2014—2015学年高一数学(苏教版)必修一午间小练及答案:01 集合的含义与表示

合集下载

2015年高一数学(苏教版)必修1课后练习1.1《集合的含义及其表示》(1)

2015年高一数学(苏教版)必修1课后练习1.1《集合的含义及其表示》(1)

§1.1 集合的含义及其表示(1)
课后训练
【感受理解】
1.给出下列命题(其中N为自然数集) :
①N中最小的元素是1 ②若a∈N则-aN③若a∈N,b∈N,则a+b的最小值是2 (4)的解可表示为,其中正确的命题个数为.
2.用列举法表示下列集合.
①小于12的质数构成的集合;
②平方等于本身的数组成的集合;
③由所确定的实数的集合;
④抛物线(为小于5的自然数)上的点组成的集合.
3. 若方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合为M,则M中元素的个数为
4.由组成一个集合,中含有3个元素,则的取值可以是
【思考应用】
5.由实数所组成的集合里最多有个元素.
6. 由“”组成的集合与由“”组成的集合是同一个集合,则实数的值是否确定的?若确定,请求出来,若不确定,说明理由.
7.定义集合运算:,设集合,求集合.
8.关于的方程,当分别满足什么条件时,解集为空集、含一个元素、含两个元素?
9. 已知集合.
(1)证明:任何整数都是的元素;(2)设求证:
【拓展提高】
9.设是满足下列两个条件的实数所构成的集合:①,②若,则,
请解答下列问题:
(1)若,则中必有另外两个数,求出这两个数;
(2)求证:若,则
(3)在集合S中元素能否只有一个?请说明理由;
(4)求证:集合S中至少有三个不同的元素.。

