初二数学培优之直角三角形
数学八年级上册培优第01讲 三角形

知识导图第一讲:三角形概述教学内容本讲内容涉及三角形角度计算的知识点,在人教版课本第十一章中学习,在本系列教材初二第1册第一节中已学习过.专题1 三角形角度转换基本图形的应用专题2 三角形角平分线基本模型专题3 三角形内、外角度转换专题4 角度转换基本模型与平面直角坐标系综合应用专题讲解专题1:角形角度转换基本图形的应用【例1】如图所示,已知∠C=54°,∠E=30°,∠BDF=130°,求∠A的度数.AECFB D(2012,江岸区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练1.1:如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E . (1)若∠B =35°,∠ACB =85°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系,写出结论无需证明.BC AD P练1.2:如图,已知∠CGE =120°,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.αBCGEAFD练1.3:如图,求:∠A +∠B +∠C +∠D +∠E +∠F = 度.A CD EF B PI专题2:三角形角平分线的基本模型【例2】如图,△ABC 中,∠A =50°,点P 是∠ABC 与∠ACB 平分线的交点.AC B PAC BDEP AC B FP图1 图2 图3(1)求∠P 的度数;(2)猜想∠P 与∠A 有怎样的大小关系?(3)若点P 是∠CBD 与∠BCE 平分线的交点,∠P 与∠A 又有怎样的大小关系? (4)若点P 是∠ABC 与∠ACF 平分线的交点,∠P 与∠A 又有怎样的大小关系? 【解析】【归纳总结】①题型特征: ②方法与技巧:练2.1:如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点G ,∠BDC =140°,∠BGC =110°,求∠A 的度数.D BA CGEF练2.2:(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB = ,∠XBC +∠XCB = .B X ZYAC图1(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.B X ZYAC图2练2.3:(1)如图1,求证:∠CDB =∠A +∠B +∠C .C ABD图1(2)如图2,∠ACD 的平分线与∠ABD 的平分线交于点E .试问∠A ,∠CEB 和∠CDB 有何数量关系?为什么?C ABD E图2(3)如图3,若∠ACE=13∠ACD,∠ABE=13∠ABD,猜想∠A,∠CEB和∠CDB之间的数量关系为.(写出结论,不必证明)E CD 图3【变式】已知△ABC中,∠BAC=100°.B AOBAO1O图1 图2 图3(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2,…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.(2014,光谷实验10月月考)专题3:三角形内、外角度的转换【例3】将△ABC沿EF折叠,使点C落在点C′处.(1)如图1,试问∠1,∠2与∠C之间有何关系?为什么?(2)若点C′在△ABC的外部,如图2所示,试问∠1,∠2与∠C之间又有何关系?为什么?21AC FBEC'21ACFBE C'图1 图2(2014,江汉区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练3.1:如图,△ABC 中,∠ABC =∠ACB ,D 为BC 边上一点,E 为直线AC 上一点,且∠ADE =∠AED ; (1)求证:∠BAD =2∠CDE ;BACDE(2)如图,若D 在BC 的反向延长线上,其他条件不变,则(1)中的结论是否仍然成立?证明你的结论.BACDE【例4】如图,BP 是∠ABC 的平分线,DP 是∠CDA 的平分线,BP 与DP 交于P ,右∠A =40°,∠C =76°,求∠P 的大小.ABDCP【解析】【归纳总结】①题型特征: ②方法与技巧:练3.2:如图,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N .在图中,(1)若∠D =40°,∠B =36°,试求∠P 的度数;(2)—般性结论:若∠D 的度数为x ,∠B 的度数为y ,则∠P 的度数为 .ABDCMP N【例5】如图,△ABC 中,∠B >∠C ,AD 是BC 边上的高,AE 是∠BAC 的平分线.求证:∠DAE =12(∠B -∠C ).BCAD E【解析】【归纳总结】①题型特征:②方法与技巧:练3.3:如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=50°,求∠DAE的度数.(2)若∠C>∠B,试说明∠DAE=12(∠C-∠B).(3)如图(2)若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,(2)中的结论还正确吗?为什么?BACD E BACDA'E图1 图2专题4:角度的综合和实际应用【例6】上午8时,一条船从海岛A出发,以15海里每小时的速度向正北航行,10时到达海岛B处,从A,B望灯塔C,测得∠NAC=43°,∠NBC=86°,则海岛B与灯塔C相距海里.BCAN【解析】【归纳总结】①题型特征:②方法与技巧:练4.1:(1)如图,B处在A处的南偏西65°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB 的度数是( ).ACB北南A .80°B .75°C .85°D .70° (2)如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从C 岛看A ,B 两岛的视角∠ACB 是多少度?