二次函数与一元二次方程之间的关系

合集下载

九年级二次函数与一元二次方程的联系和区别

九年级二次函数与一元二次方程的联系和区别

二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。

当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。

⑤常数项c 决定抛物线与y 轴交点。

抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。

对称轴为直线 x =2ab-,。

对称轴与抛物线唯一的交点为抛物线的顶点P 。

特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。

当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。

2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。

Δ= b2-4ac=0时,抛物线与x 轴有1个交点。

Δ= b 2-4ac <0时,抛物线与x 轴没有交点。

二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。

④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系

(5)a+b+c的符号:因为x=1时,y=a+b+c,所以 a+b+c的符号由x=1时,对应的y值决定。 当x=1时,y>0,则a+b+c>0 当x=1时,y<0,则a+b+c<0 当x=1时,y=0,则a+b+c=0 (6)a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c 的符号由x=-1时,对应的y值决定。 当x=-1,y>0,则a-b+c>0 当x=-1,y<0,则a-b+c<0 当x=-1,y=0,则a-b+c=0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
x
b 2、>0 2a
3、△=b² -4ac=0 4、C>0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
b 2、=0 2a
x
3、△=b² -4ac=0 4、C=0
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
例(1)如果关于x的一元二次方程 x2-2x+m=0有两个 1 相等的实数根,则m=____ ,此时抛物线 y=x21 2x+m与x轴有 8x +c的顶点在 x轴 16 上,则c=____ .
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系

(2)取3和4的中间数3.5代入表达式 中试值.
当x=3.5时,y=3.52-2×3.5- 6=-0.75<0;
当x=4时,y>0,在3.5<x<4 范围内,
y随x的增大而增大,∴3.5<x2 <4.
• (3)取3.5和4的中间数3.75代入表达式 中试值.
• 当x=3.75时,y=3.752-2×3.75-6 =0.562 5>0; • 当x=3.5时,y<0.在3.5<x<3.75范 围内,
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
二次函数y=ax2+bx+c与x轴交点的横坐标就是 方程ax2+bx+c=0的根。
1 (中考·柳州)小兰画了一个函数y=x2+ax+b的图象 如图,则关于x的方程x2+ax+b=0的解是( D ) A.无解 B.x=1 C.x=-4 D.x=-1或x=4
• 2.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A (﹣1,p),B(4,q)两点,则关于x的不等式mx+n >ax2+bx+c的解集是 x<-1或x>4 .
• 3.二次函数y=x2+bx的图象如图,对称轴为直 线x=1,若关于x的一元二次方程x2+bx﹣t=0 (t为实数)在﹣1<x<4的范围内有解,则t的取
知识点 1 二次函数与一元二次方程的关系
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?

二次函数与一元二次方程、不等式的关系

二次函数与一元二次方程、不等式的关系

二次函数与一元二次方程、不等式的关系二次函数的平移只要两个函数的a 相同,就可以通过平移重合。

将二次函数一般式化为顶点式y=a(x -h)2+k ,平移规律:左加右减,对x ;上加下减,直接加减1.抛物线y= -32x 2向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为 。

2.抛物线y= 2x 2, ,可以得到y=2(x+4}2-3。

3.将抛物线y=x 2+1向左平移2个单位,再向下平移3个单位,所得到的抛物线的关系式为 。

4.如果将抛物线y=2x 2-1的图象向右平移3个单位,所得到的抛物线的关系式为 。

5.将抛物线y=ax 2+bx+c 向上平移1个单位,再向右平移1个单位,得到y=2x 2-4x -1则a = ,b = ,c = .6.将抛物线y =ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为 _.函数的交点1. 抛物线372++=x x y 与直线92+=x y 的交点坐标为 。

2. 直线17+=x y 与抛物线532++=x x y 的图象有 个交点。

二次函数与方程、不等式的关系1如果二次函数y =x 2+4x +c 图象与x 轴没有交点,其中c 为整数,则c = (写一个即可)2.二次函数y =x 2-2x-3图象与x 轴交点之间的距离为3.抛物线y =-3x 2+2x -1的图象与x 轴交点的个数是( )A.没有交点B.只有一个交点C.有两个交点D.有三个交点4.如图所示,二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点, 交y 轴于点C ,则△ABC 的面积为( ) A.6 B.4 C.3 D.15.已知抛物线y =5x 2+(m -1)x +m 与x 轴的两个交点在y 轴同侧,它们的距离平方等于为 ,则m 的值为( )A.-2B.12C.24D.48 6.若二次函数y =(m+5)x 2+2(m+1)x+m 的图象全部在x 轴的上方,则m 的取值范围是7.已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .8.关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;9.二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( )A.0,0>∆>aB.0,0<∆>aC.0,0>∆<aD.0,0<∆<a2510.若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( ) A.x =-3 B.x =-2 C.x =-1 D.x =111.已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点;(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积。

