高斯小学奥数五年级上册含答案_第12讲_几何计数

合集下载

高斯小学奥数五年级上册含答案_逻辑推理二

高斯小学奥数五年级上册含答案_逻辑推理二

第十三讲逻辑推理二相信学们之前已经接触过一些有趣的逻辑推理题目,其中比较典型的一类题目就是让我们来判断问题的真假.还记得我们用什么方法来判断吗?对了,假设法!假设法就像是测谎仪,用它来测一测,就知道谁说的是真话,谁说的是假话了.除此之外,如果有两个人说的话正好相反,那么我就可以断定其中必然有一个人说的是真话,另一个人说的是假话.我们可以把这个方法称为矛盾分析法.好了,下面就开始我们的推理之旅吧!例题1.3位女神分别说了如下的话.雅典娜(智慧女神):“阿佛洛狄忒不是最美的.”阿佛洛狄忒(爱和美的女神):“赫拉不是最美的.”赫拉(天后):“我是最美的.”只有最美的女神说了真话,请问她是谁?「分析」阿佛洛狄忒和赫拉的话是互相矛盾的,据此可以推理出什么呢?懒懒和笨笨是两只小猪,一只说真话,一只说假话.而且它们一只是公的,一只是母的.懒懒说:“说谎的是母猪.”笨笨说:“说谎的不是母猪.”请问懒懒和笨笨谁是母猪?例题2.艾趣、艾吕和艾游三姐妹参加了去英国的旅行团.回国后,三人向朋友们分享去英国的经历:艾趣:“我们去了爱丁堡,没去湖泊区,但参观了北威尔士.”艾吕:“我们去了爱丁堡,也去了湖泊区,但没有参观北威尔士.”艾游:“我们没有去爱丁堡,但是去了北威尔士.”已知每个人都说了一句谎话,那么她们三人到底去了哪些景区?「分析」如果要用假设法,先根据谁的话来作假设会更简单一些?一位农夫建了一个三角形的鸡窝,三边都是等高的铁丝网.这位农夫在笔记本上做了如下记录:(1)面向仓库那边的铁丝网价钱:10美元;(2)面向水池那边的铁丝网价钱:20美元;(3)面向住宅那边的铁丝网价钱:30美元.而这三个价钱中有一个是错的.又知道每一边铁丝网的价钱都是10美元的倍数,且三边铁丝网的价钱互不相同.那么这位农夫一共花了多少钱买铁丝网?除了真假问题之外,还有一类题目是告诉我们一些条件让我们做出判断或计算,我们可以把这类问题称为条件推理问题.例题3.现在要从六个人中挑选几个去参加数学竞赛,有以下要求:(1)赵甲和钱乙这两人至少去一个;(2)赵甲和李丁不能都去;(3)赵甲、周戊和吴己这三个人中要去两人;(4)钱乙和孙丙要么都去,要么都不去;(5)孙丙和李丁要去一人;(6)如果李丁不去,周戊也不去.应该挑选哪几个人去?「分析」虽然这道题目不是真话假话问题,但是也可以用假设法来解决.根据第几个条件作假设会简单一些?A,B,C,D四名学生猜测自己的数学成绩.A说:“如果我得优,那么B也得优.”B说:“如果我得优,那么C也得优.” C说:“如果我得优,那么D也得优.”结果大家都没说错,但是只有两个人得优.谁得了优?例题4.热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛谁胜谁负?比分是多少?「分析」因为每个队都没有换过人,所以各队总分都是五个数的和.根据第二个条件和第五个条件可知,雷霆队有一个22分,热火队有两个22分.接下来继续推理就容易了.甲、乙、丙、丁四人一起打牌,每人的姓是赵、钱、孙、李中的一个.他们约好第一把赢的人可以从其他三人手中各拿100元;第二把赢的人可以从其他三人手中各拿200元;第三把赢的人可以从其他三人手中各拿300元;第四把赢的人可以从其他三人手中各拿400元.他们一共玩了4把,每人各赢了一次.又知道:(1)第一把赢的人是孙先生;(2)第二把赢的人是乙;(3)第三把赢的人是钱先生;(4)第四把赢的人是丙;(5)打牌之前李先生的钱最多,打牌后丁的钱最多.那么甲、乙、丙、丁分别姓什么?例5.鹿哼、雷婷、王萍和贺纯正在进行一场精彩的室内网球双打赛,通过下面观众的议论,我们知道以下信息:(1)鹿哼比雷婷年轻;(2)王萍比他的两个对手年龄都大;(3)鹿哼比他的搭档年纪大;(4)鹿哼和雷婷的年龄差距比王萍和贺纯的年龄差距更大.请讲这四位运动员按照年龄大小顺序排列,并且找出鹿哼的搭档是谁.「分析」这道题目与大小顺序有关系,可以先画出四个位置,然后根据题目中的条件把人放到位置上.例题6.桌上放着3红2蓝5个帽子.张三、李四和迟哼站成一排,须老师从桌上拿出3个帽子,分别戴到三个人的头上.排队的人都能看到前面的人头上帽子的颜色,但是看不到自己的(当然也看不到后面的人,但是三个人都知道帽子一共有3红2蓝).这时须老师问队伍最后面的张三是否知道自己帽子的颜色,张三说不知道.须老师又问中间的李四是否知道自己帽子的颜色,李四说不知道.想不到这时候站在最前面的迟哼,竟然非常有把握的说:“老师,我知道我帽子的颜色!”请问,迟哼头上的帽子是什么颜色的,他又是怎么知道的?「分析」张三的回答是不知道.那如果张三的回答是知道,能说明什么呢?第一次数学危机从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。