【原题40°,个人认为改为80°更适合.】D ABC E北北(2014,光谷实验10月月考)【例7】如图,△ABC 中,AD 是高,AE ,BF 是角平分线,BF 交AE ,AD 于点G ,H ,∠C >∠ABC ,下列结论:①∠AGB =90°+12∠C ; ②∠C -∠ABC =2∠EAD ; ③∠BFC +∠AEC =180°;④∠AGB +∠BHD -∠EAD =180°, 其中正确的有( ). BACE D GHFA .1个B .2个C .3个D .4个 【解析】【归纳总结】①题型特征: ②方法与技巧:练4.2:如图,在Rt △ABC 中,∠ACB =90°,∠CAB =20°,∠ACB 的平分线与外角∠ABD 的平分线交于点E ,连接AE ,则∠AEC 的度数为( ).C DA EA.10°B.30°C.35°D.45°(青山,13-14期中考试)专题5:角度转换基本模型与平面直角坐标系综合应用【例8】如图1,△AOB与△COD是两个可以完全重合的直角三角形,其中A,B,C,D四点均在坐标轴上.(1)如果B(0,一3),S△COD=9,请写出点A,C,D的坐标;(2)如图2,∠ADC的平分线DE所在直线与∠OAB的平分线交于F,求∠F的度数;(3)如图3,M是线段AD上任意一点(不同于点A,D),作MN⊥x轴交AF于点N,作∠ADE与∠ANM 的平分线交于点P,在(2)的条件下,能否求出∠P的度数?说出你的理由,若能求出,请写出解答过程;若不能,请说明理由.图1 图2 图3(2013,江岸区期末)【解析】(1)∵△COD与△AOB完全重合,∴OB=OD,OC=OA;∵B(0,一3),∴OB=3,则OD=3,∴D(3,0);∵S△COD=9=12·OD·OC,∴OC=6,∴C(0,6),A(6,0).(2)∵DE平分∠ADC,AF平分∠OAB,∴设∠CDE=∠EDA=x,∠DAF=∠BAF=y;∵x=y+∠F,而∠OAB=∠OCD=2y,∴2x=2y+90°,∴x=y+45°,∴∠F=45°.(3)∵DP平分∠EDA,PN平分∠MNA,∴设∠EDP=∠PDA=x,∠MNP=∠PNA=y,则∠P=90°-x-y;而∠F+180°-2x+180°-2y+90°=360°,∴2x+2y=90°+45°=135°,∴x+y=67.5°,∴∠P=90°-67.5°=22.5°.【归纳总结】①题型特征:②方法与技巧:练5.1:如图1,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;图1(2)如图2,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;图2(3)如图3,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).图3 (2013,江岸区期末)分级检测 A 级1.画△ABC 的BC 边上的高AD ,下列画法中正确的是( ).ACDA BC DD A BCABCDA B C D2.如果在△ABC 中,∠A =70°-∠B ,则∠C 等于( ). A .35° B .70° C .110° D .140°3.多边形内角和是1080°,则这个多边形的边数为( ). A .6 B .7 C .8 D .94.如图,△ABC 中,∠B =45°,∠C =75°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的值为( ).BD ACEA .15°B .30°C .45°D .25°5.如果一个三角形的两边长分别是2 cm 和7 cm ,且第三边边长为奇数,则三角形的周长是 cm . 6.(1)在△ABC 中,∠C =60°,∠A =3∠B ,则∠A = ,∠B ;(2)已知一个等腰三角形两内角的度数比为1∶7,则这个等腰三角形的顶角的度数为 ; (3)在△ABC 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠A = ,∠B ,∠C .7.一个多边形的内角和与外角和之比是5∶2,则这个多边形的边数为 .8.如图,△ACD 的外角是∠ =∠ +∠ ,△ABD 的外角是∠ =∠ +∠ .AB CD9.如图,∠ABC =40°,∠ACB =60°,BO ,CO 平分∠ABC 和∠ACB ,DE 过O 点,且DE ∥BC ,则∠BOC = °.BACOD E10.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A BCD EF11.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A B EDF HCG IB 级1.(1)在图1中,猜想∠A +∠B +∠C +∠A 1+∠B 1+∠C 1= °; (2)试说明你猜想的理由.(3)如果把图1称为二环三角形,则它的内角和为∠A +∠B +∠C +∠A 1+∠B 1+∠C 1;把图2称为二环四边形,则它的内角和为∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1;把图3称为二环五边形,则它的内角和为∠A +∠B +∠C +∠D +∠E +∠A 1+∠B 1+∠C 1+∠D 1+∠E 1,请你猜一猜,二环n 边形的内角和为 .(只写结果)BCA 1B 1C 1A AB CDA 1B 1C 1D 1A B DE A 1B 1C 1D 1E 1图1 图2 图32.如图1,△ABC 中,∠ABC 的平分线与∠ACB 的外角∠ACD 的平分线交于A 1. (1)分别计算出当∠A 为70°,80°时∠A 1的度数;(2)根据(1)中的计算结果写出∠A 与∠A 1之间的数量关系: (不需证明); (3)∠A 1BC 的平分线与∠A 1CD 的平分线交于A 2,∠A 2BC 与∠A 2CD 的平分线交于A 3,如此继续下去可得A 4,…,A n ,请写出∠A 6与∠A 之间的数量关系: (不需证明); (4)如图2,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的平分线交于Q ,求∠Q +∠A 1的度数.BC AD A 1B C A DA 1EQ图1 图2课后反馈1.一个三角形的两个内角分别是55°和65°,不可能是这个三角形外角的是( ). A .115° B .120° C .125° D .130°2.如图,已知∠1=20°,∠2=25°,∠A =35°,则∠BDC 的度数为( ).21DAB A .50°B .80°C .70°D .60°3.下列语句中,正确的是( ). A .三角形的外角大于它的内角 B .三角形的一个外角等于它的两个内角 C .三角形的一个内角小于和它不相邻的外角 D .