一元二次方程的根与系数的关系
一元二次方程根与系数的关系

1、当k为何值时,方程2x2-(k+1)x+k+3=0的两根差为1。
解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1 ∵ (x2-x1)2=(x1+x2)2-4x1x2
k 1 由根与系数的关系得x1+x2= 2
∴(
解得k1=9,k2= -3
k 1 2 k 3 ) 4 1 2 2
一元二次方程根与系数的关系
阜宁丰唐实验学校
一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
2 4ac b b 2a
X=
(b2-4ac≥ 0)
一元二次方程的根与系数的关系: (韦达定理) 如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 , 那么X1+x2=
-
b a
●
m 3
,
∴ m= 3x1 = 16 x1+x2= - 2 , x1 · 2= 3 x
2 5 2 2
2、设x1,x2是方程2x2+4x-3=0的两个根,求(x1+1)(x2+1)的值。
由根与系数的关系,得 解:
∴ (x1+1)(x2+1) = x1 x2 + (x1+x2)+1 =-2+( 3 )+1=
2 3
, x1 · 2=-3 x
2 3 3
=
x1 x 2 x x2 1
=
=
2 9
(2)∵ (x1+x2)2= x12+x22 +2x1x2 ∴x12+x22
=(x1+x2 -2x x )2
4 2 2 1 2 =(- 3 ) -2×(-3)=6 9
一元二次方程的根的分布与系数的关系-高中数学知识点讲解

一元二次方程的根的分布与系数的关系
1.一元二次方程的根的分布与系数的关系
【概述】
一元二次方程根与系数的关系其实可以用一个式子来表达,即当ax2+bx+c=0(a≠0)有解时,不妨设它的解为x1,x2,那么这个方程可以写成ax2﹣a(x1+x2)x+ax1•x2=0.即x2﹣(x1+x2)x+x1•x2=0.它表示根与系数有如
下关系:x1+x2 =―푏
푎
,x1•x2 =
푐
푎.
【例题解析】
例:利用根与系数的关系求出二次项系数为 1 的一元二次方程,使它的两根分别是方程x2﹣3x+1=0 两根的平方.
解:方程x2﹣3x+1=0 中,
∵a=1,b=﹣3,c=1,
∴△=9﹣4=5>0,即方程有两个不相等的实数根,
设方程两根分别为x1,x2,
∴x1+x2=3,x1x2=1,
∴(x1+x2)2=x12+x22+2x1x2,即 9=x12+x22+2,
∴x12+x22=7,又x12x22=(x1x2)2=1,且所求方程二次项系数为 1,
则所求方程为x2﹣7x+1=0.
这个题基本上是套用定理,唯一注意的是x1+x2 与x1•x2 可以变换,不管是变成加还是减还是倒数,都可以应用上面的公式(韦达定理).
【考点分析】
首先申明,这是必考点.一般都是在解析几何里面,通过联立方程,求出两交点的横坐标与系数的关系,然后通过这个关系去求距离,或者斜率的积等等.所以在复习的时候要结合解析几何一同复习效果更佳.