浅谈二次函数与一元二次方程的联系

浅谈二次函数与一元二次方程的联系

浅谈二次函数与一元二次方程的联系摘要:二次函数与一元二次方程的解答方法都需要学生进行独立的分析和总结,才能有效地加深学生对方程的学习和理解。

函数与方程是初中数学中两个最基本的概念,形式虽然不同,但它们之间有着密切的关系。

探索二次函数的图象的作法和性质的过程,能够利用描点法作出函数的图象,并能根据图象认识和理解二次函数的性质。

通过学生之间的交流互动,进行图象与图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系。

一元二次方程与二次函数之间的密切关系还有很多巧妙的用处,更多的地方需要在实践中去慢慢体会,并理解函数的意义,记住函数的几个表达形式,注意区分。

关于一元二次方程的学习任务,并要求学生们独立完成,从而让学生有针对性地进行课程学习,最终提高学生的学习效率和质量。

完善初中数学课程评价标准,从而提高数学课堂的教学质量,老师要根据每一位学生的心理特点、学习能力以及成果进行综合评价,并根据最终的评价结果给予学生适当的鼓励和支持,以增强学生的学习自信心。

关键词:动手实践自主探索合作交流自身思维营造高效一元二次方程与二次函数它们在形式上几乎相同,差别只是一元二次方程的表达式等于0,而二次函数的表达式等于y。

这种形式上的类似使得它们之间的关系格外密切,方程中的很多知识点可以运用在函数中。

函数与方程是初中数学中两个最基本的概念,形式虽然不同,但它们之间有着密切的关系。

它们在形式上几乎相同,二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

二次函数与一元二次方程的解答方法都需要学生进行独立的分析和总结,才能有效地加深学生对方程的学习和理解。

初中数学课程标准指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。

内容的呈现应采用不同的表达方式,以满足多样化的学习需求。

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

二次函数与一元二次方程

二次函数与一元二次方程

二次函数与一元二次方程【知识梳理】(一)二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)即:一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。

(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即:为顶点(2b a -,0)一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a ==-240b ac -=(3)抛物线y =ax 2+bx +c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac <0.(二)二次函数关系式的确定⑴设一般式:y =ax 2+bx +c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.⑵设顶点式:y =a(x -h)2+k(a≠0).若已知条件是图象顶点及另一点,则设顶点式y =a (x -h )2+k (a ≠0).,将已知条件代人,求解并化为一般形式.:⑶设交点式(或两点式):y =a(x -x 1)(x -x 2)(a ≠0).若已知条件是图象与x 轴的两个交点及另一点,则设交点式y =a (x -x 1)(x -x 2)(a ≠0).将已知条件代人,求解并化为一般形式.【考点剖析】考点一 二次函数与方程例1.小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2+ax+b=0的解是( )A . 无解B .x=1C .x=-4D .x=-1或x=4例2.已知抛物线y=x 2﹣4x +m ﹣1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y=2x ﹣m 只有一个交点,求m 的值.例3.如图,二次函数y=x 2﹣6x+5的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 .例3图 变1图【变式练习】1.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。

例析二次函数与一元二次方程的转化

例析二次函数与一元二次方程的转化

例析二次函数与一元二次方程的转化山东 于秀坤二次函数y=ax2+bx+c(a ≠0)与一元二次方程ax2+bx+c=0〔a ≠0〕密切相关,当函数值y=0时,可得到一元二次方程ax2+bx+c=0.从图象上看,二次函数y=ax2+bx+c 的图象与x 轴的交点的横坐标就是一元二次方程ax2+bx+c=0的根.对于二次函数y=ax2+bx+c 的图象和一元二次方程ax2+bx+c=0:当图象与x 轴有一个公共点时,方程有两个相等实数根,即Δ=b2-4ac=0;当图象与x 轴有两个公共点时,方程有两个不等的实数根,即Δ=b2-4ac>0;当图象与x 轴没有公共点时,方程没有实数根,即 Δ=b2-4ac<0.例1 〔2019•宿迁〕假设二次函数y=ax2-2ax+c 的图象经过点〔-1,0〕,那么方程ax2-2ax+c=0的解为〔 〕x1=-3,x2=-1 B 、x1=1,x2=3 C 、x1=-1,x2=3 D 、x1=-3,x 2=1解析:∵二次函数y=ax2-2ax+c 的图象经过点〔-1,0〕,∴方程ax2-2ax+c=0一定有一个解为x=-1,∵抛物线的对称轴是x=-22a a-=1, ∴二次函数y=ax2-2ax+c 的图象与x 轴的另一个交点为:〔3,0〕. ∴方程ax2-2ax+c=0的解为x1=-1,x2=3.应选C 、例2〔2016•徐州〕假设二次函数y=x2+2x+m 的图象与x 轴没有公共点,那么m 的取值范围是______.解析:∵二次函数y=x2+2x+m 的图象与x 轴没有公共点,∴方程x2+2x+m=0没有实数根.∴∆=22-4×1×m <0,解得m >1.例3〔2019•南通〕关于x 的一元二次方程ax2-3x-1=0的两个不等的实数根都在-1和0之间〔不包括-1和0〕,那么a 的取值范围是__________解析:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根,∴ =〔-3〕2-4×a×〔-1〕>0,解得a>−9 4.设y=ax2-3x-1,如图,∵实数根都在-1和0之间,[来源:学+科+网]∴-1<−-32a<0,解得a<−32.当x=-1时,y<0,即a×〔-1〕2-3×〔-1〕-1<0. 解得a<-2.[来源:1ZXXK]综上可得−94<a<-2.[来源:1ZXXK]。

