各天线系统隔离度

合集下载

天线隔离度的相关问题解释

天线隔离度的相关问题解释

天线隔离度相关问题的解释
一,天线系统隔离度要求。

1,天线高度:由网络规划确定。

2,天线方位角:由网络规划确定。

3,天线下倾角:有网络规划确定,通常为0—10度可调
4,天线指向:由天线方位角确定,同一扇区的两付天线指向一定相同。

5,分集天线间距离:同一扇区两天线互为分集接受天线,两天线的垂直高度相同,水平方向距离d尽量大,满足公式D≥10—20λ(或H/d=11)。

d –分集天线间水平距离,H—天线到地面的高度,载频为1.9G时,分集距离大于1.5米;载频为800M时,分集距离大于3.5米。

二,天线异系统安装隔离度要求
三,天线隔离度的注意事项
全向天线:1)铁塔鼎平台安装全向天线时,天线水平间距必须大于4m
2)全向天线安装于铁塔塔身平台上时,天线与塔身的水平距离应大于3m
3)同平台全向天线与其它天线的间距应大于1.5m
4)上下平台全向天线的垂直距离应大于1m
定向天线:1)同一小区两单极化天线在辐射方向上间距应大于4m(最小不小于3.5m)
2 )相邻小区间两天线间距应大于0.5m
3)上下平台间天线垂直分极化距离应大于1m
900MHz天线和DCS1800MHz天线安装与同一平台上时,天线水平间距应大于1m。

微波天线与GSM天线安装于同一平台上时,微波天线朝向应处于GSM同一小区两天线之间。

直放站中的施主天线和重发天线应满足水平距离≥30m,垂直距离≥15m
GPS天线安装位置应高于其附近金属物,与附近金属物水平距离≥1.5m,两个或多个GPS天线安装时要保持2m以上的间距。

天线隔离度

天线隔离度

CDMA系统:两发射天线之间以及发射和接收天线之间,隔离度至少30dB;天线垂直布置:Lh=28+40log(k/λ)(dB)天线水平布置:Lv=22+20log(d/λ)-(G1+G2)-(S1+S2)(dB)其中k为两天线的垂直距离,d为两天线的水平距离;G1,G2分别为两天线的增益;S1,S2分别是两天线的夹角方向的副瓣电平.以上天线隔离度公式中,λ为载波的波长,k为垂直隔离距离,d为水平隔离距离,G1 、G2分别为发射天线和接收天线在最大辐射方向上的增益(dBi),S1、S2分别为发射天线和接收天线在90°方向上的副瓣电平(dBp)。

通常65°扇形波束天线S约为-18dBp,90°扇形波束天线S约为-9dBp,120°扇形波束天线S约为-7dBp,这可以根据具体的天线方向图来确定。

全向天线的S为0。

关于直放站收发天线的隔离度天线隔离度即信号从直放站前向输出端口至前向输入端口(或者从反向输出端口至反向输入端口)的路径衰减值,与直放站设备本身没有关系,它取决于施主天线和重发天线的安装位置,与垂直及水平的距离、相向的角度有关。

其大小直接影响直放站的增益配置,关系到直放站系统的稳定。

施主天线和重发天线之间隔离度较大,才能提高主机增益,获得较大的输出功率。

天线之间的隔离是多方面因素共同作用的结果,主要包括空间隔离(水平隔离度和垂直隔离度)及建筑物隔离。

按照工程设计要求,天线隔离度L(dB)应大于直放站最大工作增益Gmax 约10dB~15dB,若取值12dB,考虑通常情况下Gmax为90 dB,故L一般应不小于102 dB。

●水平隔离度Lh是收发信天线在水平间隔距离上产生的空间损耗,表示公式如下:Lh=22.0+20lg(d/λ)-(Gt+Gr)+(Dt+Dr)(1)其中:22.0为传播常数;d为收发天线水平间隔(m);λ为天线工作波长(m);Gt、Gr分别为发射和接收天线的增益(dB);Dt、Dr分别为发射和接收天线的水平方向性函数造成的损耗,具体数值可以在天线方向图中查得,当上下行天线夹角为180°时,方向性损耗即为天线的前后比。

天线隔离度

天线隔离度

5G NR天线隔离度5G NR(2.6GHz频段)与其它无线系统共址时,需预留足够的干扰隔离距离规避干扰,同时多系统共址时需要预留不同天馈系统间的安装和维护空间,因此建议:(1)5G NR(2.6GHz)系统与D频段TD-LTE系统邻频,需要时隙对齐避免交叉时隙干扰。