1/ 1。
一元二次方程组根与系数的关系

一元二次方程组根与系数的关系稿子一嗨,亲爱的小伙伴们!今天咱们来聊聊一元二次方程组根与系数的关系,这可有意思啦!你知道吗,一元二次方程就像一个神秘的小盒子,而根与系数的关系就是打开这个小盒子的钥匙。
比如说,对于方程ax² + bx + c = 0 (a≠0),如果它有两个根 x₁和 x₂,那它们之间的关系可神奇了。
两根之和 x₁ + x₂就等于 b/a 。
你想想,这是不是很奇妙?就好像是在方程的背后隐藏着一个小秘密,被我们发现啦!还有两根之积 x₁x₂等于 c/a 。
这两个关系在解题的时候可好用了呢。
比如说,给你一个方程,告诉你其中一个根,让你求另一个根,这时候根与系数的关系就能派上大用场。
有时候做题做到头疼,突然想到这个关系,一下子就找到了解题的突破口,那种感觉简直太棒啦!而且哦,掌握了这个关系,还能让我们对一元二次方程有更深入的理解,是不是很有趣呀?所以呀,小伙伴们,一定要好好记住这个神奇的关系,它会在数学的世界里给我们带来很多惊喜的!稿子二嘿,朋友们!今天咱们来唠唠一元二次方程组根与系数的关系。
这玩意儿听起来好像有点复杂,其实呀,可简单有趣啦!先来说说啥是一元二次方程,就是那种长得像ax² + bx + c = 0 (a≠0)的式子。
然后呢,它要是有两个根,咱们就能发现一些好玩的规律。
比如说,两根之和等于 b/a 。
哎呀,别被这式子吓到,其实就是个小规律。
你就想象成是方程在跟咱们悄悄说它的秘密。
还有两根之积等于 c/a 。
这就像是方程给咱们的小礼物,只要咱们找到了,解题就能变得轻松不少。
我跟你讲哦,有一次我做数学题,怎么都解不出来,急得我抓耳挠腮。
突然想到了根与系数的关系,一下子就豁然开朗了。
这感觉就像是在黑暗中找到了明灯,别提多爽啦!而且呀,这不仅能帮我们解题,还能让我们觉得数学其实没那么枯燥,充满了小惊喜。
所以呀,朋友们,别害怕这个根与系数的关系,多琢磨琢磨,你会发现数学的乐趣无处不在!。
一元二次方程的根与系数的关系

一元二次方程的根与系数的关系一元二次方程的根与系数的关系一、目标认知学习目标1.掌握一元二次方程的根与系数的关系;2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值;3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根;4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程.重点对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用.难点一元二次方程的根与系数的关系的运用.二、知识要点梳理一元二次方程根与系数的关系如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么.注意它的使用条件为a≠0,Δ≥0.三、规律方法指导解:法一:把x=2代入原方程,得22-6×2+m2-2m+5=0即m2-2m-3=0解得m1=3,m2=-1当m1=3,m2=-1时,原方程都化为x2-6x+8=0∴x1=2,x2=4∴方程的另一个根为4,m的值为3或-1.法二:设方程的另一个根为x.则2.判别一元二次方程两根的符号.2.不解方程,判别2x2+3x-7=0两根的符号情况.思路点拨:因为二次项系数,一次项系数,常数项皆为已知,可求根的判别式△,但△只能用于判定根存在与否,若判定根的正负,则需要考察x1·x2或x1+x2的正负情况.解:∵△=32-4×2×(-7)=65>0∴方程有两个不相等的实数根,设方程的两个根为x1,x2,∵∴原方程有两个异号的实数根.总结升华:判别根的符号,需要“根的判别式”,“根与系数的关系”结合起来进行确定.另外本题中x1·x2<0,可判定根为一正一负,若x1·x2>0,仍需考虑x1+x2的正负,从而判别是两个正根还是两个负根.举一反三:【变式1】当m为什么实数时,关于x的二次方程mx2-2(m+1)x+m-1=0的两个根都是正数.思路点拨:正、负根的问题应这样想:如正数根,应确保两根之和大于零,两根之积大于零,根的判别式大于等于零.解:设方程的二根为x1,x2,且x1>0,x2>0,则有由△=[-2(m+1)]2-4m(m-1)≥0,解得:∵m≠0,∴m>0或m<0,∴上面不等式组化为:由⑴得m>1;⑵不等式组无解.∴m >1∴当m>1时,方程的两个根都是正数.总结升华:当二次项系数含有字母时,不要忘记a≠0的条件.【变式2】k为何值时,方程2(k+1)x2+4kx+3k-2=0(1)两根互为相反数;(2)两根互为倒数;(3)有一根为零,另一根不为零.思路点拨:两根“互为相反数”、“互为倒数”,“有一根为零,另一根不为零”等是对两根的性质要求,在满足这个要求的条件下,求待定字母的取值.方程的根互为相反数,则x1=-x2,即x1+x2=0;互为倒数,则x1=,即x1·x2=1,但要注意考察判别式△≥0.解:设方程的两根为x1,x2,则x1+x2=x1x2=(1)要使方程两根互为相反数,必须两根的和是零,即x1+x2=,∴k=0,当k=0时,△=(4k)2-4×2(k+1)(3k-2)=16>0∴当k=0时,方程两根互为相反数.(2)要使方程两根互为倒数,必须两根的积是1,即x1x2==1,解得k=4当k=4时,△=(4k)2-4×2(k+1)(3k-2)=-144<0∴k为任何实数,方程都没有互为倒数的两个实数根.