二次函数与一元二次方程

二次函数与一元二次方程

二次函数与一元二次方程二次函数与一元二次方程是高中数学的重要内容之一。

本文将从概念解释、性质讨论以及实际应用等方面来探讨二次函数与一元二次方程的相关知识。

一、二次函数的定义和性质二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。

其中,a决定了抛物线的开口方向及大小,a>0时抛物线开口向上,a<0时抛物线开口向下;b决定了抛物线在x轴的位置,负责平移抛物线;c决定了抛物线与y轴的截距,负责上下平移。

二次函数的图象一定是一个抛物线,还可以根据抛物线的顶点、焦点等性质进行分类和推导。

例如,顶点坐标为(h,k),则对称轴方程为x = h;当a>0时,抛物线的最小值为k,焦点坐标为(h,k+p);当a<0时,抛物线的最大值为k,焦点坐标为(h,k-p)。

二、一元二次方程的定义和性质一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知数且a≠0。

一元二次方程在数学中具有广泛的应用,解一元二次方程的过程就是求解方程的根,即方程等式两边相等的值。

一元二次方程的解可以分为三种情况:①当b^2 - 4ac > 0时,方程有两个不相等的实数根;②当b^2 - 4ac = 0时,方程有两个相等的实数根;③当b^2 - 4ac < 0时,方程无实数根,但有复数根。

三、二次函数与一元二次方程的关系二次函数和一元二次方程有着密切的联系。

对于任意给定的二次函数y = ax^2 + bx + c,我们可以用x代入函数中,得到一元二次方程ax^2 + bx + c = 0,即将二次函数转化为一元二次方程。

反之,对于一元二次方程ax^2 + bx + c = 0,我们可以通过求解方程的根,得到二次函数的图象的相关信息。

例如,根据二次函数的顶点和焦点的性质,可以通过一元二次方程的解来确定抛物线的开口方向、抛物线与x轴的交点等。

四、二次函数与一元二次方程的应用二次函数与一元二次方程在实际问题中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18
题型
2
二次函数的图象与x轴的交 点情况在求字母范围中应用
14.(中考•南京)已知函数y=-x2+(m-1)x+m(m为常数).
(1)该函数的图象与x轴公共点的个数是( D )
A.0 B.1 C.2 D.1或2
19
(2)求证:不论m为何值,该函数的图象的顶点都在函数y=
(x+1)2的图象上.
证∴把该 x明=函:m数∵的y1=图代-象入x2的y+=顶(m(点x-+坐11)标)x2,+为得m( =ym=-2(1(xm-,(1m+m2+4111)))22=2+)((. mm++411))22
7
6.下列抛物线中,与x轴有两个交点的是( D ) A.y=3x2-5x+3 B.y=4x2-12x+9 C.y=x2-2x+3 D.y=2x2+3x-4
返回 8
7.(中考•徐州)若函数y=x2-2x+b的图象与坐标轴有三个
交点,则b的取值范围是( A )
A.b<1且b≠0
B.b>1
C.0<b<1
D.b<1
返回 9
8.(中考•枣庄)已知函数y=ax2-2ax-1(a是常数,a≠0),下
列结论正确的是( D )
A.当a=1时,函数图象经过点(-1,1)
B.当a=-2时,函数图象与x轴没有交点
C.若a<0,函数图象的顶点始终在x轴的下方
D.若a>0,则当x≥1时,y随x的增大而增大
返回
10
9.(中考•资阳)已知抛物线y=x2+bx+c与x轴只有一
16
y=-x2+2x+3,