高斯小学奥数五年级上册含答案_第12讲_几何计数

高斯小学奥数五年级上册含答案_第12讲_几何计数

第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。

旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。

分割田地大概有3条横线、4条竖线左右,可适当增减。

人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。

后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1.下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举,并注意寻找规律.那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2.右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法.应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法.例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1)一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?★☆「分析」如果还用枚举法处理这道题目,就会越数越复杂.那有没有好一点的方法?我们换一个角度来思考这个问题.同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线.如右图所示.因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3×5的长方形和右边6×2的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的.哪些重复计算了?容易看出来重复计算的是右下角重叠的3×2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6.右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数,那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?数学家的墓志铭一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)作业1. 右图中共有多少个三角形?作业2. 右图中共有多少个三角形?作业3. 右图是由12个11⨯的小正方形组成的,数一数图中一共有多少个正方形.作业4. 右图是由15个11⨯的小正方形组成的,数一数图中一共有多少个长方形.(长方形包括正方形.)作业5. 在右图中(下列各小题中,长方形均包括正方形)(1)包含“★”的长方形共多少个? (2)包含“☆”的长方形共多少个? (3)两个五角星都包含的长方形共多少个?第十二讲几何计数例题1.答案:16;15详解:注意有序枚举:(1)左图中由一部分组成的三角形有6个,由两部分组成的三角形有3个,由三部分组成的三角形有6个,由六部分组成的三角形有1个,共计16个.(2)右图中由一部分组成的三角形有4个,由两部分组成的三角形有6个,由三部分组成的三角形有2个,由四部分组成的三角形有2个,由六部分组成的三角形有1个,共计15个.例题2.答案:78详解:恰当分类,有序枚举.图中的三角形可以分为两类,一类是尖朝上的,一类是尖朝下的.设最小的三角形边长为1.(1)尖朝上的:边长为1的三角形有123410+++=个;边长为2的三角形有1236++=个;边长为3的三角形有123410+++=个;边长为4的三角形有1236++=个;边长为5的三角形有123+=个;边长为6的三角形有1个.共计56个.(2)尖朝下的:边长为1的三角形有1234515++++=个;边长为2的三角形有1236++=个;边长为3的三角形有1个.共计22个.图中一共有78个三角形.例题3.答案:91,112详解:分别考虑边长为1、2、3、4、5、6的正方形各有多少个即可.左图有66554433221191⨯+⨯+⨯+⨯+⨯+⨯=个,右图有766554433221112⨯+⨯+⨯+⨯+⨯+⨯=个.例题4.答案:(1)756;(2)216;(3)240;(4)108;(5)348;(6)408详解:(1)7条横线选2条作为长,9条竖线选2条作为宽,有22792136756C C⨯=⨯=个.(2)含★的长方形上下左右边分别有3、4、3、6种选法,这样长方形有3436216⨯⨯⨯=个.(3)含☆的长方形上下左右边分别有4、3、5、4种选法,这样长方形有4354240⨯⨯⨯=个.(4)两个五角星都含的长方形上下左右边分别有3、3、3、4种选法,长方形有3334108⨯⨯⨯=个.(5)根据容斥原理,至少包含一个五角星的长方形有216240108348+-=个.(6)用排除法,两个五角星都不包含的长方形有756348408-=个.例题5.答案:135个详解:如图,下方阴影部分中一共有长方形224690C C⨯=个;右方阴影部分中一共有长方形227363C C⨯=个.其中右下方3×2长方形中的长方形被重复计算了,共有224318C C⨯=个.所以图中一共包含长方形906318135+-=个.例题6.答案:45个.详解:所有平行四边形一共有三种不同的方向:尖朝右、尖朝左和尖朝上,如图:这就提示我们可以按这个特点来分类,因为根据图形的对称性,这三种平行四边形的个数是一样多的.只需数出其中的一种,就能算出最后的答案了.下面我们来数尖朝上的平行四边形.所有这种平行四边形的边都是斜的,没有横线,所以要数它们的个数,可以把图中的所有横线都去掉,变成如下图形:这样一来图形就简单了,这个图里的平行四边形很容易数出来:最小的平行四边形有10个,两个小平行四边形拼成的有12个,三个小平行四边形拼成的有6个,四个小平行四边形拼成的有5个,六个小平行四边形拼成的有2个,共35个.而对于另外两种平行四边形,也可根据同样的方法数出,都是35个.因此原来图形中一共有353105⨯=个平行四边形.练习1.答案:8个;12个简答:(1)左图中由一部分组成的三角形有3个,由两部分组成的三角形有4个,由四部分组成的三角形有1个,共计8个.(2)右图中由一部分组成的三角形有5个,由两部分组成的三角形有4个,由三部分组成的三角形有2个,由五部分组成的三角形有1个,共计12个.练习2.答案:48个简答:由1个小三角形组成的三角形有151025+=个;由4个小三角形组成的三角形有10313+=个;由9个小三角形组成的三角形有6个;由16个小三角形组成的三角形有3个;由25个小三角形组成的三角形有1个;共有48个.练习3.答案:2470个简答:按正方形的大小分类,共有2222191817119203962470++++=⨯⨯÷=个.练习4.答案:(1)450;(2)144简答:(1)5条横线选2条作为长,10条竖线选2条作为宽,有225101045450C C⨯=⨯=个.(2)含黑点的长方形上下左右边分别有2、3、6、4种选法,这样长方形有2364144⨯⨯⨯=个.作业1.答案:10个简答:由一个部分组成的三角形有5个,由两个部分组成的三角形有4个,由三个部分组成的三角形有1个,共计10个.作业2.答案:14个简答:边长为1的有10个,边长为2的有4个,共计14个.作业3.答案:20个简答:正方形数目:边长为1的12个,边长为2的6个,边长为3的2个,共计20个.作业4. 答案:90个简答:长方形有2246C C 90⨯=个.作业5. 答案:(1)180个;(2)192个;(2)108个简答:(1)3354180⨯⨯⨯=个;(2)4443192⨯⨯⨯=个;(3)3343108⨯⨯⨯=个.。