(3)要使方程只有一个根为零,必须二根的积为零,且二根的和不是零,即x1x2==0,解得k=又当k=时,x1+x2=,当k=时,△=(4k)2-4×2(k+1)(3k-2)=>0,∴k=时,原方程有一根是零,另一根不是零.总结升华:研究两个实数根问题时,应注意二次项系数不得为零,△=b2-4ac不得小于零.3.根的关系,确定方程系中字母的取值范围或取值.3.关于x的一元二次方程x2-3x+k+1=0的两根的平方和小于5,求k的取值范围.解:设方程两根分别为x1,x2,x1+x2=3,x1·x2=k+1∵x12+x22=(x1+x2)2-2x1x2=32-2(k+1)<5∴k>1①又∵△=(-3)2-4(k+1)≥0∴k≤②由①②得:1<k≤.总结升华:应用根的判别式,已知条件,构造不等式,用不等式组的思想,确定字母的取值范围.举一反三:【变式1】已知:方程x2+2(m-2)x+m2+4=0有两个实数根,且这两个根的平方和比两根的积大21,求m的值.思路点拨:本题是利用转化的思想将等量关系“两个根的平方和比两根的积大21”转化为关于m的方程,就可求得m的值.解:∵方程有两个实数根,∴△=[2(m-2)]2-4×1×(m2+4)≥0解这个不等式,得m≤0设方程两根为x1,x2,∴x1+x2=-2(m-2)x1·x2=m2+4∵x12+x22-x1x2=21∴(x1+x2)2-3x1x2=21∴[-2(m-2)]2-3(m2+4)=21整理得:m2-16m-17=0解得:m1=17,m2=-1又∵m≤0,∴m=-1.总结升华:1.求出m1=17,m2=-1后,还要注意隐含条件m≤0,舍去不合题意的m=17.【变式2】设与是方程x2-7mx+4m2=0的两个实数根,且(-1)(-1)=3,求m的值.思路点拨:利用一元二次方程的根与系数的关系把等式(-1)(-1)=3转化为关于m的方程.解:由于与是方程x2-7mx+4m2=0的两个根,根据根与系数的关系,有所以,有(-1)(-1)=-()+1=4m2-7m+1=3.所以,得方程4m2-7m-2=0.解这个方程,或m=2.经检验,或m=2都能使判别式Δ=(7m)2-4×(4m2)=33m2>0,所以,m=2都符合题意.总结升华:如果所求m的值使方程没有实数根,就是错误的结果,所以检验的步骤是十分必要的.讨论方程的实数根的问题,只有在判别式的值是非负数时才有意义,在解决问题时应注意这个重要的条件.4.求简单的关于根的对称式的值.在关于一元二次方程的根x1与x2的式子中,如果交换这两个字母的位置后式子不变(我们常把这种式子叫做对称式),就可以通过恒等变形,转化为用x1+x2与x1x2表达的式子,从而可以利用根与系数的关系解决.如+,,(1+x 1)(1+x2)都是对称式,它们可以变形为用x1+x2与x1x2表达的式子,如(1+x1)(1+x2)=1+(x1+x2)+x1x2,+=(x 1+x2)2-2x1x2,……等等.4.如果与是方程2x2+4x+1=0的两个实数根,求的值.思路点拨:注意到交换与的位置时,代数式不变,所以代数式是关于与的对称式.解:∵Δ=b2-4ac=8>0,∴方程有实根.∵∴举一反三:【变式1】已知与是方程3x2-x-2=0的两个实数根,求代数式的值.思路点拨:中的与的位置互换时,式子的形式不变,所以它们都是对称式,可以转化为含有与的式子,利用根与系数的关系简化计算.解:由于>0,<0,所以Δ>0,方程一定有实根.于是==.把=与=-代入,得====总结升华:这是一个无理数系数的一元二次方程,如果分别求出根与的值,计算过程将冗长而烦琐,利用根与系数的关系就可以有效地达到简化计算过程的目的,读者如果用求根后代入的方法演算一遍,将会有深刻的体会.5.利用一元二次方程的根与系数的关系判断两个已知数是否方程的根,能够求出以两个已知数为根的一元二次方程.事实上,我们有这样的定理:如果两个实数x1与x2使得x1+x2=-p,且x1x2=q,那么x1与x2是方程x2+px+q=0的两个根.证明如下:由于x1+x2=-p,x1x2=q,那么方程x2+px+q=0可以化为x2-(x1+x2)x+x1x2=0,x2-x1x-x2x+x1x2=0,x(x-x1)-x2(x-x1)=0,(x-x1)(x-x2)=0,∴x=x1或x=x2.这就是说,x1和x2是方程x2+px+q=0的两个根.5.判断下列方程后面括号内的两个数是不是方程的根:(1)x2-8x-20=0,(10,-2);(2)6y2+19y+10=0,;(3)a2-2a+3=0,(+,-+).解:(1) ∵10+(-2)=+8=-(-8),10×(-2)=-20,∴10与-2是方程x2-8x-20=0的两个根;(2) ∵,,∴-与-是方程6y2+19y+10=0的两个根;(3) 虽然有(+)(-+)=+3,但是(+)+(-+)=+2≠-(-2);所以+与-+不是方程a2+2a-3=0的根.6.(1)作一个以-与为根的一元二次方程;(2)作一个方程,使它的两个根分别是方程2x2+5x-8=0的两个根的倒数.思路点拨:作一元二次方程,只需利用根与系数的关系求出方程各项的系数.解:(1) 由于-+=-2+=-,-·=-=-4,所以所求方程是x2+x-4=0.(2) 设x1与x2是方程2x2+5x-8=0的两个根,所以,有x1+x2=,x1x2=-4.所以,.于是所求方程是x2-x-=0.也就是8x2-5x-2=0.。
九年级数学一元二次方程的根与系数的关系