(2)5G NR大规模天线阵与GSM/NB-IoT(900MHz)CDMA 1X/NB-IoT(800MHz)/FDD LTE(900MHz和1.8GHz)/WCDMA/FDD LTE(2.1GHz)/TD-SCDMA(A频段)/TD-LTE(F频段)/5G NR(3.5GHz)/5G NR(4.9GHz)定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.5m;垂直距离≥0.3m。

(3)5G NR大规模天线阵与DCS定向天线之间间距要求:并排同向安装时,水平隔离距离≥0.9m;垂直距离≥0.3m。

(4)如果安装空间有限,可以适当缩减隔离距离,以不影响天馈系统安装和维护为宜。

同时隔离距离不应该小于下表所示数值:表 10.1-1 5G NR(2.6GHz频段)与其它移动通信系统共站站时的隔离距离要求1.15G NR(2.6GHz频段)与其他无线电台(站)的干扰协调根据中国人民共和国无线电频谱划分方案,在5G NR系统使用的2600MHz频段(2500~2690MHz)附近,有低端和高端无线系统存在。

(1)低端:2483.5~2500MHz频段,分配给移动、固定、无线电定位、卫星移动(空对地)、卫星无线电测定(空对地)使用。

(2)高端:2690~2700MHz频段,分配给卫星地球探测、射电天文以及空间研究业务;2700~2900MHz频段,分配给航空无线电导航、无线电定位业务使用。

在2.6GHz频段低端,主要是5G NR与北斗一代导航系统的干扰。

在2.6GHz 频段高端,主要是5G NR与航空无线电导航系统的干扰。

(1)5G NR与北斗一代导航系统的干扰协调5G NR与北斗一代导航系统的干扰主要是5G NR基站和终端对北斗系统终端的干扰。

天线隔离度

天线隔离度

1.各系统之间的干扰分析1.1. 需考虑的干扰类型由于各系统需要共址建设,为了保证各系统间不至于互相影响,需要对各系统间的干扰情况进行分析。

从形成机理的角度,系统之间的干扰可以分为杂散辐射、接收机互调干扰和阻塞干扰(由于一般系统之间的间隔频率可以大约工作带宽数倍,所以系统间一般不容易出现邻频干扰)。

1)杂散辐射(Spurious emissions)由于发射机中的功放、混频、滤波等器件工作特性非理想,会在工作带宽以外较宽的范围内产生辐射信号分量(不包括带外辐射规定的频段),包括电子热运动产生的热噪声、各种谐波分量、寄生辐射、频率转换产物以及发射机互调等。

3GPP 将该部分信号通归为杂散辐射,因为其分布带宽很广,也有文献称为宽带噪声(Wideband Noise)。

邻频干扰和杂散辐射不同,邻频干扰中所考虑的干扰发射机泄漏信号指的是:被干扰接收机所处频段距离干扰发射机工作频段较近,但尚未达到杂散辐射的规定频段的情况;根据3GPP TS25.105,杂散辐射适用于指配带宽以外、有效工作带宽2.5倍以上的频段;当两系统的工作频段相差带宽2.5倍以上时,滤波器非理想性将主要表现为杂散干扰。