高斯小学奥数五年级上册含答案_比较与估算

高斯小学奥数五年级上册含答案_比较与估算

第二十六讲比较与估算在前面的章节中,同学们已经对分数的计算有了一定的认识,也学习了很多比较分数大小的方法•今天我们将继续研究一些较复杂的分数比较大小和估算的问题.例题1.现有7个数,其中5个是3.&&、3-、116、3.&&、3凹•如果按照从小到大排列的第三7 37 273个数是空,那么位于最中间的数是多少?37「分析」这是一个比较多个数大小关系的推理题,虽然其中有着两个数未知,但是我们还应该先比较已知数之间的大小关系,再利用其他条件来推理出题目的结果.练习1.有8个数,0.&& -、5、0.5& 24、13是其中的6个.如果按从小到大的顺序排列时,3 9 47 25第4个数是0.5&.那么按从大到小排列时,第4个数是哪一个数?例题2.2 5 3在不等式2 5 3的方框中填入一个自然数,使得不等式成立.3 □4「分析」分子相同,分母大的分数小.但分子不一样怎么比较大小呢?练习2在不等式2□的方框中填入一个自然数,使得不等式成立.那么方框中最大可以填多少?在算式的估算中,有一种方法比较常用,就是用非常接近的数来替换原来的数,这样可以得到一个和真实答案非常接近的近似值,但一定要注意近似值与真实值之间的误差是否符合题意.例题3.算式33.333 33.333计算结果的整数部分是多少?「分析」本题需要计算两个较复杂的数相乘,但是不要求计算出最后结果,只要求出结果的整数部分就可以了•我们可以从以下两个方面考虑:(1)估算结果的大致情况,推出整数部分.(2)计算出准确结果,确定整数部分.那大家想一想应该怎么办?练习3.算式66.666 66.666计算结果的整数部分是多少?算式的缩放是估算问题中经常用到的方法. 缩放的方法有很多.在放缩的时候要注意不可将范围放缩得过大,这样将无法起到放缩本来应该有的作用.例题4.2 2 2 2算式---L —计算结果的整数部分是多少?11 12 13 20「分析」本题显然不能硬算,不然太麻烦•如果能将该算式稍加变形,使它不仅变得好算, 还能确定大小范围,那就可以求出它的整数部分是多少了.练习4.33 3 3算式-— L—计算结果的整数部分是多少?20 21 2229同例题4,需要对算式稍作变形,加以放缩来确定大小范围,进而求出整数部分.例题6.(1) 两个小数的整数部分分别是 4和5,那么这两个小数乘积的整数部分共有多少种可能 的取值? (2)将两个小数四舍五入到个位后,所得到的数值分别是7和9•将这两个小数的乘积四 舍五入到个位后共有多少种可能的取值?「分析」注意到题目中的两个小数分别有一个连续的取值范围, 那么乘积也一定有一个连续 的取值范围.例题 5.求出99 100 999 10009999999999 的计算结果的整数部分.10000000000「分析」等号与不等号的历史、等号,不等号为了表示等量关系,用“=”表示“相等”,这是大家最熟悉的一个符号了.说来话长,在15、16世纪的数学书中,还用单词代表两个量的相等关系.例如在当时一些公式里,常常写着aequ或aequaliter这种单词,其含义是“相等”的意思.1557年,英国数学家列科尔德,在其论文《智慧的磨刀石》中说:“为了避免枯燥地重复isaequalleto (等于)这个单词,我认真地比较了许多的图形和记号,觉得世界上再也没有比两条平行而又等长的线段,意义更相同了.”于是,列科尔德有创见性地用两条平行且相等的线段“=”表示“相等”,“=”叫做等号.用“=”替换了单词表示相等是数学上的一个进步.由于受当时历史条件的限制,列科尔德发明的等号,并没有马上为大家所采用.历史上也有人用其它符号表示过相等. 例如数学家笛卡儿在1637年出版的《几何学》一书中,曾用表示过“相等”.直到17世纪,德国的数学家莱布尼兹,在各种场合下大力倡导使用“=”,由于他在数学界颇负盛名,等号渐渐被世人所公认.顺便提一下,“工”是表示“不相等”关系的符号,叫做不等号.“工”和“=”的意义相反,在数学里也是经常用到的,例如a+ 1工a+ 5.二、大于号,小于号现实世界中的同类量,如长度与长度,时间与时间之间,有相等关系,也有不等关系.我们知道,相等关系可以用“=”表示,不等关系用什么符号来表示呢?为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽了脑汁. 1629年,法国数学家日腊尔,在他的《代数教程》中,用象征的符号“ff”表示“大于”,用符号“§”表示“小于”.例如,A大于B记作:“ AffB”,A小于B记作“ A§B”. 1631年,英国数学家哈里奥特,首先创用符号“〉”表示“大于”,“V”表示“小于”,这就是现在通用的大于号和小于号.例如5>3,—2V0, a>b, m V n.与哈里奥特同时代的数学家们也创造了一些表示大小关系的符号.例如,1631年,数学家奥乌列德曾采用“ | —”代表“大于”;用“ _ ”代表“小于”.1634年,法国数学家厄里贡在他写的《数学教程》里,引用了很不简便的符号,表示不等关系,例如:a >b用符号“a3|2b”表示;b v a用符号“b2|3a”表示.因为这些不等号书写起来十分繁琐,很快就被淘汰了.只有哈里奥特创用的“〉”和“V” 一直广为使用.作业1.下面的分数中,最大的是哪个?3 2 6-- ?— ? ---11 9 25作业2.下面三个算式的结果中,最大的是哪个?最小的是哪个?11 29 ' 1111,C 13271426作业3.算式1—3— 5— L13 15 17211 一的整数部分是多少?23作业4. 6.6666 9.9999的整数部分是多少?作业5.小高将算式的两个乘数都四舍五入后得到8 9 72,有多少种可能?那么原算式结果的整数部分B例题1.答案:3 37273是7个数中从小到大排列的第 3个,说明另两个没有写出的数比 口6 小,为最小的3737两个数.那么可知 7个数中位于中间的数是 3卫7 .273例题2.答案:7例题3. 答案:1111详解:我们发现33.33333比较接近33.&,而33.& 33-.因此我们可以尝试利用33.&估3成 分 数 计 算:例题4.答案:1例题5.答案:9例题 6. 答案:(1) 10; ( 2) 17详解:(1)设两个小数分别为 a 和b ,由于两个小数四舍五入到个位后所得到的数值分 别是4和5,所以考虑到小数点的情况,可得4 a5 , 5 b6 .因此,我们得到a b 4 5 20 , a b 5 6 30 .所以两个小数乘积的整数可取20到29之间的任何整数值,一共有10种可能的取值. (2)设两个小数分别为a 和b ,由于两个小数四舍五入到个位后所得到的数值分别是7 和9,所以考虑到小数点的情况,可得6.5 a7.5 ,8.5 b9.5 .因此,我们得到a b 6.5 8.5 55.25 , a b 9.5 7.5 71.25 .所以两个小数乘积的整数可取 55到71之间的任何整数值,一共有 17种可能的取值. 练习1.答案:0.5&&简答:已知的六个数从小到大的顺序是24、o.5& 0.&&、22、?、? •说明另外两个47 25 9 3第二十六讲比较与估算详解:我们把所有的数化为小数后比较:3.&& 3.1515L , 3电273 3.1355L .经比较,有116 疇3梯冷3催注意到详解:通分子,30 3045 □ 6,所以45 □ 6 40,只能填7.4033.33333 33.33333计算结果的整数部分是1 33- 3 1111.1 33 3 100 100 10000 911111—.因此 33.33333 33.333339算 结 果,12 2 详解:丄10—— 511 12Z L 13 2 20 11010 ,结果介于1~2之间,所以整数部分是1 .详解:通过放缩可得:1 109 99于9到10之间,整数部分是10 100 10009.999 L 9999999999 1000000000010 10,所以结果介3.&& 3.1414L3.1428L ,兰 3.1351L ,37不知道的数一定是最小的和第二小的,由此可知第四大的数是0.&&练习2. 答案:17简答:通分子,得1°,方框中最大可填17.35 2 □练习3. 答案:4444简答:66.666 66.666 66.666 2004444.4,所以整数部分是4444.3练习4. 答案:1简答:302 103 1 A L 3 310 1.5.可知整数部分是1 .29292021 2229 20作业1.答案:311简答:把分子都变成6.作业2.答案:A, C简答:A40B40C40.分子都是40,根据和同近积大,可知A 11 2913 2714 26的分母最小, C的分母最大. 作业3.答案:36简答:1 35L11 36 ,2 26 2 2 L26,23 1315 2313即12L 2 12 1 .可知原式的整数部分是36.23 131523 13作业4.答案:66简答:原式旦9.9999 66.666 .整数部分是66.3作业5. 答案:18简答:设两个乘数分别为A和B,那么A在7.5与8.5之间,B在8.5与9.5之间.那么它们的乘积在63.75与80.75之间.整数部分可能是63~80,有18种可能.。