y=-
3 2
x+3,

x1=0, y 1=3,
∴D(
7 ,- 9
2
4
.)
∵S△ABP=4S△ABD,

1 2
AB×|yP|=4×
1 2
AB×
9 4

x2=
7 2

y2=-
9 4

17
∴|yP|=9,即yP=±9, 当y=9时,-x2+2x+3=9,无实数解; 当y=-9时,-x2+2x+3=-9, 解得x1=1+ 13 ,x2=1- 13, ∴点P的坐标为(1+ 13 ,-9)或(1- 13,-9).
21
15.(中考•孝感)已知关于x的一元二次方程x2-(m-3)x- m=0.
(1)试判断该方程根的情况. 【思路点拨】(1)利用Δ的符号判断方程根的情况; 解:Δ=[-(m-3)]2-4(-m)=m2-2m+9=(m-1)2+8, ∵(m-1)2≥0,∴Δ=(m-1)2+8>0. ∴原方程有两个不相等的实数根.
返回
3
2.(中考•苏州)若二次函数y=ax2+1的图象经过
点(-2,0),则关于x的方程a(x-2)2+1=0的
实数根为( A )
A.x1=0,x2=4 B.x1=-2,x2=6
C.x1=
3 2
,x2=
5 2
D.x1=-4,x2=0
返回
4
3.(中考•荆门)若二次函数y=x2+mx的图象的对称轴 是直线x=3,则关于x的方程x2+mx=7的解为 ( D) A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=-7 D.x1=-1,x2=7
13.(中考•黑龙江)如图,已知抛物线y=-x2+mx+3与x轴交
于A,B两点,与y轴交于C点,点B的坐标为(3,0),抛
物线与直线y=-
3 2
x+3交于
C,D两点.连接BD,AD.
(1)求m的值;
返回
15
解:∵抛物线y=-x2+mx+3过点B(3,0), ∴0=-9+3m+3,∴m=2.
(2)抛物线上有一点P,满足S△ABP=4S△ABD, 求点P的坐标.
C.有两个交点,且它们均位于y轴左侧
D.有两个交点,且它们均位于y轴右侧
返回
12
11.(中考•广安)如图,抛物线y=ax2+bx+c的顶点为B
(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之
间,以下结论:①b2-4ac=0;②a+b+c>0;
③2a-b=0;④c-a=3.其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
返回
13
12.(中考•黄石)以x为自变量的二次函数y=x2-2(b
-2)x+b2-1的图象不经过第三象限,则实数b的
取值范围是( A )
A.b≥
5 4
C.b≥2
B.b≥1或b≤-1 D.1≤b≤2
返回 数图象 的交点情况在求字母值中应用
第22章 二次函数
22.2 二次函数与一元二次方程 第1课时 二次函数与一元二次方程之间的
关系
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
2
知识点 1 二次函数与一元二次方程之间的关系
1.求二次函数y=ax2+bx+c的图象与x轴的交点横坐 标就是求一元二次方程__a_x_2_+__b_x_+__c_=__0__的两个 根;一元二次方程ax2+bx+c=0(b2-4ac≥0)的根 就是二次函数y=ax2+bx+c的图象与直线 ____y_=__0___的交点的___横___坐标.
, ,
2
2
4
则不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的
图象上.
20
(3)当-2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围. 解:设z=(m+1)2 ,
4
当m=-1时,z有最小值为0; 当m<-1时,z随m的增大而减小; 当m>-1时,z随m的增大而增大, 当m=-2时,z= 1 ;当m=3时,z=4. 则当-2≤m≤3时,该4 函数图象的顶点纵坐标的取值范围是返0回≤z≤4.
返回
5
4.(中考•牡丹江)将抛物线y=x2-1向下平移8个单位
长度后与x轴的两个交点之间的距离为( B )
A.4
B.6
C.8
D.10
返回 6
知识点 2 二次函数图象与x轴的交点个数问题
5.抛物线y=ax2+bx+c与x轴的交点个数与一元二 次方程ax2+bx+c=0根的判别式的关系:
当b2-4ac<0时,抛物线与x轴____无____交点; 当b2-4ac=0时,抛物线与x轴有__一__个____交点; 当b2-4ac>0时,抛物线与x轴有___两__个___交点. 返回
个交点,且过A(x1,m),B(x1+n,m)两点,则m,
n的关系为( D )
A.m= 1 n
2
C.m=
1 2
n2
B.m= 1 n
4
D.m=
1 4
n2
返回
11
10.(中考•陕西)下列关于二次函数y=ax2-2ax+1(a
>1)的图象与x轴交点的判断,正确的是( D ) A.没有交点
B.只有一个交点,且它位于y轴右侧
相关文档
最新文档