元 , 了革新 高层 建筑 , 为 体现其魅 力, 追求新 的结构形式和更加合理的力学模型将是土木工程 师们的 目标 和方向。 关键词 : 高层 ; 筑 ; 建 结构 ; 设计
2 . 3简体体系
参 考 文 献
Байду номын сангаас
1杨斌, 张红英. 关于建筑结构设 计 中若干 问题 的研 究[ . J 工程 地球 J 凡采用简体为抗侧 力构件 的结构 体系统称为筒体体系, 包括单 [】 2 72  ̄ ) 6 6 0 0 5 筒体 、 简体 一框架 、 筒中筒 、 多束筒等多种型式。简体是一种 空间受 物理 学报 , 0 ,4 6:9 — 0 . 2夏卓文. 高层建筑结构设计特点 住宅科技,0 7 1 2:9 3 . 20, ( )  ̄2 20 2 力构件, 分实腹筒 和空腹筒两种类型 。实腹筒是 由平面或 曲面墙 围 [1 成 的三维竖 向结构单体, 空腹筒是 由密排柱和窗裙梁或开孔钢筋 混 凝 土外墙构成 的空间受力构件 。筒体 体系具有很大的刚度和强度,
另一方面 由于轻质 高强材料的开发及新 的设计计算理论 面的适当位置设置较大的剪力墙来代替部分框 架, 便形成 了框架 一 快速发展 。 抗风和抗震理论的不断完善, 加之新的施工技术和设 备的不 剪力墙体系 。在承受水平力时, 框架和剪力墙通过有足够 刚度 的楼 的发展, 特别是计算机 的普及和应 用以及结构分析手段 的不断提 高, 板和连梁组成协 同工作的结构体系 。 在体系中框架体系主要 承受垂 断涌现, 为迅速发展高层建筑提供了必要 的技术条件 。 直荷载, 剪力墙主要承受水平剪力。
高层建筑结构设计探讨

o o o i o
高层建筑结构设计探讨
摘要: 在现今社会 , 建筑高度越来越高 , 功能越来越多样化, 相对 的其结构设计也越来越复杂。随着高层建筑的类型、 数量的不 断增多, 高层建筑结构设计也越来越成为高层建筑结构工程设计的难点。笔者结合自身多年的实际工作经验, 通过对高层建筑结构 设计特点及结构体系的分析, 并将高层建筑结构设计 中的参数确定进行 了探究。 关键词: 高层建筑; 结构设计; 结构体系
按《 建筑抗震设计规范} ( G B 5 0 0 1 1 - 2 0 1 0 ) 的规定划分 , 场区属中软土类 因本 场地 等 效 剪 切 波速 V s e = 1 5 6 . 2 —1 7 8 m , s , 9 . 8 m < 覆 盖层 厚 < 3 3 . 8 m, 故 建 随着我国经济的快速发展, 高层建筑如雨后春笋 , 一栋栋拔地而起。 建筑 型 , 的高层 化 和 多样 化发 展 , 使 得建 筑 结构 设 计方 面 的 变化 越来 越 多 。 面对 建 筑 筑场地类别 为Ⅱ类 。场地抗震设防烈度为6 度, 设计基本地震加速度为0 . 0 5 g , 类型 、 功能 、 数量的不断增加, 高层建筑结构体系的多样化 , 高层建筑结构设 设 计 地震 分组 为第 一 组 , 设 计特 征周 期 为0 . 3 5 s 。 计迎来 了新新的机遇与挑战。 作者通过实践、 总结 , 对高层建筑结构设计及结 构体系, 作出以下分析 :
3 . 3设计 荷 载取 值 ( 可 变荷 载标 准值 )
0 前言
3 . 2 抗 震 等级
①楼 、 地面主要使用荷载 根据《 建筑结构荷载规范 } G B 5 0 0 9 - - 2 0 0 1 ( 2 0 0 6 年版) 及业主提出楼面荷 载要求 , 楼面屋面均布主要荷载标准值( K N / n f ) 按不同使用要求确定( 表2 ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈高层建筑结构设计的探讨
摘要:随着我国国民经济不断发展和人民生活的迅速提高。
业主及建筑师的创新艺术使得钢筋混凝土高层建筑发展被广泛应用。
高层建筑结构设计给工程设计人员提出了更高的要求,各方面需要注意的问题都应考虑到。
本文高层建筑结构设计分别从结构设计的特点、结构优化设计的方法与提高高层抗震性能的措施进行探讨。
关键词:高层建筑;结构设计;优化措施
abstract: with the rapid increase of china’s national economic development and people’s life. the owner and architect’s innovative art of the reinforced concrete high-rise building development is widely used. structure design of high-rise buildings put forward higher requirements for the engineering design, the problems that need attention should be given to the. in this paper, structure design of high-rise building from the method of optimum design, structural design features of the structure and improve the seismic performance of high-rise measures are discussed. key words: high-rise building; structure design; optimization measures
中图分类号:tu3
一、高层建筑结构设计的特点高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置。
不同结构
体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。
其主要特点有:
1、水平力是设计主要因素。
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。
而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。