苏教版数学高一- 数学苏教必修一练习1.1集合的含义及其表示

苏教版数学高一- 数学苏教必修一练习1.1集合的含义及其表示

双基达标(限时15分钟)1.已知集合M={-1,0,1,2},P={x|x=a+b,a∈M,b∈M且a≠b},则P 有________个元素.解析∵a∈M,b∈M且a≠b,-1+0=-1,0+2=2,-1+1=0,0+1=1,-1+2=1,1+2=3,∴P中共有5个元素.答案 52.集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t的值为________.解析∵y=-x2+1≤1,且y∈N,∴y的值为0或1.又t∈A,则t的值为0或1.答案0或13.已知集合A={2,4,6},且当a∈A,有6-a∈A,那么a为________.解析若a=2,则6-2=4∈A;若a=4,则6-4=2∈A;若a=6,则6-6=0∉A.答案2或44.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=________.解析∵x∈N,且2<x<a,∴a=6.答案 65.下列集合:①{x2-1};②{x2-1=0};③{x|x2-1=0};④{x∈N|x2-1=0}.其中恰有2个元素的是________.解析集合{x2-1}与{x2-1=0}是用列举法表示的,它们的元素分别是多次式x 2-1和方程x 2-1=0,是单元素集.集合{x |x 2-1=0}与{x ∈N |x 2-1=0}是用描述法表示的,前者是方程x 2-1=0的根±1构成的集合,后者是方程x 2-1=0的自然数根1构成的集合.故恰有2个元素的集合是③.答案 ③6.用适当的方法表示下列集合:(1)比5大3的数组成的集合;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)不等式x -3>2的解的集合;(4)二次函数y =x 2-10图象上的所有点组成的集合.解 (1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎨⎧ x =2,y =-3,∴方程的解集为{(2,-3)}. (3)由x -3>2,得x >5.故不等式的解集为{x |x >5}.(4)“二次函数y =x 2-10的图象上的点”用描述法表示为{(x ,y )|y =x 2-10,x ∈R }.综合提高 (限时30分钟)7.方程组⎩⎨⎧ x +y =1x -y =0,的解集为________. 解析 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧ x +y =1x -y =0= ⎩⎪⎨⎪⎧ (x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x =12y =12=⎩⎨⎧⎭⎬⎫⎝⎛⎭⎪⎫12,12.答案⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫12,12 8.已知集合A =⎩⎨⎧⎭⎬⎫a ⎪⎪⎪ 65-a ∈N *,a ∈N *,则集合A 为________. 解析 ∵65-a∈N *,∴5-a 是6的正的因数,∴5-a ∈{1,2,3,6},又a ∈N *,∴a 的值是4或3或2,∴A ={2,3,4}.答案 {2,3,4}9.设a ,b ∈R ,集合{1,a +b ,a }={0,b a ,b },则b -a =________.解析 由{1,a +b ,a }={0,b a ,b }可知a ≠0,则只能a +b =0,则有以下对应关系:⎩⎪⎨⎪⎧ a +b =0,b a =a ,b =1,① ⎩⎪⎨⎪⎧ a +b =0,b =a ,b a =1.②解①得⎩⎪⎨⎪⎧ a =-1,b =1,符合题意,②无解,∴b -a =2. 答案 210.设集合A ={1,a ,b },B ={a ,a 2,ab },若A =B ,则a ,b 的值分别为________.解析 ∵A =B ,A ,B 中均有元素a ,∴⎩⎪⎨⎪⎧ 1=a 2b =ab ,或⎩⎪⎨⎪⎧1=ab ,b =a 2. 解得⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧ a =1b ∈R 或⎩⎪⎨⎪⎧ a =1b =1.再根据元素的互异性,得a =-1,b =0.答案 a =-1,b =011.设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N .(1)试判断元素1和2与集合B 的关系;(2)用列举法表示集合B .解 (1)当x =1时,62+1=2∈N , 当x =2时,62+2=32∉N ,∴1∈B,2∉B . (2)∵62+x∈N ,x ∈N ,∴2+x 只可能取1,2,3,6, ∴x 只能取0,1,4,∴B ={0,1,4}.12.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .解 既然2∈M ,则就应有:⎩⎨⎧ 2=3x 2+3x -4,-2,3x 2+3x -4,x 2+x -4互不相等,或⎩⎨⎧ 2=x 2+x -4,-2,3x 2+3x -4,x 2+x -4互不相等.当3x 2+3x -4=2时,3x 2+3x -6=0,即x 2+x -2=0,解得x =-2,或x =1.经检验,x =-2,x =1均不符合题意.当x 2+x -4=2时,x 2+x -6=0,解得x =-3,或x =2.经检验,x =-3,x =2均符合题意,所以x =-3,或x =2.13.(创新拓展)对于a ,b ∈N *,定义a *b =⎩⎨⎧a +b (a 与b 的奇偶性相同)ab (a 与b 的奇偶性不同).集合M ={(a ,b )|a *b =12,a ,b ∈N *}. (1)用列举法表示a ,b 奇偶性不同时的集合M ;(2)当a ,b 奇偶性相同时,集合M 中共有多少个元素?解 (1)M ={(a ,b )|ab =12,a ,b ∈N *且a 与b 的奇偶性不同}={(1,12),(3,4),(4,3),(12,1)}.(2)当a 与b 奇偶性相同时,a *b =a +b =12,所以(a ,b )=(1,11),(2,10),(3,9),(4,8),(5,7),(6,6),(7,5),(8,4),(9,3),(10,2)和(11,1).故当a与b奇偶性相同时,集合M中共有11个元素.。