一元二次方程的根与系数的关系1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2=,x 1·x 2=。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2=;x 1·x 2=;2111x x +;x 21+x 22=;(x 1+1)(x 2+1)=;|x 1-x 2|=。
3、若方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,则m=。
4、已知方程5x 2+mx -10=0的一根是-5,求方程的另一根及m 的值。
5、已知2+3是x 2-4x+k=0的一根,求另一根和k 的值。
6、已知方程x 2-mx+2=0的两根互为相反数,则m=。
7、关于x 的方程2x 2-3x+m=0,当时,方程有两个正数根;当m 时,方程有一个正根,一个负根;当m 时,方程有一个根为0。
8、若关于y 的一元二次方程y 2+my+n=0的两个实数根互为相反数,则A.m=0且n ≥0B.n=0且m ≥0C.m=0且n ≤0D.n=0且m ≤9、不解方程,判断下列方程根的符号,如果两根异号,试确定是正根还是负根的绝对值大?0362)2(,053)1(22=+-=--x x x10、以2和3为根的一元二次方程(二次项系数为1)是。
11、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为。
12、(1)方程x 2-3x+m=0的一个根是2,则另一个根是。
(2)若关于y 的方程y 2-my+n=0的两个根中只有一个根为0,那么m ,n 应满足。
13、关于x 的方程x 2-ax -3=0有一个根是1,则a=,另一个根是。
14、以2,-3为根的一元二次方程是22+x -6=0 C.x 2-2-x -6=015、以3,-1为根,且二次项系数为3的一元二次方程是2-2+2x -3=0C.3x 2-6x -2+6x -9=016、两个实数根的和为2的一元二次方程可能是2+2x-2-2x+3=0 C.x22-2x-3=017、以-3,-2为根的一元二次方程为,18、在解方程x2+px+q=0时,小X看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。
一元二次方程根与系数的关系

第一讲 一元二次方程根与系数的关系一、一元二次方程的根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为: 2224()24b b ac x a a-+= (1) 当240b ac ->时,方程有两个不相等的实数根:x =(2) 当240b ac -=时,方程有两个相等的实数根:1,22b x a=-; (3) 当240b ac -<时,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式:∆=24b ac -.二、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:1222b b x x a a-+--==所以:12b x x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.例1:已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.例2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --;(4) 12||x x -.说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式. 例3:已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由. (2) 求使12212x x x x +-的值为整数的实数k 的整数值.练习:1.已知一元二次方程2(1)210k x x ---=有两个不等的实数根,求k 的取值范围.2.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.3.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论m 为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.图(12) 第二讲 一次函数、反比例函数、二次函数1.当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最小值y = .2.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最大值y = .3.二次函数的三种表示方式:一般式 顶点式 交点式 注:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.例1:如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于A (1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.例2:求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.例3:根据下列条件,分别求出对应的二次函数的关系式.