2)接收机互调干扰包括多干扰源形成的互调、发射分量与干扰源形成的互调(TxIMD)、交叉调制(XMD)干扰3种。

多干扰源形成的互调是由于被干扰系统接收机的射频器件非线性,在两个以上干扰信号分量的强度比较高时,所产生的互调产物。

发射分量与干扰源形成的互调是由于双工器滤波特性不理想,所引起的被干扰系统发射分量泄漏到接收端,从而与干扰源在非线性器件上形成互调。

交叉调制也是由于接收机非线性引起的,在非线性的接收器件上,被干扰系统的调幅发射信号,与靠近接收频段的窄带干扰信号相混合,将产生交叉调制。

3)阻塞干扰阻塞干扰并不是落在被干扰系统接收带宽内的,但由于干扰信号功率太强,而将接收机的低噪声放大器(LNA)推向饱和区,使其不能正常工作。

天线隔离度要求

天线隔离度要求

天线隔离度要求
在无线通信系统中,天线隔离度是一个重要的参数,它决定了不同天线之间的相互干扰程度。

天线隔离度要求越高,意味着天线之间的相互干扰越小,系统的性能也就越稳定。

在实际应用中,天线的隔离度通常由多个因素决定,包括天线的工作频率、极化方式、安装位置和高度等。

一般来说,工作频率越高,天线之间的隔离度要求也越高。

此外,不同极化方式的天线也会对隔离度产生影响,例如垂直极化和水平极化天线之间的隔离度通常比相同极化方式的天线之间的隔离度要高。

安装位置和高度也会影响天线之间的隔离度,一般来说,天线之间的距离越远,隔离度越高。

为了满足天线隔离度要求,可以采取多种措施。

首先,可以选择具有高隔离度的天线产品,这可以在一定程度上提高系统的抗干扰能力。

其次,可以通过调整天线的安装位置和高度来增加天线之间的距离,从而提高隔离度。

此外,还可以采用一些附加的抗干扰技术,例如采用跳频技术、扩频技术等来降低天线之间的干扰。

总之,天线隔离度要求是无线通信系统设计中的重要考虑因素之一。

为了确保系统的稳定性和可靠性,需要充分考虑各种因素对天线隔离度的影响,并采取相应的措施来提高系统的抗干扰能力。

天线隔离度

天线隔离度

1.各系统之间的干扰分析1.1. 需考虑的干扰类型由于各系统需要共址建设,为了保证各系统间不至于互相影响,需要对各系统间的干扰情况进行分析。

从形成机理的角度,系统之间的干扰可以分为杂散辐射、接收机互调干扰和阻塞干扰(由于一般系统之间的间隔频率可以大约工作带宽数倍,所以系统间一般不容易出现邻频干扰)。

1)杂散辐射(Spurious emissions)由于发射机中的功放、混频、滤波等器件工作特性非理想,会在工作带宽以外较宽的范围内产生辐射信号分量(不包括带外辐射规定的频段),包括电子热运动产生的热噪声、各种谐波分量、寄生辐射、频率转换产物以及发射机互调等。

3GPP 将该部分信号通归为杂散辐射,因为其分布带宽很广,也有文献称为宽带噪声(Wideband Noise)。

邻频干扰和杂散辐射不同,邻频干扰中所考虑的干扰发射机泄漏信号指的是:被干扰接收机所处频段距离干扰发射机工作频段较近,但尚未达到杂散辐射的规定频段的情况;根据3GPP TS25.105,杂散辐射适用于指配带宽以外、有效工作带宽2.5倍以上的频段;当两系统的工作频段相差带宽2.5倍以上时,滤波器非理想性将主要表现为杂散干扰。

2)接收机互调干扰包括多干扰源形成的互调、发射分量与干扰源形成的互调(TxIMD)、交叉调制(XMD)干扰3种。

多干扰源形成的互调是由于被干扰系统接收机的射频器件非线性,在两个以上干扰信号分量的强度比较高时,所产生的互调产物。

发射分量与干扰源形成的互调是由于双工器滤波特性不理想,所引起的被干扰系统发射分量泄漏到接收端,从而与干扰源在非线性器件上形成互调。

交叉调制也是由于接收机非线性引起的,在非线性的接收器件上,被干扰系统的调幅发射信号,与靠近接收频段的窄带干扰信号相混合,将产生交叉调制。

3)阻塞干扰阻塞干扰并不是落在被干扰系统接收带宽内的,但由于干扰信号功率太强,而将接收机的低噪声放大器(LNA)推向饱和区,使其不能正常工作。

天线隔离度

天线隔离度

F频段与其他系统的隔离度其他系统水平隔离距离垂直隔离距离GSM/DCS不推荐≥1.8m GSM/DCS≥0.5m≥0.3m CDMA1X不推荐≥2m CDMA2000不推荐≥3m WCDMA≥0.5m≥0.2mTD-SCDMA不推荐≥0.9mTD-SCDMA≥0.5m≥0.2m WLAN不推荐≥3.4mWLAN≥8/2.6m≥0.9/0.5m D频段与其他系统的隔离度其他系统水平隔离距离垂直隔离距离GSM/DCS不推荐≥1.8m GSM/DCS≥0.5m≥0.3m CDMA1X不推荐≥2.7m CDMA2000不推荐≥2.7m WCDMA≥0.5m≥0.2mTD-SCDMA不推荐≥0.7mTD-SCDMA≥0.5m≥0.2m WLAN不推荐≥2.5mWLAN≥6/2.2m≥0.8/0.5m备注GSM/DCS符合3GPPTS05.05V8.20.0(2005-11)规范要求时GSM/DCS符合3GPPTS45.005V9.1.0(2009-11)规范要求时无无无符合《YD/T1365-20062GHzTD-SCDMA数字蜂窝移动通信网无线接入网络设备技术要求》及《信息产业部无线电管理局关于发布《2GHz频段TD-SCDMA数字蜂窝移动通信网设备射频技术要求(试行)》的通知(信无TD-SCDMA符合《中国移动TD-SCDMA无线子系统硬件技术规范(2010年)》时遵循《关于调整2.4GHz频段发射功率限值及有关问题的通知(信部无[2002]353号)》要求遵循《中国移动无线局域网(WLAN)AP、AC设备规范V1.1.0》要求(“/”前后两个值对应WLAN基本型和增强型要求)备注GSM/DCS符合3GPPTS05.05V8.20.0(2005-11)规范要求时GSM/DCS符合3GPPTS45.005V9.1.0(2009-11)规范要求时无无无符合《YD/T1365-20062GHzTD-SCDMA数字蜂窝移动通信网无线接入网络设备技术要求》及《信息产业部无线电管理局关于发布《2GHz频段TD-SCDMA数字蜂窝移动通信网设备射频技术要求(试行)》的通知(信无符合《中国移动TD-SCDMA无线子系统硬件技术规范(2010年)》时遵循《关于调整2.4GHz频段发射功率限值及有关问题的通知(信部无[2002]353号)》要求遵循《中国移动无线局域网(WLAN)AP、AC设备规范V1.1.0》要求(“/”前后两个值对应WLAN基本型和增强型要求)。