苏教版高中数学必修第一册课后习题 第1章 集合 1.1 第2课时 集合的表示

苏教版高中数学必修第一册课后习题 第1章 集合 1.1 第2课时 集合的表示

第2课时集合的表示A级必备知识基础练1.用列举法表示大于2且小于5的自然数组成的集合应为( )A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2.(武汉洪山校级月考)集合{x∈Z|(3x-1)(x-4)=0}可化简为( )A.{13} B.{4}C.{13,4} D.{-13,-4}3.集合{(x,y)|y=2x-1}表示( )A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合4.集合3,52,73,94,…用描述法可表示为( )A.x x=2n+12n,n∈N*B.x x=2n+3n,n∈N*C.x x=2n-1n,n∈N*D.x x=2n+1n,n∈N*5.(上海金山校级月考)集合{x|1≤x≤3,x∈N}用列举法可以表示为.6.已知集合A={x|x2+2x+a=0},若1∈A,则A= .7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.B级关键能力提升练8.(菏泽期中)如果集合A={x|ax2+4x+1=0}中只有一个元素,则a的值是( )A.0B.4C.0或4D.不能确定9.(山东临沂高一期中)已知b 是正数,且集合{x|x 2-ax+16=0}={b},则a-b=( ) A.0B.2C.4D.810.已知集合A={a 2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为( ) A.0 B.-1C.1D.±111.(多选题)下列选项表示的集合P 与Q 相等的是( ) A.P={x|x 2+1=0,x ∈R},Q=⌀ B.P={2,5},Q={5,2} C.P={(2,5)},Q={(5,2)} D.P={x|∈Z},Q={x|∈Z}12.(多选题)下列选项能正确表示方程组{2x +y =0,x -y +3=0的解集的是( )A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}13.(多选题)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是( )A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉B14.已知集合A={x,y},B={2x,2x2},且A=B,则集合A= .15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A= ;用描述法表示“所有被4除余1的整数组成的集合”是.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值.C级学科素养创新练17.已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.第2课时集合的表示1.D 大于2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.B 解方程得x1=13,x2=4,因为x∈Z,所以x=4,故集合为{4},故选B. 3.D 集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.D 由3,52,73,94,即31,52,73,94从中发现规律,x=2n+1n,n∈N*,故可用描述法表示为x x=2n+1n,n∈N*.5.{1,2,3} 由于1≤x≤3,x∈N,∴x可取1,2,3.则集合{x|1≤x≤3,x∈N}用列举法可以表示为{1,2,3}.6.{-3,1} 把x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.解(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3, 所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.C 当a=0时,集合A={x|ax 2+4x+1=0}={-14},只有一个元素,满足题意;当a≠0时,由集合A={x|ax 2+4x+1=0}中只有一个元素,可得Δ=42-4a=0,解得a=4.则a 的值是0或4.故选C.9.C 由题意可知方程x 2-ax+16=0有两个相等的正实数根,故Δ=a 2-64=0.又方程两根之和为正数,即a>0,所以a=8.因此方程变为x 2-8x+16=0,且根为4,故b=4.所以a-b=8-4=4.故选C.10.B 根据集合中元素的互异性可知a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a 2=1,此时(ab)=(-1)=-1;当b=-1时,a 2=a,因为a≠0,所以a=1,此时(ab)=(-1)=-1.故选B.11.ABD 对于A,集合P 中方程x 2+1=0无实数根,故P=Q=⌀;对于B,集合P 中有两个元素2,5,集合Q 中有两个元素2,5,故P=Q;对于C,集合P 中有一个元素是点(2,5),集合Q 中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|∈Z}表示所有奇数构成的集合,集合Q={x|∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.BD 由{2x +y =0,x -y +3=0,解得{x =-1,y =2,所以方程组的解集为{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.ACD 由已知集合A={y|y≥1},集合B 是由抛物线y=x 2+1上的点组成的集合,故A 正确,B 错误,C 正确,D 正确.故选ACD.14.12,1 由题意,集合A={x,y},B={2x,2x 2},且A=B,则x=2x 或x=2x 2.若x=2x,可得x=0,此时集合B 不满足集合中元素的互异性,舍去;若x=2x 2,可得x=12或x=0(舍去),当x=12时,可得2x=1,2x 2=12,即A=B=12,1.15.{(1,4),(2,3),(3,2),(4,1)} {x|x=4k+1,k ∈Z}由题意A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k ∈Z}. 16.解分两种情况进行讨论.①若a+b=ac,a+2b=ac 2,消去b,得a+ac 2-2ac=0.当a=0时,集合B 中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0,所以c 2-2c+1=0,即c=1,但当c=1时,B 中的三个元素相同,不符合题意. ②若a+b=ac 2,a+2b=ac,消去b,得2ac 2-ac-a=0. 由①知a≠0,所以2c 2-c-1=0,即(c-1)(2c+1)=0, 解得c=-12或c=1(舍去),当c=-12时,经验证,符合题意.综上所述,c=-12.17.解(1)当a=0时,-3x+2=0,此时x=23,所以A 不是空集,不符合题意;当a≠0时,若A 是空集,则Δ=9-8a<0,所以a>98.综上可知,a 的所有取值组成的集合为a a>98.(2)当a=0时,-3x+2=0,此时x=23,满足条件,此时A 中仅有一个元素23;当a≠0时,Δ=9-8a=0,所以a=98,此时方程为98x 2-3x+2=0,即(3x-4)2=0,解得x=43,此时A 中仅有一个元素43.综上可知,当a=0时,A 中只有一个元素为23;当a=98时,A 中只有一个元素为43.(3)A 中至多有一个元素,即方程ax 2-3x+2=0只有一个实数根或无实数根. 则a=0或Δ=9-8a<0,解得a=0或a>98.故a 的所有取值组成的集合为a a=0,或a>98.。