建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
2、侧移成为控制指标。
与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。
随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
3、抗震设计要求更高。
有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
4、轴向变形不容忽视。
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩
值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。
5、结构延性是重要设计指标。
相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。
为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
二、建筑结构优化设计的方法赏心悦目的建筑是建筑的美观与结构设计相互协调密切配合的结果。
建筑结构设计追求适用、安全、经济、美观和便于施工五种效果,而建筑设计优化设计技术方法的应用不但满足了建筑美观、造型优美的要求又能使房屋结构安全、经济、合理,成为实际意义上的”经济适用”房。
从建筑上分析结构设计优化方法,它主要体现在房屋工程分部结构的优化设计和房屋工程结构总体的优化设计量方面。
房屋工程分部结构优化设计包括:基础结构方案的优化设计、屋盖系统方案的优化设计、围护结构方案的优化设计和结构细部设计的优化设计。
对以上几个方面的优化设计还包括选型、布置、受力分析、造价分析等内容,在实施过程中,还应该按照一切从实际出发的原则,结合具体工程的实际情况,围绕房屋建筑的综合经济效益的目标进行结构优化设计。
进行结构设计时,应在满足设计意图后,尽量使平面布置规则,缩小刚度和质量中心的差异,这样水平荷载就不会使建筑物有太大的扭转作用。
竖直方向上应避开使用转换层,减少应力集中现象。
1、结构优化设计模型。
结构设计优化就是在各种影响变量中选择主要参数,并建立函数模型,运用科学合理的方法得出最优解。
结构总体的优化建立模型的大致步骤如下:一是设计变量的合理选择。
通常的设计变量选择对设计要求影响较大的参数,将所涉及的参数按照各自的重要性区分,将对变化影响不大的参数定为预定参数,通过这种方法可减少很多计算编程的工作量。
二、目标函数的确定。
使用函数找出满足既定条件的最优解。
最后,约束条件的确定。
房屋结构可靠度优化设计的约束条件,包括了应力约束、裂缝宽度约束、结构强度约束、尺寸约束、从正常时的极限状态下弹性约束到终极状态的弹塑性约束、从可靠指标约束到确定性约束条件等。
设计中,要保证各约束条件必须符合现行规范的要求。
2、结构优化计算方案。
结构设计优化设计多个变量、多个约束条件,属于一个非线性的优化问题,设定计算方案时,常将有约束条件转变为无约束条件来计算。
常用的方法有拉氏乘子法、符合型法、powell等。
完成计算方案的设定后只需编制相应适用的运算程序即可得到我们的最终优化结果。
三、高层建筑提高结构设计抗震性能的措施有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求。
钢筋混凝土材料本身自重较大,所以对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高一定的情况下,提高延性就要将轴压比控制在一定的范围内而不能过大,这样则必然导致柱截面的增大,从
而形成短柱,甚至成为剪跨比小于1.5的超短柱。
众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。
混凝土短柱的延性主要受轴压比的影响,同时配箍率、箍筋的形式对混凝土短柱的影响也很大。
高层混凝土结构短柱,特别是结构低层的混凝土短柱,其轴压比很大,破坏时呈脆性破坏,其塑性变形能力很小。
提高混凝土短柱的抗震性能,主要也就是提高混凝土短柱的延性。
因此,可以从以下几方面着手,采取措施提高混凝土的抗震性能。
1、提高短柱的受压承载力。
提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。
减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。
此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。
2、采用钢管混凝土柱。
钢管混凝土是套箍混凝土的一种特殊形式,由混凝土填入薄壁圆形钢管内而形成的组合结构材料。
由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。
同时,钢管既是纵筋,又是横向箍筋,其管径与管壁厚度的比值至少都在90以下,相当于配筋率2至少都在4.6%。
当选用了高强混凝土和合适的套箍指标
后,柱子的承载力可大幅度提高,通常柱截面可比普通钢筋混凝土柱减小一半以上,消除了短柱并具有良好的抗震性能。
3、采用分体柱。
由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。
因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。
分体柱方法已在实际工程中得到应用。
人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。
在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。
一般,连接键有通缝、预制分隔板、预应力摩擦阻尼器、素砼连接键等形式。
四、结束语
近些年来,我国的高层建筑建设发展迅速。
但从设计质量方面来看,并不理想。
在高层建筑结构设计中,结构工程师不能仅仅重视结构计算的准确性而忽略结构方案的具体实际情况,应作出合理的结构方案选择。
高层建筑结构设计人员应根据具体情况进行具体分析掌握的知识处理实际建筑设计中遇到了各种问题。