天线隔离度的定义

天线隔离度的定义

天线隔离度的定义
天线隔离度是指在多天线系统中,其中一对天线之间的相互影响程度。

在多天线系统中,如果不同天线之间存在干扰,会导致传输的信号质量下降,影响通信的可靠性和性能。

因此,天线隔离度是评估多天线系统性能的重要指标。

天线隔离度通常用信号干扰比(SIR)来衡量。

具体定义如下:天线隔离度= 接收信号功率/ 干扰信号功率。

接收信号功率指的是目标天线接收到的主要信号的功率,而干扰信号功率表示其他天线发送的信号对目标天线的干扰功率。

通过计算这两者的比值,可以评估天线系统中各天线之间的隔离效果。

天线隔离度越高,表示不同天线之间的相互干扰越小,系统的性能越好。

相反,天线隔离度越低,表示相互干扰越大,会导致通信的质量下降。

要提高天线隔离度,可以采取以下措施:
1. 合理设计天线的布置,避免天线之间距离过近,减少相互的物理干扰。

2. 使用高品质、高性能的天线和天线系统,减少信号损耗和干扰。

3. 采用适当的信号处理和调制技术,以降低多路径干扰和其他干扰来源对信号的影响。

综上所述,天线隔离度是评估多天线系统性能的重要指标,通过衡量接收信号和干扰信号的功率比来评估天线之间的相互干扰程度。

提高天线隔离度可以改善通信系统的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为降低两系统间干扰,天线要有一定的隔离度,其取决于天线辐射方向图和空间距离及增益,
通常不考虑电压驻波比引入的衰减。

引入下公式:
垂直排列:Lv=28+40*lg(k/λ) (dB)
水平排列:Lv=22+20*lg(d/λ)-(G1+G2)-(S1+S2) (dB)
其中:Lv:隔离度要求(dB)
λ:载波波长(m)
k:垂直隔离距离(m)
d:水平隔离距离(m)
G1,G2:发射与接收天线最大辐射方向增益(dBi)
S1, S2:发射与接收天线90度方向副瓣电平(dBp)(相对主瓣方向,取负值。

全向天线时为零)
变形后得:
k=λ*10(Lv-28)/40
d=λ*10(Lv-22+G1+G2+S1+S2)/20
本例考虑TD-LTE对GSM900,隔离度Lv的计算方法在(天线隔离度(dB))页给出。

则天线间隔要求如下:
基站天线类型水平间距(m)垂直间距(m)λ(m)隔离度(dB)G1(dBi)G2(dBi)S1(dBp)S2(dBp) TD-LTE对GSM9000.470.180.3331.0015.0015.00-18.00-18.00
水平隔离距离
干扰系统GSM900TDD-LTE(F频段)T DD-LTE(D频段)WCDMA LTE FDD(F频段,联通)CDMA LTE FDD(F频段,电信)
GSM900—0.50.50.50.5 1.30.5 TDD-LTE(F频段)0.5——340.54
TDD-LTE(D频段)0.5——0.50.50.50.5 WCDMA0.530.5—0.50.50.5
LTE FDD(F频段,联通)0.540.50.5—0.54 CDMA 1.30.50.50.50.5—0.5
LTE FDD(F频段,电信)0.540.50.540.5—
垂直隔离距离
干扰系统GSM900TDD-LTE(F频段)T DD-LTE(D频段)WCDMA LTE FDD(F频段,联通)CDMA LTE FDD(F频段,电信)
GSM900—0.30.20.30.30.60.3 TDD-LTE(F频段)0.2——0.50.60.50.6
TDD-LTE(D频段)0.2——0.20.20.20.2 WCDMA0.50.50.2—0.20.50.2
LTE FDD(F频段,联通)0.30.20.20.2—0.20.6 CDMA0.50.50.20.50.2—0.2
LTE FDD(F频段,电信)0.20.20.20.20.60.2—。

相关文档
最新文档