高斯小学奥数五年级上册含答案_物不知数与同余

高斯小学奥数五年级上册含答案_物不知数与同余

第二十二讲物不知数与同余农孙子算经〉是南北朝时一邮董要的数 学苕诈,为我国古代 伸经十书》之一• 三人阳行七十稀 五树梅花廿一枝 七子团圆正半月 除百零五便得知除以3余N 除以5余汝除以7定2CP 2书中右一道暑皂的題目、我们称之 为“物不知数冋题“ •这過题的实质圧一个余数问翹, 我国古代的学者很早就研究这个 问题的斛注.我国明朝的数学 家程人位柱抱暑的 农算法统宗》中' 就用了四旬很通倍 的口诀暗承了竝且 的解法.IWWL 你能知道程大位先 生口诀里的盍思叫?故事中的余数问题就是我们今天要研究的 “物不知数” 问题,也称为中国古余数问题. 简 单来说,这类问题就是先知道了除数和余数, 反求被除数的问题. 通常在不同的题目中,余 数限制条件的数量也是不同的,但都是从一个条件入手,逐个条件的去满足.例题 1.(1)一个数除以 21 余 17,除以 20 也余 17.这个数最小是多少?第二小是多少? (2)一个数除以 11 余 7,除以 10 余 6.这个数最小是多少?第二小是多少? 「分析」(1)这个数除以 21和20都余 17,那么减去 17以后得到的差跟 21和 20有什么关 系呢:(2)除以 11和 10 的余数不一样,所以不能同时减去一个数了.反方向考虑一下?练习 1.4余 3,除以 5也余 3,这个自然数最小是多少?5余 1,除以 7余3,这个自然数最小是多少?例题 2.(1)一个三位数除以 8 余 3,除以 12 也余 3.这个三位数最小是多少? (2)一个三位数除以 6 余 1,除以 10 余 5.这个三位数最小是多少?「分析」 看起来和例题 1没有太多区别.不过要小心哦, 8和12 的最小公倍数是 8 12 96 吗?练习 2.一个三位数除以 4 余 3,除以 6 也余 3.这个三位数最大是多少?例题 3.(1)一个数除以 7余2,除以 11余 1.这个数最小是多少?(2)有一队解放军战士, 人数在 150 人到 200 人之间, 从第一个开始依次按 1,2,3, L ,9 的顺序报数,最后一名战士报的数是 3;如果按 1,2,3,L ,7 的顺序报数,最后一名 战士报的数是 4.请问:一共有多少名战士?「分析」 所求自然数要满足两个余数条件, 直接处理并不容易, 但我们可以先让它满足其中 一个余数条件,在此前提下满足另一个余数条件.练习3.一个三位数除以5余2,除以7余3.这个三位数最小是多少?1)一个自然数除以 2)一个自然数除以如果两个数除以同一个数,所得的余数相同,我们称这两个数同余•例如195除以9余6, 15除以9也余6,我们就说“ 195和15除以9同余”.我们之前总结的余数性质以及余数的可替代性都是在同余的前提下进行的,例如195与它的数字和除以9是同余的,1135与它的末两位数字除以4是同余的•而处理余数问题的方法,除了用余数性质、余数可替代性以及分解求余几种方法以外,我们还有一个极其有用的手段:转化成整除问题!195与15除以9的时候同余,195 15 180则是9的倍数;1135与35除以4的时候同余,贝U 1135 35 1100是4的倍数•也就是说:[如果两个数除以第三个数余数相同,则这两个数的差能被第三个数整除•反之亦然.例题4.(1)1024除以一个两位数,余数为23,那么这个两位数可能是多少?(2)100和84除以同一个数,得到的余数相同,但余数不为0•这个除数可能是多少?「分析」(1 )由被除数除数商L余数,被除数是1024,余数是23,说明除数和商要满足什么条件? ( 2)利用同余的定义就可以解决这个问题.练习4.(1 )用150除以一个整数,所得余数是15,请问:这个除数可能是多少?(2) 80和56除以同一个数,得到的余数相同,但余数不为0•这个除数可能是多少?例题5.刘叔叔养了400多只兔子.如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只; 如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只•请问:刘叔叔一共养了多少只兔子?「分析」兔子数量要满足哪些余数条件?例题6.把63 个苹果,90个桔子,130个梨平均分给一些同学,最后一共剩下25 个水果没有分出去.请问:剩下个数最多的水果剩下多少个?「分析」这些同学一共分了多少个水果?人数和分掉的水果数有什么关系?未来的数学家节选自《怎样解题》乔治波利亚未来的数学家应该是一个聪明的解题者,但仅仅做一个聪明的解题者是不够的. 在适当的时候,他应该去解答重大的数学题目,而首先他应该搞清楚他的天资特别适合于哪种类型的题目对他来说,工作中最重要的那部分就是回去再看一下完整的解答. 通过考察他的工作过程和最后的解答形式,他会发现要认识的东西真是千变万化,层出不穷.他可以深思题目的困难之处及决定性的观念,他可以尝试去了解是什么阻碍了他,又是什么最后帮助了他.他可以注意寻找简单直观的念头:你能一眼就看出它来吗?他可以比较和发展各种方法:你能以不同的方式推导这个结果吗?他可以尝试通过将当前的题目和以前的解过的题目作比较以使当前的题目更加清晰. 他可以尝试创造一些新题目,而这些新题目可以根据他刚刚完成的工作解答出来:你能在别的什么题目中利用这个结果或这种方法吗?如果他对解答过的题目尽可能地完全消化吸收,他就可以获得井然有序的知识,以备今后随时调用.和其他所有人一样,未来的数学家通过模仿和练习来学习. 他应该注意寻找正确的模范;他应该觉察到一个能激励人心的教师;他应该和一位能干的朋友竞赛. 然后,可能最重要的是,他不仅应该阅读通用的教材,还应阅读优秀作者的作品,直到他找到一个作者,其方式是他天生倾向于模仿的.他应该欣赏和寻求在他看来简单的或有启发性的或美的东西. 他应该解题,选择适合他思路的那些题目,思考它们的解答,并创造新的题目. 他应该通过这些方法及所有其他方法来努力做出他的第一个重大发现:他应该发现自己的好恶、趣味以及自己的思路.陶哲轩(1975-)澳籍华裔数学家,“菲尔兹”奖获得者. 13岁成为国际奥林匹克数学金牌得主. 20岁获得普林斯顿大学博士学位. 24岁成为加利福尼亚大学洛杉矶分校有史以来最年轻的正教授. 2006年,31岁时获得数学界的诺贝尔奖“菲尔兹”奖•目前已发表超过230篇学术论文.作业 1. 在小于50的数中,与67 除以11 同余的数有哪些?作业2. 一个自然数除以7余3,除以27余5,这个自然数最小是多少?作业3. 2025除以一个两位数,余数是75,这个两位数是多少?作业4. 1986和2011 这两个数除以同一个两位数,得到相同的余数,这个两位数是多少?作业 5. 韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?第二十二讲物不知数与同余例题1. 答案:(1)17;437.(2)106;216详解:(1)这是一道余同的问题.这个数最小是17,第二小是[21,20] 17 437 .(2)这是一道缺同的问题.这个自然数加上4 即可被11 和10 整除,[11,10] 110 ,因此这个数最小为110 4 106 .第二小的是110 2 4 216 .例题2. 答案:(1)123.(2)115详解:(1)这是一道余同的问题.满足条件的数可表示为[8,12] n 3,其中n 为自然数.要求满足条件的最小三位数,应令n 为5,即[8,12] 5 3 123 .(2)这是一道缺同的问题.满足条件的数可表示为[6,10] n 5,其中n 为自然数.要求满足条件的最小三位数,应令n 为4,即[6,10] 4 5 115 .例题3. 答案:(1)23;(2)165详解:(1)采用逐步满足条件法•满足第二个条件的数为1, 12 , 23,……发现23同时满足第一个条件,因此这个数最小是23;(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.例题4. 答案:(1)77、91;(2)16、8详解:(1)1024 23 1001 ,可知除数是1001 的约数.其中大于23的有77和91;(2)100 84 16,可知除数是16的约数,可能是1、2、4、8和16.但因为余数不为0, 只能是16和8.例题5. 答案:467详解:兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2 [3,5] n, 其中n为自然数,即2, 17, 32, 47,……其中47同时满足第三个条件•所有满足条件的数为47 [3,5,7] n,其中n为自然数.n取4时满足条件,为467.例题6. 答案:20 详解:从整体的角度出发考虑问题, 水果总数减去没有分出去的水果数, 得到的数应为学生数的倍数.63 90 130 25 258 , 258 的约数有1、2、3、6、43、86、129、258, 其中43满足条件.苹果剩下20个,桔子剩下4个,梨剩下1个,因此剩下个数最多的水果剩下20 个.练习1. 答案:(1)3.(2)31 简答:(1)这个自然数减去3以后是4和5的公倍数,所以最小是3;(2)这个自然数加上4 以后是5 和7 的公倍数,所以最小是31.练习2. 答案:999 这是一道余同的问题.满足条件的数可表示为[4,6] n 3,其中n 为自然数.要求满足条件的最大三位数,应令n 为83,即[4,6] 83 3 999.练习3. 答案:122简答:使用逐步满足条件法,满足第一个条件的数依次为2、7、12、17,17 正好除以7 余3,那么同时满足两个条件的数最小是17.然后依次为52、87、122.最小是三位数是122.练习4. (1)27、45、135;(2)24、12、6、3简答:(1)150 15 135,除数是135 的约数.其中大于15 的有135、45和27;(2)80 5624 ,除数是24 的约数,可能是1、2、3、4、6、8、12 和24.但要满足余数不为0,除数只能是3、6、12 和24.作业1. 答案:1,12,23,34,45 简答:除以11 的余数都是1.作业2. 答案:59简答:除以27余5的数有5、32、59、…,其中除以7余3的第一个数是59.作业3. 答案:78 简答:这个两位数是2025 75 1950的约数,其中比75 大的只有78.作业4. 答案:25 简答:这个两位数是2011 1986 25 的约数,只能是25.作业5. 答案:473简答:先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3 的数.。