苏教版数学高一-2015年苏教版数学必修1训练1 交集、并集

苏教版数学高一-2015年苏教版数学必修1训练1 交集、并集

数学·必修1(苏教版)1.3交集、并集若集合A={x|x是6的倍数},B={x|x是4的倍数},则A与B 有公共元素吗?它们的公共元素能组成一个集合吗?两个集合A与B的公共元素能组成一个集合吗?若能组成一个集合C,则C与A、B的关系如何?基础巩固1.若集合A={0,1,2,3,4},B={1,2,4}则A∪B=()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}答案:A2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3}, A ∩∁U B ={9},则A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9} 答案:D4.设A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则A ∩B 为( )A .{x =1,或y =2}B .{1,2}C .{(1,2)}D .(1,2)解析:A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎨⎧ 4x +y =63x +2y =7={(1,2)}. 答案:C5.已知集合A ={(x ,y )|x ,y ∈R 且x 2+y 2=1},B ={(x ,y )|x ,y ∈R 且x +y =1,则A ∩B 的元素个数为( )A .4个B .3个C .2个D .1个解析:由⎩⎨⎧x 2+y 2=1,x +y =1⇒⎩⎨⎧x =1,y =0或⎩⎨⎧x =0,y =1,即A ∩B ={(1,0),(0,1)}. 答案:C6.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4} 答案:C7.已知方程x 2-px +15=0与x 2-5x +q =0的解分别为M 和S ,且M ∩S ={3},则pq =________.解析:∵M ∩S ={3},∴3既是方程x 2-px +15=0的根,又是x 2-5x +q =0的根,从而求出p ,q .答案:438.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.解析:∁S A ={x |x >1}. 答案:{x |1<x ≤5}9.设集合A ={x ||x -a |<1,x ∈R},B ={x |1<x <5},若A ∩B =∅,则a 的取值范围是________.解析:∵A={x|a-1<x<a+1},若A∩B=∅,则a+1≤1或a-1≥5⇒a≤0或a≥6.答案:{a|a≤0或a≥6}10.设集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(A∩B)∪C是________.答案:{1,3,7,8}11.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是________个.答案:4能力提升12.集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B 为()A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅解析:∵A={x|-1≤x≤1},B={y|y≥0}∴A∩B={x|0≤x≤1}.答案:C13.若A、B、C为三个集合,且有A∪B=B∩C,则一定有() A.A⊆C B.C⊆AC.A≠C D.A=∅答案:A14.设全集U={a,b,c,d},A={a,b},B={b,c,d},则∁U A ∪∁U B =________解析:∁U A ={c ,d },∁U B ={a }, ∴∁U A ∪∁U B ={a ,c ,d }. 答案:{a ,c ,d }15.(2013·上海卷)设常数a ∈R ,集合A ={x |(x -1)·(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为________.解析:当a ≥1时,A ={x |x ≤1或x ≥a },要使A ∪B =R ,则⎩⎨⎧a ≥1,a -1≤1⇒1≤a ≤2;当a <1时,A ={x |x ≤a 或x ≥1},要使A ∪B =R ,则⎩⎨⎧a <1,a -1≤a⇒a <1.综上,a ≤2. 答案:{a |a ≤2}16.已知集合A={x||x+2|<3,x∈R},集合B={x|(x-m)(x-2)<0},x∈R},且A∩B=(-1,n),求m和n的值.解析:|x+2|<3⇒-3<x+2<3⇒-5<x<1,∴A={x|-5<x<1},又∵A∩B=(-1,n),∴-1是方程(x-m)(x-2)=0的根,即m=-1,此时B={x|-1<x<2},∴A∩B=(-1,1),即n=1.17.设集合P={1,2,3,4},求同时满足下列三个条件的集合A:(1)A⊆P;(2)若x∈A,则2x∉A;(3)若x∈∁P A,则2x∉∁P A.解析:∵2×1=2,2×2=4,因此1和2不能同时属于A ,也不能同时属于∁U A ,同样地,2和4也不能同时属于A 和∁U A ,对P 的子集进行考查,可知A 只能为:{2},{1,4},{2,3}{1,3,4}.18.设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解析:(1)A ={x |x ≤-1或x ≥4}, ∵A ∩B ≠∅,∴⎩⎨⎧2a ≤2+a ,a +2≥4或⎩⎨⎧2a <a +2,2a ≤-1.∴a =2或a ≤-12.综上所述,实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-12或a =2.(2)∵A ∩B =B ,∴B ⊆A .①B =∅时,满足B ⊆A ,则2a >a +2⇒a >2, ②B ≠∅时,则⎩⎨⎧2a ≤a +2,a +2≤-1或⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4.即a ≤-3或a =2.综上所述,实数a 的取值范围为{a |a ≤-3或a =2}.。