三角形的外角和为180°4.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2= .215.如图,∠1+∠2+∠3+∠4=( ).40°3421BC EAD A .100°B .200°C .280°D .300°6.如图,AC ,BD 相交于点O ,BP ,CP 分别平分∠ABD ,∠ACD ,且交于点P . (1)若∠A =70°,∠D =60°,求∠P 的度数; (2)试探索∠P 与∠A ,∠D 间的数量关系; (3)若∠A ∶∠D ∶∠P =2∶4∶x ,求x 的值.AD COPE F B7.如图1,已知在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 为AE 上一点.且FD ⊥BC 于D . (1)试推导∠EFD 与∠B ,∠C 的大小关系;DBCA E F图1(2)如图2,当点F 在AE 的延长线上时,图1的其余条件都不变,你在(1)中推导的结论是否仍然成立?BCAD FE图2下次课必背1.三角形内角和度数:三角形三个内角的和等于180°.外角性质:三角形的外角等于与它不相邻的两个内角之和. 2.基本图形的结论.3.两内角角平分线夹角与顶角的关系、一内角一外角平分线的夹角与顶角的关两外角平分线夹角与顶角的关系.4.三角形中共一个顶点的角平分线与高线夹角、另两个内角的关系. 5.多边形内角和:n 边形内角和=(n —2)×180°; 外角和:多边形外角和=360°. 6.从一个顶点引出的对角线条数为n -3,所有对角线条数为(3)2n n .。
八年级下册第一章《直角三角形》培优习题

八年级下册第一章《直角三角形》培优习题一、知识要点填空:1、直角三角形的性质:(1)直角三角形的两个锐角_________(2)直角三角形斜边上的中线等于斜边的_________;(3)直角三角形30°角所对的直角边是______的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角______的三角形是直角三角形;(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。
等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。
二、练习题1、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则则∠1+∠2等于__________.2、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是()A. B.C. D.3、如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE4、如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能的是()A.3.5 B.4.2 C.5.8 D.75、如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是() A.3 B.2 C.3 D.16、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为___________________.7、四边形ABCD 由一个∠ACB=30°的Rt △ABC 与等腰Rt △ACD 拼成,E 为斜边AC 的中点,则∠BDE=__________.8、已知:在△ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∠ABC 的平分线BE 交AD 于点F ,试说明AE=AF.9、在△ABC 中,∠A=90°,AB=AC ,∠ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点E .求证:CE =21BD10、一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P .若木棍A 端沿墙下滑,且B 端沿地面向右滑行.木棍滑动的过程中,点P 到点0的距离不变化,在木棍滑动的过程中,△AOB 的面积最大为______________.11、如图在Rt △ABC 中,∠ACB=90°,CD 、CE 分别是斜边AB 边上的高与中线,CF 是∠ACB 的平分线,则∠1与∠2的大小关系是( )A .∠1>∠2 B. ∠1=∠2 C. ∠1<∠2 D.不能确定12、如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个13、如图,在直角三角形ABC 中,CM 是斜边AB 上的中线,MN ⊥AB ,∠ACB 的平分线CN 交MN 于N ,求证:CM=MN .14、如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A 1B 1D 1C 1;在等腰直角三角形OA 1B 1中作内接正方形A 2B 2D 2C 2;在等腰直角三角形OA 2B 2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A nB n D nC n的边长是_______________.15、下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有________个,图3中以格点为顶点的等腰直角三角形共有_________个,图4中以格点为顶点的等腰直角三角形共有_________个.16、如图,在△ABC中,∠B=90°,∠BAC=78°,过C作CF∥AB,连接AF于BC相交于G,若GF=2AC,则∠BAG=17、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①③ C.①③④D.②③④18、如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP=_________时,△AOP为等边三角形;(2)当OP=__________时,△AOP为直角三角形;(3)当OP满足___________时,△AOP为钝角三角形.GF CB A。
(家教培优专用)人教版数学八年级上册--直角三角形全等判定(提高)知识讲解