高斯小学奥数五年级上册含答案_列方程解应用题

高斯小学奥数五年级上册含答案_列方程解应用题

第二十四讲列方程解应用题---------------------------------------------------------------------方程是分析和解决问题的一种很有用的数学工具,利用方程我们可以解决生活、学习和生产中的很多实际问题.其思想如图所示:实际问题设未知数列方程数学问题(方程)解方程实际问题的答案检验列方程解应用题的方法和步骤数学问题的解步骤审题设元要求读懂题目、弄清题意、找出能够表示应用题全部含义的相等关系,分清已知数和未知数①设未知数②把所求的量用未知数表示③把各个量用含未知数的式子表示要注意的问题审题是分析解题的过程,解题程序中不用体现出来①设未知数一般是问什么,就直接设什么,即直接设元②直接设元有困难,可以间接设元出来列方程根据等量关系列出方程③设未知数时,必须写清未知数的单位方程两边所用的单位需一致解方程检验作答解出这个方程的解,求出未知数的值把方程的解代入方程检验,或根据实际问题进行检验写出答案,作出结论如果是间接设元,求出的未知数还需要利用其他算式得到所求的量检验的步骤在解题程序中不用写出来方程的解要符合实际情况,否则无解这一步在列方程解应用题中必不可少,是一种规范要求(练一练用含有字母的式子填空:1. (1)x 的 5 倍:_______; 2)x 的 k 倍:_______;2. 一块橡皮的单价是 x 元,笔盒的单价是橡皮的单价的 8 倍,那么笔盒的单价是_______元;3. 一辆摩托车的速度是 v 千米/小时,那么它 t 小时行驶的路程为_______千米;4. 某商店原有 5 袋大米,每袋大米为 x 千克,上午卖出 3 袋,下午又购进同样包装的大米 4 袋,进货后这个商店有大米_______千克.选择合适的量设为未知数,并列出方程:5. 环形跑道一周长 400 米,沿跑道跑多少圈,可以跑 3000 米?6. 一个梯形的下底比上底多 2 厘米,高是 5 厘米,面积是 40 平方厘米.求上底.7. 甲种铅笔每枝 0.3 元,乙种铅笔每枝 0.6 元,用 9 元钱买了两种铅笔共 20 枝,两种铅笔各买了多少枝?下来我们就来看看如何用一元一次方程解应用题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - 例题 1.一次考试,小高比萱萱高 6 分,但是比卡莉娅低 3 分,他们 3 人的平均分为 91 分.请问: 小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为 x ?练习 1.甲数比乙数的 3 倍还少 6,两数的平均数是 43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2倍少5个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3倍多2只.每次从箱子里取出7只白球和15只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂.题目中虽然有四个组,但这四组人数之间有很多联系.如果某一组的人数知道了,其他各组的人数也就知道了.根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1元、2元、5元、10元四种面值的纸币共82元,其中1元与2元纸币共22张,5元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?------------------------------------------------------------------------------------------看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会:原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少.只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难.这时就需一个分数,分子与分母的和是 122,如果分子、分母都减去19,得到的分数约简后是 ,那所求的自然数 ……余 4 第一次商……余 1 17 第一次商 ……余 15 第二次商 ……余 7 2a要设两个未知数,列二元一次方程组来解题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题 4.墨莫去超市里买了一些士力架和德芙,共重 266 克,共花了 30 元.已知士力架每块 3 元, 德芙每块 2 元.每块士力架 35 克,每块德芙 14 克.那么墨莫各买了多少块士力架和德芙? 「分析」假设买了 x 块士力架,y 块德芙,那么这两个未知数满足哪些等量关系?练习 4.王老师抓了一群外星人,其中火星人有 2 个头 3 个脚,金星人有 3 个头 5 个脚,王老师数了 数,发现总共有 34 个头、54 个脚.那么请问王老师分别抓了多少个火星人和金星人?例题 5.15么原分数是多少?「分析」设原来的分子是 x ,那原来的分母就是 122 - x .再由另外一个已知条件,不难列 出方程求解.例题 6.如下图的短除式所示,一个自然数被 8 除余 1,所得的商被 8 除也余 1,第二次所得的商被 8 除后余 7,最后得到的商是 a .同时这个自然数被 17 除余 4,所得的商被 17 除余 15,最 后得到的商是 a 的 2 倍.求这个自然数.8 所求的自然数……余 1 1788a「分析」这是一个带余除法的问题,蕴含着等量关系: 被除数=除数 ⨯ 商+余数 .利用这 一等量关系以及图中的两个短除式,不难用字母 a 表示出原来的自然数(有两种不同表示方 式).“多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。