(1)某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1); (2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2; (3)已知二次函数的图象过点(-1,-22),(0,-8),(2,8).巩固练习1.若函数12-+=a ax y 在11≤≤-x 上的值有正也有负,则a 的取值范围是_________2.若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,则实数a 的取值范围是_____________.3.二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .4.把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为________________.第三讲 解不等式一、一元一次不等式(组)及其解法 :例1:(1)解关于x 的不等式组0,231x a x -<⎧⎨-+<⎩二、一元二次不等式及其解法形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式例2:解下列不等式:(1) 260x x +->; (2)(2)(3)6x x +-< (3) (1)(2)(2)(21)x x x x -+≥-+例:3:已知关于x 的不等式22(1)30kx k x -+-<的解为13x -<<,求k 的值.二、简单分式不等式的解法例4:解下列不等式: (1) 2301x x -<+; (2)2301x x x +≥-+.例5:解不等式132x ≤+.三、含绝对值不等式的解法 例6:解不等式:(1) 13x ->; (2) 327x x ++-< ;练习:1、二次函数2365y x x =--+的图像的顶点坐标是________.2、如果22()530x a b x b x x ++⋅+=--,则b =___________.3、若2是关于x 的一元二次方程23100x mx +-=的一个根,则m =________.4、若一次函数(12)y k x k =--的图像不经过第二象限,则k 的取值范围是________.5、若函数2y x b =--与24y x =+的图像交于x 轴上一点A ,且与y 轴分别交于B ,C 两点,则ABC ∆的面积为________.6、已知一个直角三角形的两个直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长为____________.7、当22x -≤≤时,函数223y x x =--的最大值为______.8、不等式260x x -+<的解为_______.9、已知关于x 的方程22310x x m -++-=的两个实根同号,则实数m 的取值范围为____.10、函数231y ax x =-+的最小值大于0,则实数a 的取值范围为_________.11、两个数的和为60,它们的积的最大值为___________.12、如果不等式210ax ax ++<无解,则a 的取值范围是_________.13、已知(3,2),(1,1)M N -,点P 在y 轴上,且PM PN +最短,则点P 的坐标为_______.14、解下列不等式:(1) 23180x x --≤ ; (2)31221x x +<-; (3)116x x -++>. 15、已知关于x 的不等式20mx x m -+<的解是一切实数,求m 的取值范围.16、解关于x 的不等式(2)1m x m ->-.17、已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1)求实数k 的取值范围;(2)是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.18、已知二次函数212y x bx c =-++的图像经过(2,0),(0,6)A B -两点. (1) 求这个二次函数的解析式;(2) 设该二次函数图像的对称轴与x 轴交于点C ,连接,BA BC ,求ABC ∆的面积.19、已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.。
一元二次方程根与系数的关系

(2)解:当a=5为底边长时,b=c 当a=5为腰长时,不妨设a=b=5, 由根与系数的关系:5+c=2k-3 2 ∴Δ = (2K-5) =0,k=2.5, 5c=2k-4 2 原方程为:x -2x+1=0 解得:c=1,k=4.5 ∴b=c=1 ∵b+c<a ∴此三角形的周长为a+b+c=11 ∴此时不构成三角形,舍去。
_年 _月 _日
星期_______
天气_____ 自我评价:___________ 悄悄话:老师我想对你说______ _______________________ _______________________ ________________________
学习课题:_____________ 知识归纳与整理:________ _____________________ 有那些数学思想方法_____ 我的收获与困惑_________
分析解答
2、已知关于的方程。x2-(2k-3)x +2k-4=0 (1)求证:无论取什么实数值,方程总有实数根。 (2)若等腰三角形的一边长a=5,另两边长b、c恰好是这个方程的两个实数根, 求这个三角形的周长?