直角三角形全等判定(提高)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【要点梳理】【高清课堂:379111 直角三角形全等的判定,知识点讲解】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【高清课堂:379111 直角三角形全等的判定,例2】【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,【高清课堂:379111 直角三角形全等的判定,巩固练习3】2、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.【思路点拨】从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF.【答案与解析】证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,= ∴Rt △ADE ≌Rt △CBF (HL )∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF∴AB ∥DC.【总结升华】我们分析已知能推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、(2014春•东营区校级期末)如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC .【思路点拨】先根据角平分线上的点到两边的距离相等证得DE=DF ,再利用HL 判定,Rt △DBE ≌Rt △DCF ,从而得到EB=FC .【答案与解析】证明:∵AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE=DF ;∵DE ⊥AB 于E ,DF ⊥AC 于F .∴在Rt △DBE 和Rt △DCF 中,∴Rt △DBE ≌Rt △DCF (HL );∴EB=FC .【总结升华】本题考查直角三角形全等的判定方法,要证EB=FC ,只要将EB 、FC 置于两个直角三角形中,去证明它们全等即可.举一反三:【变式】(2015春•澧县校级期中)如图,在△ABC 和△DCB 中,∠A=∠D=90°,AC=BD ,AC 与BD 相交于点O .(1)求证:△ABC≌△DCB;(2)△OBC 是何种三角形?证明你的结论.【答案】证明:(1)因为∠A=∠D=90°,所以△ABC 和△DCB 都是直角三角形,在Rt △ABC 和Rt △DCB 中,,.AC BD BC BC =⎧⎨=⎩ ∴Rt△ABC≌Rt△DCB(HL );(2)△OBC 是等腰三角形. 理由如下:∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DCB,∴OB=OC∴△OBC 是等腰三角形.4、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.【答案与解析】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,∴△CDB≌△AEC(HL)∴BD=EC=12BC=12AC,且AC=12.∴BD=6cm.【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
初中数学 八年级竞赛培优训练 直角三角形 含解析

直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是() A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为()A.20 B.12 C.14 D.13图1-5-13.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为______cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-35.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为____°.图1-5-57.如图1-5-6,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =______.图1-5-68.如图1-5-7,∠ABC =90°,D ,E 分别在BC ,AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 的中点,FD 与AB 延长线相交于点M . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.图1-5-79.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=()图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画____个.图1-5-1012.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC =60°,则∠ACB的度数是____.图1-5-1113.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=____.图1-5-1214.如图1-5-13,在△ABC中,∠ACB=90°,M是∠CAB的平分线AL的中点,延长CM交AB于K,BK=BC,则∠CAB=____,∠ACK∠KCB=____.图1-5-1315.如图1-5-14,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1-5-14①),求证:M为AN的中点;(2)将图1-5-14①中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图1-5-14②),求证:△CAN为等腰直角三角形;(3)将图1-5-14①中△BCE绕点B旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14第5讲直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D) A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为(C) A.20 B.12 C.14 D.13图1-5-1【解析】∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.3.