高斯小学奥数五年级上册含答案_物不知数与同余

高斯小学奥数五年级上册含答案_物不知数与同余

第二十二讲物不知数与同余- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -故事中的余数问题就是我们今天要研究的“物不知数”问题,也称为中国古余数问题.简单来说,这类问题就是先知道了除数和余数,反求被除数的问题.通常在不同的题目中,余数限制条件的数量也是不同的,但都是从一个条件入手,逐个条件的去满足.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.(1)一个数除以21余17,除以20也余17.这个数最小是多少?第二小是多少?(2)一个数除以11余7,除以10余6.这个数最小是多少?第二小是多少?「分析」(1)这个数除以21和20都余17,那么减去17以后得到的差跟21和20有什么关系呢:(2)除以11和10的余数不一样,所以不能同时减去一个数了.反方向考虑一下?练习1.(1)一个自然数除以4余3,除以5也余3,这个自然数最小是多少?(2)一个自然数除以5余1,除以7余3,这个自然数最小是多少?例题2.(1)一个三位数除以8余3,除以12也余3.这个三位数最小是多少?(2)一个三位数除以6余1,除以10余5.这个三位数最小是多少?「分析」看起来和例题1没有太多区别.不过要小心哦,8和12的最小公倍数是81296⨯=吗?练习2.一个三位数除以4余3,除以6也余3.这个三位数最大是多少?例题3.(1)一个数除以7余2,除以11余1.这个数最小是多少?(2)有一队解放军战士,人数在150人到200人之间,从第一个开始依次按1,2,3,,9的顺序报数,最后一名战士报的数是3;如果按1,2,3,,7的顺序报数,最后一名战士报的数是4.请问:一共有多少名战士?「分析」所求自然数要满足两个余数条件,直接处理并不容易,但我们可以先让它满足其中一个余数条件,在此前提下满足另一个余数条件.一个三位数除以5余2,除以7余3.这个三位数最小是多少?如果两个数除以同一个数,所得的余数相同,我们称这两个数同余.例如195除以9余6,15除以9也余6,我们就说“195和15除以9同余”.我们之前总结的余数性质以及余数的可替代性都是在同余的前提下进行的,例如195与它的数字和除以9是同余的,1135与它的末两位数字除以4是同余的.而处理余数问题的方法,除了用余数性质、余数可替代性以及分解求余几种方法以外,我们还有一个极其有用的手段:转化成整除问题!195与15除以9的时候同余,19515180-=则是9的倍数;1135与35除以4的时候同余,则1135351100-=是4的倍数.也就是说:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.(1)1024除以一个两位数,余数为23,那么这个两位数可能是多少?(2)100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?被除数除数商余数,被除数是1024,余数是23,说明除数和商要满「分析」(1)由÷=足什么条件?(2)利用同余的定义就可以解决这个问题.练习4.(1)用150除以一个整数,所得余数是15,请问:这个除数可能是多少?(2)80和56除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?例题5.刘叔叔养了400多只兔子.如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?「分析」兔子数量要满足哪些余数条件?把63个苹果,90个桔子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?「分析」这些同学一共分了多少个水果?人数和分掉的水果数有什么关系?未来的数学家——节选自《怎样解题》乔治·波利亚未来的数学家应该是一个聪明的解题者,但仅仅做一个聪明的解题者是不够的.在适当的时候,他应该去解答重大的数学题目,而首先他应该搞清楚他的天资特别适合于哪种类型的题目.对他来说,工作中最重要的那部分就是回去再看一下完整的解答.通过考察他的工作过程和最后的解答形式,他会发现要认识的东西真是千变万化,层出不穷.他可以深思题目的困难之处及决定性的观念,他可以尝试去了解是什么阻碍了他,又是什么最后帮助了他.他可以注意寻找简单直观的念头:你能一眼就看出它来吗?他可以比较和发展各种方法:你能以不同的方式推导这个结果吗?他可以尝试通过将当前的题目和以前的解过的题目作比较以使当前的题目更加清晰.他可以尝试创造一些新题目,而这些新题目可以根据他刚刚完成的工作解答出来:你能在别的什么题目中利用这个结果或这种方法吗?如果他对解答过的题目尽可能地完全消化吸收,他就可以获得井然有序的知识,以备今后随时调用.和其他所有人一样,未来的数学家通过模仿和练习来学习.他应该注意寻找正确的模范;他应该觉察到一个能激励人心的教师;他应该和一位能干的朋友竞赛.然后,可能最重要的是,他不仅应该阅读通用的教材,还应阅读优秀作者的作品,直到他找到一个作者,其方式是他天生倾向于模仿的.他应该欣赏和寻求在他看来简单的或有启发性的或美的东西.他应该解题,选择适合他思路的那些题目,思考它们的解答,并创造新的题目.他应该通过这些方法及所有其他方法来努力做出他的第一个重大发现:他应该发现自己的好恶、趣味以及自己的思路.陶哲轩(1975-)澳籍华裔数学家,“菲尔兹”奖获得者.13岁成为国际奥林匹克数学金牌得主.20岁获得普林斯顿大学博士学位.24岁成为加利福尼亚大学洛杉矶分校有史以来最年轻的正教授.2006年,31岁时获得数学界的诺贝尔奖“菲尔兹”奖.目前已发表超过230篇学术论文.作业1.在小于50的数中,与67除以11同余的数有哪些?作业2.一个自然数除以7余3,除以27余5,这个自然数最小是多少?作业3.2025除以一个两位数,余数是75,这个两位数是多少?作业4.1986和2011这两个数除以同一个两位数,得到相同的余数,这个两位数是多少?作业5.韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?第二十二讲物不知数与同余例题1.答案:(1)17;437.(2)106;216详解:(1)这是一道余同的问题.这个数最小是17,第二小是[21,20]17437+=.(2)这是一道缺同的问题.这个自然数加上4即可被11和10整除,[11,10]110=,因此这个数最小为1104106⨯-=.-=.第二小的是11024216例题2.答案:(1)123.(2)115详解:(1)这是一道余同的问题.满足条件的数可表示为[8,12]3⨯+,其中n为自然n数.要求满足条件的最小三位数,应令n为5,即[8,12]53123⨯+=.(2)这是一道缺同的问题.满足条件的数可表示为[6,10]5⨯-,其中n为自然数.要求满足条件的最n小三位数,应令n为4,即[6,10]45115⨯-=.例题3.答案:(1)23;(2)165详解:(1)采用逐步满足条件法.满足第二个条件的数为1,12,23,……发现23同时满足第一个条件,因此这个数最小是23;(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.例题4.答案:(1)77、91;(2)16、8详解:(1)1024231001-=,可知除数是1001的约数.其中大于23的有77和91;(2)-=,可知除数是16的约数,可能是1、2、4、8和16.但因为余数不为0,1008416只能是16和8.例题5.答案:467详解:兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2[3,5]n+⨯,其中n为自然数,即2,17,32,47,……其中47同时满足第三个条件.所有满足条件的数为47[3,5,7]n+⨯,其中n为自然数.n取4时满足条件,为467.例题6.答案:20详解:从整体的角度出发考虑问题,水果总数减去没有分出去的水果数,得到的数应为学生数的倍数.639013025258++-=,258的约数有1、2、3、6、43、86、129、258,其中43满足条件.