(1)证明: ∵Δ =[-(2k-3)]2-4(2k-4) =(2K-5)2 ∴不论k取何值,(2K-5)2 ≥0, 即Δ ≥0,原方程总有实数根。
2、方程2x2-3x+1=0的两根记作x1,x2, 不解方程,求:
(1) x1 x2 x2 x1 ;
分析解答
由根与系数的关系得:x1+x2=3/2 x1x2=1/2
x x ( x1 x2 ) 2 2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1
一元二次方程的根与系数的关系(韦达定理)

第二讲 元二次方程根与系数的关系(韦达定理)一、韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x , 那么1212,b c x x x x a a+=-= 说明:(1)定理成立的条件0∆≥ (2)注意公式重12b x x a +=-的负号与b 的符号的区别 思考:你能利用一元二次方程的求根公式推出韦达定理吗?二、韦达定理的应用:1.已知方程的一个根,求另一个根和未知系数如:已知2是关于x 的一元二次方程042=-+p x x 的一个根,求该方程的另一个根2.求与已知方程的两个根有关的代数式的值如:若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +3.已知方程两根满足某种关系,确定方程中字母系数的值如:若方程22(1)30x k x k -+++=的两根之差为1,求k 的值4.已知两数的和与积,求这两个数5.已知方程的两根x 1,x 2 ,求作一个新的一元二次方程x 2 –(x 1+x 2) x+ x 1x 2 =06.利用求根公式在实数范围内分解因式ax 2+bx+c= a(x- x 1)(x- x 2)巩固练习一、填空题1.如果x 1、x 2是一元二次方程02x 6x 2=--的两个实数根,则x 1+x 2=_________.2.一元二次方程03x x 2=--两根的倒数和等于__________.3.关于x 的方程0q px x 2=++的根为21x ,21x 21-=+=,则p=______,q=____.4.若x 1、x 2是方程07x 5x 2=--的两根,那么_______________x x 2221=+, .________)x (x 221=-5.已知方程0k x x 2=+-的两根之比为2,则k 的值为_______.6.关于x 的方程01x 2ax 2=++的两个实数根同号,则a 的取值范围是__________.二、选择题7.以3和—2为根的一元二次方程是( )A.06x x 2=-+B.06x x 2=++C.06x x 2=--D.06x x 2=+-8.设方程0m x 5x 32=+-的两根分别为21x ,x ,且0x x 621=+,那么m 的值等于( )A.32- B .—2 C.92 D.—92 9.已知0)2m 2()x 1(m x 2=----两根之和等于两根之积,则m 的值为( )A.1 B .—1 C.2 D .—210.设α、β是方程02012x x 2=-+的两个实数根,则βαα++22的值为( ) A .2009 B.2010 C.2011 D.2012三、解答题已知关于x 的一元二次方程01422=-++m x x 有两个非零实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ax2 bx c 0(a 0)
2.一元二次方程的求根公式是什么?
x b b2 4ac (b2 4ac 0) 2a
3.一元二次方程的根的情况怎样确定?