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为__5____cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-3解:(1)证明:∵∠DCE=90°,CF平分∠DCE,∴∠DCF =45°,∵△ABC 是等腰直角三角形,∴∠BAC =45°,∴∠BAC =∠DCF ,∴CF ∥AB ; (2)∵∠D =30°,∴∠DFC =180°-30°-45°=105°.5.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数. 解:(1)证明:∵∠ABC =90°,∴∠DBE =180°-∠ABC =180°-90°=90°, ∴∠ABE =∠CBD .在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,EB =DB ,∴△ABE ≌△CBD ;(2)∵AB =CB ,∠ABC =90°, ∴△ABC 是等腰直角三角形, ∴∠ECA =45°.∵∠CAE =30°,∠BEA =∠ECA +∠EAC , ∴∠BEA =45°+30°=75°. 由①知∠BDC =∠BEA . ∴∠BDC =75°.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为__45__°.图1-5-5【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.7.如图1-5-6,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC =__45°____.图1-5-68.如图1-5-7,∠ABC=90°,D,E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.图1-5-7解:(1)证明:∵△ADE是等腰直角三角形,F是AE的中点,∴DF⊥AE,DF=AF=EF.又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF.又∵∠DFC=∠AFM=90°,∴△DFC≌△AFM.∴CF=MF.∴∠FMC=∠FCM;(2)AD⊥MC.由(1)知∠MFC=90°,FD=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.9.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC.∴∠BCG=∠CAB=45°,又∵∠ACF=∠CBG,AC=BC,∴△ACF≌△CBG(ASA),∴AF=CG;(2)如答图,延长CG交AB于点H.∵AC=BC,CG平分∠ACB,∴CH⊥AB,H为AB的中点,又∵AD⊥AB,∴CH∥AD,∴G为BD的中点,∠D=∠EGC,∵E为AC的中点,∴AE=EC,又∵∠AED=∠CEG,∴△AED≌△CEG,∴DE=EG,∴DG=2DE,∴BG=DG=2DE,由(1)得CF=BG,∴CF=2DE.第9题答图【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=(D)图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画__3__个.图1-5-10【解析】如答图.①AC为直角边时,符合的等腰直角三角形有2个,一个是以∠BAC为直角,一个是以∠ACB为直角;②AC为斜边时,符合的等腰直角三角形有1个.∴这样的三角形最多能画3个,12.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC=60°,则∠ACB的度数是__75°__.图1-5-11【解析】过C作AP的垂线CD,垂足为点D,连结BD.∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°.13.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=__22.5°__.第11题答图图1-5-12 第13题答图【解析】 延长AE ,BC 交于点F .∵AE ⊥BE , ∴∠BEF =90°,又∵∠ACF =∠ACB =90°, ∴∠DBC +∠AFC =∠F AC +∠AFC =90°, ∴∠DBC =∠F AC , 在△ACF 和△BCD 中,⎩⎨⎧∠ACF =∠BCD =90°,AC =BC ,∠F AC =∠DBC ,∴△ACF ≌△BCD (ASA ), ∴AF =BD . 又∵AE =12BD ,∴AE =EF ,即点E 是AF 的中点. ∴AB =BF ,∴BD 是∠ABC 的角平分线. ∴∠ABD =22.5°.14.如图1-5-13,在△ABC 中,∠ACB =90°,M 是∠CAB 的平分线AL 的中点,延长CM 交AB 于K ,BK =BC ,则∠CAB =__45°__,∠ACK ∠KCB=__13__.图1-5-13【解析】 设∠CAB =2α.∵AM =ML ,且∠ACB =90°,∴CM =MA , ∴∠ACM =∠MAC =α.∴∠CKB =∠CAK +∠ACM =3α, ∠KCB =90°-∠ACM =90°-α. ∵BK =BC , ∴∠CKB =∠KCB .∴3α=90°-α,即α=22.5°. ∴∠CAB =45°,∠ACK ∠KCB =22.5°67.5°=13.15.如图1-5-14,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD =∠BCE =90°,点M 为DE 的中点.过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1-5-14①),求证:M 为AN 的中点; (2)将图1-5-14①中△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图1-5-14②),求证:△CAN 为等腰直角三角形;(3)将图1-5-14①中△BCE 绕点B 旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14证明:(1)∵点M 为DE 的中点,∴DM =ME . ∵AD ∥EN ,∴∠ADM =∠NEM ,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点;(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠ACN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45°+∠MEN+∠BED =∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN为等腰直角三角形,∴(2)中的结论仍然成立.。