苹果剩下20个,桔子剩下4个,梨剩下1个,因此剩下个数最多的水果剩下20个.练习1.答案:(1)3.(2)31简答:(1)这个自然数减去3以后是4和5的公倍数,所以最小是3;(2)这个自然数加上4以后是5和7的公倍数,所以最小是31.练习2.答案:999这是一道余同的问题.满足条件的数可表示为[4,6]3⨯+,其中n为自然数.要求满n足条件的最大三位数,应令n为83,即[4,6]833999⨯+=.练习3.答案:122简答:使用逐步满足条件法,满足第一个条件的数依次为2、7、12、17,17正好除以7余3,那么同时满足两个条件的数最小是17.然后依次为52、87、122.最小是三位数是122.练习4.(1)27、45、135;(2)24、12、6、3简答:(1)15015135-=,除数是135的约数.其中大于15的有135、45和27;(2)-=,除数是24的约数,可能是1、2、3、4、6、8、12和24.但要满足余数805624不为0,除数只能是3、6、12和24.作业1.答案:1,12,23,34,45简答:除以11的余数都是1.作业2.答案:59简答:除以27余5的数有5、32、59、…,其中除以7余3的第一个数是59.作业3.答案:78简答:这个两位数是2025751950-=的约数,其中比75大的只有78.作业4.答案:25简答:这个两位数是2011198625-=的约数,只能是25.作业5.答案:473简答:先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3的数.。

五年级高斯奥数之几何计数含答案

五年级高斯奥数之几何计数含答案

第6讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?4.如图104和10-5,数一数,两个图形中分别有多少个三角形?5.如图10-6,在一个4x4的方格表中,共有多少个正方形?6.如图10-7,数一数图中一共有多少条线段?多少个矩形?7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?8.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、,、G为顶点且面积为1的三角形共有多少个?拓展篇1.如图10-12,数一数,图中有多少个三角形?2.如图10-13,数一数下面的三个图形中分别有多少个三角形.3.如图10-14,数一数,图中有多少个三角形?4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?7.如图10-18,数一数,图中共有多少个长方形?8.如图10-19,数一数,图中共有多少个平行四边形?9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?10.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?2.如图10-25,数一数,图中共有多少个三角形?3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?第10讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?解:1,4+3+2+1=10段2,4×1+3×2+2×3+1×4=20厘米2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?解:1,(1+2+3+4)×3=30根2,(1+3+5+7)+(1+2+3+1)+(1+2)+1=27个3,27-2-2-1=22个3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?解:1+4+1=6个4.如图104和10-5,数一数,两个图形中分别有多少个三角形?解:5+4+1+1+1=12个6×2+10×2=28个5.如图10-6,在一个4x4的方格表中,共有多少个正方形?解:42+32+22+12=30个6.如图10-7,数一数图中一共有多少条线段?多少个矩形?解:C53×4+C42×5=70条C52×C42=60个7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?解:C52×C42-C52×4=208.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?解:4×6+2×12=48个9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?解:C123-4×3-4-4=200个10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、F、G为顶点且面积为1的三角形共有多少个?解:3×2+4+2+1=13个拓展篇1.如图10-12,数一数,图中有多少个三角形?解:25+10+6+3+1+3=48个2.如图10-13,数一数下面的三个图形中分别有多少个三角形.解:10+4×5+5=35个35-6=29个35+6×2=47个3.如图10-14,数一数,图中有多少个三角形?解:35×2+3×5=85个4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)解:7+2+2+2+3+1=17个5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?解:4×4+3×3+2×2+1×1=30个6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?解:C102×C52=450个2×3×4×6=144个7.如图10-18,数一数,图中共有多少个长方形?解:15×6+21×3-6×3=135个8.如图10-19,数一数,图中共有多少个平行四边形?解:6×3+15+3×2+3+3=45个9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?解12×2+4×2+6×2+2+8+2=5610.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?解:9+4×2+2×2=21个11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?解:10+10+10+5+1=36个12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?解:6×7+8×2+8+4=70个超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?解:等边有:9+3+1+2=15个等腰有:3+2×6+6+3=24个共39个2.如图10-25,数一数,图中共有多少个三角形?解:C72×2+C31×2×4+1=67个3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?解:2×1×3×5=30个3×4×6+4×2×5×3-3×2×5=162个4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?解:4×4=16个5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?解:12×(4+3+2+1)=120个6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?解:4×8+4×4+2×3+4×2+1=63个7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?解:4×6+8×(3+1+3+1)+4×(3+3+2+5+2)=148个8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?解:(1)4个(2)4×10+2×4=48个(3)6×8+4×4+8+4×4+4=92个。