2014—2015学年高一数学(苏教版)必修一午间小练及答案:15 对数与对数运算

2014—2015学年高一数学(苏教版)必修一午间小练及答案:15 对数与对数运算

高一数学(苏教版)必修一午间小练:对数与对数运算1.定义两个实数间的一种运算“*”:()l g1010x yx y *=+,x 、y R ∈.对任意实数a 、b 、c ,给出如下结论:a b b a *=*;②()()a b c a b c **=**;③()()()a b c a c b c *+=+*+.其中正确的个数是 2.已知222125log 5,log 7,log 7a b ===则 3.若210,5100==b a ,则b a +2=4.若lg lg x y a -=,则33lg lg x y -=5.12lg 4lg 254(4-0++--π) .6.方程211log 1log 2x x ++=的解是 . 7. 计算:327log 2lg 225lg 432ln +++e= 。

8. 12log 6log 216log 332-+=9.计算(1)0143231)12(3.2)71(027.0-+-+-----(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+10.计算:1132081()274e π-⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭; ②2lg5lg4++参考答案1.3 【解析】试题分析:根据题中的定义,对于命题,左边()lg 1010a ba b =*=+,右边()l g 1010b a b a =*=+,左边=右边,命题正确;对于命题②,左边()()()l g 1010l g 1010l g 1010a b abca b c c +⎛⎫=**=+*=+⎪⎝⎭()lg 101010a b c =++,右边()()()()lg 1010lg 1010lg 1010lg 101010b c bca abc a b c a +⎛⎫=**=*+=+=++ ⎪⎝⎭=左边,命题②正确;对于命题③,左边()()()lg 1010lg 1010lg10a b a b c a b c c =*+=++=++()lg 1010a c b c ++=+,右边()()()lg 1010a c b c a c b c ++=+*+=+,左边=右边,命题③也正确.攻答案为3个考点:新定义 2.3a -b 【解析】 试题分析:根据对数的运算法则,有b a -=-=-=-=37log 5log 37log 5log 7log 125log 7125log 22232222. 考点:对数的运算法则. 3.1【解析】解:因为若a b 1001010101011005,102a log 5log 5,b log 2,22a b log 5log 21==∴===∴+=+=,4.3a【解析】33lg lg 3lg 3lg 3(lg lg )3x y x y x y a -=-=-=5.23 【解析】试题分析:原式=()23121212100lg 212=-+=-+-考点:指数与对数 6.1 【解析】试题分析:原方程可变为22log log (1)1x x ++=,即2l o g (1)1x x +=,∴(1)2x x +=,解得1x =或2x =-,又01011x x x >⎧⎪+>⎨⎪+≠⎩,∴1x =.考点:解对数方程.7.415【解析】解:因为ln 23115lg 252lg 2e log 2lg52lg 2244+++=++-= 8. 5【解析】222333336log 162log 6log 124log 6log 124log 512+-=+-=+= 9.(1)19 (2)-4 【解析】 试题分析:(1)指数式运算,先将负指数化为正指数,小数化为分数,即,131)2()7()271000()12(3256)71(027.04382310143231+-+--=-+-+-----再将分数化为指数形式,即191316449310131249)310(63133=+-+-=+-+- , (2)对数式运算,首先将底统一,本题全为10,再根据对数运算法则进行运算,即.4)1(2110lg 10lg 10lg 521258lg1.0lg 10lg 5lg 2lg 125lg 8lg 2121-=-⨯=⨯⨯=--+-试题解析:(1)131)2()7()271000()12(3256)71(027.04382310143231+-+--=-+-+----- .191316449310131249)310(63133 =+-+-=+-+-=(2).4)1(2110lg10lg10lg521258lg1.0lg10lg5lg2lg125lg8lg2121-=-⨯=⨯⨯=--+-考点:指对数式化简10.① 2; ②3.【解析】试题分析:对数运算与指数运算的运算法则一定要搞清.试题解析:解:①原式=521233--+=2 , 6分②原式=21(lg5lg2)2ln2e++⨯⨯ =2lg101+=3. 12分考点:对数运算,指数运算.。