0 两个不相等的实数根
b2 4ac 0 两个相等的实数根
0 没有实数根
填写下表:
5. 2x2 5
例.已知一元二次方程 x2 px q 0 的
两根分别为 -2 和 1 ,则:p =__ ; q=__
例1、已知3x2+2x-9=0的两根是x1 , x2 。
求:(1)
1 1 x1 x2
(2) x12+x22
解:由题意可知x1+x2=
-
2 3
, x1 ·x2=-3
(1) 1 1 = x1 x2
x1 x2
x1 x2
=
2 3
3
=
2 9
(2)∵ (x1+x2)2= x12+x22 +2x1x2
∴x12+x22
=(x1+x2)2
-2x1x2
=(-
2 3
)2
-2×(-3)=6
4 9
设 x1, x2是方程 2x2 6x 3 0 的两根,
不解方程求下列式子的值
x1 x2 x2 x1
例2、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值 +2= k+1
x1 ●2= 3k
解这方程组,得 x1 =-3 k =-2
答:方程的另一个根是-3 , k的值是-2。
练习2:已知方程:5x2 kx 6 0,的一个根是2, 求它的另一个根及k的值
谈谈这节课的收获……
1.如果ax2 bx c 0, a 0的两个根是x1, x2
分别是 x1 、 x2 ,那么,你可以发现什么结论?
已知:如果一元二次方程 ax2 bx c 0(a 0) 的两个根分别是 x1 、 x2 。
求证: x1
x2
b a
x1
•
x2
c a
推导:
x1 x2 b
b2 4ac b 2a
b2 4ac 2a
b b2 4ac b b2 4ac 2a
2b 2a
b a
x1 x2 b
b2 4ac b 2a
b2 4ac 2a
b2
b2 4ac 4a2
4ac 4a2
c a
如果一元二次方程 ax2 bx c 0(a 0) 的两个根分别是 x1 、 x2 ,那么:
x1
x2
b a
x1
•
x2
c a
这就是一元二次方程根与系数的关系,也叫韦达定理。
注:能用韦达定理的前提条件为△≥0
特别的
如果方程 x2 px q 0, 的根为x1,x2 那么,x1+x2=__-_p__. x1x2= __q__.
求下列方程的两根之和与两根之积。
1. x2 15 2x 2. x2 6x 4 0
3. 2x2 3x 5 4. 3x2 7x 0
解:设方程的另一个根为x1. 把x=2代入方程,得 4-2(k+1)+3k=0
解这方程,得 k= - 2
由韦达定理,得x1●2=3k 即2 x1 =-6 ∴ x1 =-3 答:方程的另一个根是-3 , k的值是-2。
例2、已知方程x2-(k+1)x+3k=0的一个根是2 ,
求它的另一个根及k的值。
方程
两个根
x1 x2 x2 3x 4 0 4 1
两根 之和
两根 之积
a与b 之间 关系
x1 x2
x1
•
x2
b a
3 4 3
a与c 之间 关系
c
a
4
x2 5x 6 0 2 3 5
65
6
2x2 3x 1 0 1 1
2
3 2
1 3
2
2
1 2
猜想:如果一元二次方程 ax2 bx c 0(a 0) 的两个根
那么x1
x2
b a
,
x1
•
x2
c a
2、利用根与系数的关系已知方程的一个根 求另一个根及其字母系数。
3、利用根与系数的关系求某些式子的值。
1、下列方程中,两根的和与两根的积各是多少?
1x2 3x 1 0 23x2 2x 2
32x2 3x 0
44x2 1 2x
2、已知方程 3x2 19x m 0的一个根是 1,
求它的另一个根和m的值。
3、设 x1 、 x2是方程 2x2 4x 3 0 利用
根与系数的 关系,求下列式子的值:
x1 1x2 1