高斯小学奥数五年级上册含答案_余数的性质与计算

高斯小学奥数五年级上册含答案_余数的性质与计算

第二十一讲余数的性质与计算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况.当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r(也就是a b q r=⨯+), 0≤r<b;r=时,我们称a能被b整除;当0r≠时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的商当0余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数×商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)÷商;商=(被除数-余数)÷除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:(1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125的余数;(2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11和13的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法......- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题2.(1)20132013除以4和8的余数分别是多少?(2)20142014除以3和9的余数分别是多少?「分析」根据4、8、3、9的特性,可以很快计算出结果.练习2.(1)20121221除以5和25的余数分别是多少?(2)20130209除以3和9的余数分别是多少?例题3.(1)123456789除以7和11的余数分别是多少?87654321呢?(2)360360360除以99的余数是多少?「分析」根据7、1、99的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012除以13和99的余数分别是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -为了更好地了解余数的其它一些重要性质,我们再来做几个练习:(1)211除以9的余数是______;(2)137除以9的余数是______;(3)211137+的和除以9的余数是______; (4)211137-的差除以9的余数是______;(5)211137⨯的积除以9的余数是______; (6)2137除以9的余数是______. 比较上面的结果,我们发现余数还有一些很好的性质:这三条性质分别称为余数的可加性...、可减性...和可乘性....在计算一个算式的结果除以某个数的余数时,可以利用上述性质进行简算.例如计算33371580+⨯-的结果除以7的余数就可以像右侧这样计算.这一简算方法又称替换求余法...... 需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423317+除以6的余数时,利用“和的余数等于余数的和”,结果就变成了358+=,86>,所以还需要再次计算8除以6的余数是2,才是423317+除以6最后的余数.再比如:在计算423317⨯除以6的余数时,也会遇到35156⨯=>的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可.例如:在计算423317-除以6的余数时,会发现结果变成了35-不够减.此时,只要再加上6,用6354+-=来计算即可.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.一年有365天,轮船制造厂每天都可以生产零件1234个.年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.33371580+⨯- 5213+⨯- 每个数都用它除以7的练习4.++除以111的余数是多少?(1)123456789-的结果除以22余数是多少?(2)2244686678- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题5.+⨯除以4、9的余数分别是多少?(1)877844923581368⨯除以7、11、13的余数分别是多少?(2)365366+367368369370「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.(1)1002的个位数字是多少?20143除以10的余数是多少?(2)20143除以7的余数是多少?「分析」一个数的个位数字就是它除以10的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节,猴爸爸一大早就领着猴儿们去观看龙舟比赛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二讲几何计数
漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。

旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。

分割田地大概有3 条横线、4 条竖线左右,可适当增减。

人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。

后面给出问题:在图中,有多少个“井”字?
几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的
个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.
三角形应该是很简单的几何图形了,我们先从三角形数起吧.
例题1下列图形中各有多少个三角形?
「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无
目的的举例,一定要注意按照一定的顺序来枚举, 并注意寻找规律•那么,本题应该按照怎
样的顺序去枚举呢?
下图中有多少个三角形?
例题2 •右图中共有多少个三角形?
「分析」对于这道题目,我们也首先想到枚举法. 应该按照怎样的顺序去枚举呢?你能发现
其中的规律吗?
练习2:.请数出这个图形中有多少个三角形.
下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解
决问题的规律和方法•
例题3.下列图形中,分别有多少个正方形?
「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.
围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?
例题4.在右图中(下列各小题中,长方形均包括正方形)
(1 )一共有多少个长方形?
(2)包含“★”的长方形共多少个?
(3)包含“☆”的长方形共多少个?
(4)两个五角星都包含的长方形共多少个?
(5)至少包含一个五角星的长方形共多少个?
(6)两个五角星都不包含的长方形共多少个?
「分析」如果还用枚举法处理这道题目,就会越数越复杂•那有没有好一点的方法?
我们换一个角度来思考这个问题•同学们可以想想看,怎样才能在图中画
出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以
了,也就是只需要画出两条横线和两条竖线•如右图所示•因此,长方形
的个数就是选择两条横线和两条竖线的所有方法数.
下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:
(1)从中可以数出多少个长方形?
(2)从中可以数出包含黑点的长方形有多少个?
通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.
例题5.右图中共有多少个长方形?(注意:长方形包括正方形)
「分析」我们可以考虑下方3拓的长方形和右边6疋的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的. 哪些重复计算了?容易
看出来重复计算的是右下角重叠的3X2的部分,那么把这部分中的长方形减去就能得到最
后答案.
例题6•右图中有多少个平行四边形?
数出每一种的数量呢?
“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位, 后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷•伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这
是一句既刻划螺线性质又象征他对数学热爱的双关语
.
「分析」题目中要求数出平行四边形的个数, 那么你能发现图中有几类平行四边形吗?如何
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
“不要弄坏我的圆”•)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷•伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”•这
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
是一句既刻划螺线性质又象征他对数学热爱的双关语.
“不要弄坏我的圆”•)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷•伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”•这是一句既刻划螺线性质又象征他对数学热爱的双关语.
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二. 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献. 甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷•伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.
阿基米德(公元前287年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
“不要弄坏我的圆”•)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷•伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”•这
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
是一句既刻划螺线性质又象征他对数学热爱的双关语.
“不要弄坏我的圆”•)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35 位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷•伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一
阿基米德(公元前287 年—公元前212年)
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业
绩的标志.
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:
条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”•这是一句既刻划螺线性质又象征他对数学热爱的双关语.
阿基米德(公元前287 年—公元前212年)。

相关文档
最新文档