苏教版必修1高一数学《集合》练习及答案.doc

苏教版必修1高一数学《集合》练习及答案.doc

高一数学《集合》练习05、9姓名 ________ 学号_____ 成绩____一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C 一切很大的书D倒数等于它自身的实数2、集合{a, b, c}的真子集共有__________个()A 7B 8C 9D 103、若{1, 2}G A Q{1, 2, 3, 4, 5}则满足条件的集合A的个数是()A. 6B. 7C. 8D. 94、若U={1, 2, 3, 4}, M={1, 2}, N={2, 3},贝U Cu CMUN)= ()A. {1, 2, 3}B. {2}C. {1, 3, 4}D. {4}f x+y=l5、方程组I x-尸-1 的解集是()A.{x=0,y=l}B. {0,1}C. {(0,1)}D. {(x,y)lx=0 或y=l}6、以下六个关系式:0 G {o}, {0} n 0 , 0.3^0, Qe N , [a,b] cz [b,a],{.rl.r-2^0,.reZ}是空集中,错误的个数是()A 4B 3C 2D 17、点的集合皿={ (x, y) | xy20}是指()A.第一象限内的点集B.第三象限内的点集C.第一、第三象限内的点集D.不在第二、第四象限内的点集8、设集合A={x|l<x<2}, B={x|x<a},若AgB,则a的取值范围是()A {a|a>2}B {a|aVl}C {a|a〉l}D {a|a<2}9、满足条件MU {1} ={1,2,3}的集合M的个数是()A 1B 2C 3D 410、集合P = {x 丨x = w Z}, Q = [x \ x = 2k +l,k E , R = [x \ x = 4k + l,k e Z}, ^.aeP,beQ,则有()A a+b e PB a-\-b G QDa+b不属于P、Q、R中的任意一个二、填空题(每题3分,共18分)11、若A = {—2,2,3,4}, B = {x\x = t2,teA],用列举法表示 B ________________12> 集合A={xl X2+X-6=0}, B={xl ax+l=O},若BuA,则a= ___________13、设全集U ={2,3,y + 2Q— 3} , A={2,b}, Ct/A={5},贝, b — __________________ 。

2014—2015学年高一数学(苏教版)必修一午间小练及答案21 函数与方程

2014—2015学年高一数学(苏教版)必修一午间小练及答案21 函数与方程

高一数学(苏教版)必修一午间小练:函数与方程(2 )1.设函数244,1,()43,1,x x f x x x x -≤⎧=⎨-+>⎩ 则函数4()()log g x f x x =-的零点个数为个.2.已知函数()12f x m x x =-+有三个零点,则实数m 的取值范围为 . 3.已知函数f(x)=||x -1|-1|,若关于x 的方程f(x)=m(m∈R)恰有四个互不相等的实根x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是________.4.若函数|1|1()2x y m -=+存在零点,则m 的取值范围是__________.5.若a>3,则函数f (x )=x 2-ax+1在区间(0,2)上恰好有 个零点6. 已知方程222lg(2)0x x a a -+-=有一个正根和一个负根,则实数a 的取值范围是_________________.7.设函数62ln )(-+=x x x f 的零点为0x ,则不等式0x x ≤的最大整数解是 . 8.定义在R 上的偶函数()x f 在[0,∞+)是增函数,则方程())32(-=x f x f 的所有实数根的和为 .9.已知10<<a ,那么x 的方程x a a xlog =的实数根的个数是 .10.已知二次函数()f x 满足条件()01f =和()() 12f x f x x +-=. (1)求()f x ;(2)求()f x 在区间[]-1,1上的最大值和最小值.11.某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比.已知商品单价降低2元时,一星期多卖出8件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?12.已知二次函数f(x)=ax 2+bx +c ,(a<0)不等式f(x)>-2x 的解集为(1,3). (1)若方程f(x)+6a =0有两个相等的实根,求f(x)的解析式; (2)若f(x)的最大值为正数,求实数a 的取值范围.参考答案1.3 【解析】试题分析:令4()()log 0g x f x x =-=,得4()l o g f x x =,∴函数4()()log g x f x x =-的零点个数,即为函数()f x 与函数4log y x =的图象的交点个数,在同一坐标系中画出函数()f x 与函数4log y x =的图象,如图所示,由图象知函数()f x 与函数4log y x =的图象在(1,)+∞上有一个交点,在(0,1)上,()g x =4()log f x x -=444log x x --,∵1()204g =-<,54(4)4450g --=-+>,∴在(0,1)上函数()f x 与函数4log y x =的图象有一个交点.∵1是4()()log g x f x x =-的一个零点,∴函数4()()log g x f x x =-有3个零点.考点:1.分段函数;2.函数零点的个数;3.函数图象的应用;4.对数函数. 2.1m > 【解析】试题分析:函数()f x 有三个零点等价于方程12m x x =+有且仅有三个实根. ∵11(2)2m x x x x m=⇔=++,作函数(2)y x x =+的图像,如图所示,由图像可知m 应满足:101m<<,故1m >.考点:1函数图像;2数形结合。

高中数学苏教版必修1同步单元小题巧练:1.1 集合的含义及其表示

高中数学苏教版必修1同步单元小题巧练:1.1 集合的含义及其表示

1.1 集合的含义及其表示1、把集合{}243|0x x x -+=用列举法表示为( )A. {}1,3B. {}1|,3x x x ==C. {}2430x x -+=D. {}1,3x x ==2、已知集合{}10,A x x a =≤=则a 与集合A 的关系是( )A. a A ∈B. a A ∉C. a A =D. {}a A ∈3、给出下列关系:①12R ∈R ;③3N ∈;④Q .其中正确的个数为()A.1B.2C.3D.44、下面四个说法中正确的是( )A. 10以内的质数组成的集合是{}0,2,3,5,7B.由1,2,3组成的集合可表示为{}1,2,3或{}3,1,2C.方程2210x x -+=的解集是{}1,1D. 0与{}0表示同一个集合5、已知,x y 为非零实数,则集合{}xy xyM m m x y xy ==++为( )A.{}0,3B.{}1,3C.{}1,3-D.{}1,3-6、对于任意两个正整数,m n ,定义某种运算“⊗”如下:当,m n 都为正偶数或正奇数时, m n m n ⊗=+;当,m n 中一个为正偶数,另一个为正奇数时, m n mn ⊗=.则在此定义下,集合(){},|16M a b a b =⊗=中的元素个数是( )A.18个B.17个C.16个D.15个7、已知集合{},,A a b c =中任意2个元素的和构成的集合为{}1,2,3,则集合A 中任意2个元素的差的绝对值构成的集合是( )A. {}1,2,3B. {}1,2C. {}0,1D. {}0,1,28、方程组3{1x y x y +=-=-的解集不能表示为( )A. ()3{,}1x y x y x y +=⎧⎨-=-⎩B. ()1{,}2x x y y =⎧⎨=⎩C. {}1,2D. (){,1,2}x y x y ==9、对集合{}1,5,9,13,17用描述法来表示,其中正确的是() A. {x x 是小于18的正奇数} B. {41,,x x k k Z =+∈且5}k < C. {43,,x x t t N =-∈且5}t ≤ D. *{43,,x x s s N =-∈且5}s ≤10、集合(){}1, 2y y x x =-表示( )A.方程21y x =-B.点(),x yC.平面直角坐标系中的所有点组成的集合D.一次函数21y x =-图象上的所有点组成的集合11、若集合2{|10}x ax x ++=有且只有一个元素,则实数a 的取值集合是___________;12、给出下列说法:①集合{}3|? x N x x ∈=用列举法表示为{}1,0,1-;②实数集可以表示为{|x x 为所有实数}或{} R ;③方程组3,{1x y x y +=-=-的解集为{}1,2?x y ==. 其中不正确说法的个数为__________.13、以方程2560x x -+=和方程220x x --=的根为元素的集合中共有__________个元素.14、已知集合(){}(){},21,,|3|,A x y y x B x y y x a A ==+==+∈,且a B ∈,则a 为________.15、下列命题中正确的是__________(填序号).①0与{}0表示同一集合;②由1,2,3组成的集合可表示为{}1,2,3或{}3,2,1;③方程()()2120x x --=的所有解的集合可表示为{}1,1,2;④集合{}|25x x <<可以用列举法表示.答案以及解析1答案及解析:答案:A解析:解方程2430x x -+=得1x =或3,应用列举法表示解集即为{}1,32答案及解析:答案:A10,所以a A ∈故选A.3答案及解析:答案:B解析:①12R ∈R ,错误;③3Q ∈正确;④Q ,错误,所以正确的个数为2,故选B4答案及解析:答案:B解析:10以内的质数组成的集合是{}2,3,5,7,故A 错误;由集合元素的互异性知{}1,2,3和{}3,1,2相等,故B 正确;方程2210x x -+=的解集应为{}1故C 错误;由集合的表示方法知0不是集合,故D 错误.故选B,5答案及解析:答案C解析 当0x >,0y > 时,3m =;当0x <,0y < 时,1m =-;当0x >,0y < 时,1m =-;当0x <,0y > 时,1m =-.故{}1,3M =-6答案及解析:解析:因为11516+=,21416+=,31316+=,41216+=,51116+=,61016+=,7916+=,8816+=,11616⨯=,集合M 中的元素是有序数对(),a b ,所以集合M 中的元素共有82117⨯+=个,故选B.考点:集合元素的概念、对新定义的理解和计数原理.7答案及解析:答案:B解析:由题意,不妨令 1?23a b b c a c +=⎧⎪+=⎨⎪+=⎩,解得 1?02a b c =⎧⎪=⎨⎪=⎩,所以集合{}0,1,2A =.则集合A 中任意2个元素的差的绝对值是1,2,故集合A 中任意2个元素的差的绝对值构成的集合是{}1,2 :.故选B.8答案及解析:答案:C解析:原方程组的解为1{2x y == 其解集中只含有一个元素,可表示为A,B,D. C 不符合,故选C.9答案及解析:答案:D解析:A 中小于18的正奇数除给定集合中的元素外,还有 3,7,11,15;B 中除给定集合中的元素外,还有-3, -7, -11,…;C 中0t =时,3x =-,不属于给定的集合;只有D 是正确的.故选D.10答案及解析:解析:本题中的集合是点集.其表示一次函数21y x =-图象上的所有点组成的集合.故选D.11答案及解析:答案:{|0a a =或1}4a =解析:12答案及解析:答案:①②③解析:对于①,集合{}3|? x N x x ∈=中的元素是指满足3x x =的自然数,故有0,1x =,用列举法表示即为{}0,1,故错误;对于②,实数集不能表示成{} R ,它表示的是有一个元素的集合,故不正确;对于③,方程的解集为(){}1,2?,故不正确.13答案及解析:答案:3解析:方程2560x x -+=的根是2,3,方程220x x --=的根是1,2-.根据集合中元素的互异性知,以两方程的根为元素的集合中共有3个元素.14答案及解析:答案:()2,5解析:集合,A B 都表示直线上点的集合, a A ∈表示a 是直线21y x =+上的点, a B ∈表示a 是直线3y x =+上的点,所以a 是直线21y x =+与3y x =+的交点,即a 为()2,5.15答案及解析:答案:②解析:对于①,0表示元素与{}0不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.由Ruize收集整理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷第1页,总1页
高一数学(苏教版)午间小练:
集合的含义与表示
1.集合{}R y y y y ∈=++,02|2是 (填“有限集”、“无限集”或“空集”)
2.已知集合}012|{2=+-=x ax x A 有且只有一个元素,则a 的值的集合..(.用列举法表示......).是 .
3.已知A ={x|x 2-2x -3≤0},若实数a∈A,则a 的取值范围是________.
4.若x∈A,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =11,0,,2,32⎧⎫-⎨⎬⎩⎭
的所有非空子集中具有伙伴关系的集合的个数是________.
5.已知集合{a|0≤a<4,a∈N},用列举法可以表示为________.
6.集合6,3x N x N x
⎧⎫∈∈⎨⎬-⎩⎭用列举法表示为___ ▲ ____
7.已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A,求实数a 的值.
8.已知集合A ={x|ax 2-3x +2=0,a ∈R}.
(1) 若A 是空集,求a 的取值范围;
(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来;
(3) 若A 中至多有一个元素,求a 的取值范围.
2 参考答案
1.空集
2.{0,1}
【解析】
试题分析:集合是方程2
210ax x -+=的解集,此方程只有一个根,则0a =,或0,0a ≠∆=,可得1a =.
考点:集合的表示法.
3.[-1,3]
【解析】由条件,a 2-2a -3≤0,从而a∈[-1,3].
4.3
【解析】具有伙伴关系的元素组是-1;12
,2,所以具有伙伴关系的集合有3个:{-1},1,22⎧⎫⎨⎬⎩⎭,11,,22⎧⎫-⎨⎬⎩⎭
5.{}0,1,2,3
【解析】因为a∈N,且0≤a<4,由此可知实数a 的取值为0,1,2,3.
6.{}0,1,2
【解析】略
7.a =0
【解析】由题意知:a +2=1或(a +1)2=1或a 2+3a +3=1,
∴ a =-1或-2或0,根据元素的互异性排除-1,-2,
∴ a =0即为所求.
8.(1)98(2)23(3)a≥98
或a =0. 【解析】(1)若A 是空集,则Δ=9-8a <0,解得a >98
. (2) 若A 中只有一个元素,则Δ=9-8a =0或a =0,解得a =
98或a =0;当a =98时这个元素是43;当a =0时,这个元素是23
. (3) 由(1)(2)知,当A 中至多有一个元素时,a 的取值范围是a≥
98或a =0.。

相关文档
最新文档