2022-2023学年第二学期初二数学名校优选培优训练专题05 直角三角形斜边上的中线

2022-2023学年第二学期初二数学名校优选培优训练专题测试专题05 直角三角形斜边上的中线姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2022春•武城县期末)一个直角三角形的两条直角边分别为5和12,则斜边上的中线和高分别为()A.和B.和C.和D.和2.(2022秋•北碚区校级期末)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,E是BD 的中点,BD=8,则△AEC的面积为()A.B.16 C.8 D.3.(2022春•安乡县期末)如图是屋架设计图的一部分,其中∠A=30°,D是斜梁AB的中点,BC,DE垂直于横梁AC,DC=8cm,则DE的长为()A.2cm B.4cm C.6cm D.8cm4.(2022春•闽侯县期中)如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,且BD=,若Rt△ABC 的面积为2,则它的周长为()A.+2 B.+4 C.2+4 D.2+25.(2022春•凤山县期末)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AC=8,BC=6,则△ADC 的周长为()A.14 B.24 C.12 D.186.(2022•碑林区校级模拟)如图,△ABC中,CD⊥AB,垂足为D,E为BC边的中点,AB=4,AC=2,DE=,则∠ACD=()A.15°B.30°C.22.5°D.45°7.(2020秋•丹东期末)如图,在Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,AB=10,M是AB的中点,连接MC,MD,CD,若CD=6,则△MCD的面积为()A.12 B.12.5 C.15 D.248.(2020•汝阳县模拟)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,且∠ACD=30°,DE∥BC 交AC于点E,BF⊥CD于点F,连接EF.若AC=2,则EF的长是()A.2 B.C.1 D.9.(2019春•嘉祥县期末)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE=4,则S△AEC=()A.8 B.7.5 C.7 D.610.(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2022春•南岗区校级期中)如图,∠ABC=∠ADC=90°,E是AC中点,∠BDE=52°,则∠DEB的度数为.12.(2022春•渝中区校级月考)如图,Rt△ABC中,∠BAC=90°,∠C=20°,点D为斜边BC的中点,连接AD,AE⊥BC于点E,则∠DAE为度.13.(2022春•广安期末)如图,在△ABC中,∠BAC为钝角,AF,CE都是这个三角形的高,P为AC的中点.若∠B=35°,则∠EPF的度数为.14.(2022春•紫阳县期末)如图,在△ABC中,AB=AC=4,∠CAB=30°,以AC为斜边作Rt△ADC.使∠ADC=90°,∠CAD=∠CAB,E,F分别是BC,AC的中点,则DE的长为.15.(2021春•龙岗区校级期末)如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.16.(2021秋•诸暨市期中)如图,在△ABC中,∠BAC为钝角,AF、CE都是这个三角形的高,P为AC 的中点,若∠B=40°,则∠EPF=.17.(2021秋•温州期中)如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=°.18.(2020春•揭西县期末)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为.19.(2019春•瑶海区期末)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为.20.(2017春•武侯区校级月考)如图,∠MON=90°,边长为4的等边△ABC的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为.评卷人得分三.解答题(共9小题,满分60分)21.(2022春•汉滨区期中)如图,BN,CM分别是△ABC的两条高,点D,E分别是BC,MN的中点.(1)求证:DE⊥MN;(2)若BC=26,MN=10,求DE的长.22.(2021春•抚顺期末)如图,BN、CM分别是△ABC的两条高,点D、点E分别是BC、MN的中点,求证:DE⊥MN.23.(2019春•房山区期中)如图,锐角△ABC中,AD,CE为两条高,F,G分别为AC,DE的中点,猜想FG与DE的位置关系并加以证明.24.(2021春•新泰市期中)如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E为AC的中点.EF⊥BD,垂足为F.(1)求证:BE=DE;(2)若AC=26,EF=5,求BD的长.25.(2020春•江岸区校级月考)在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=.26.(2019春•城关区校级期中)小明在学完北师大数学八年级(下)第一章后,看到这样一道题目:“已知,如图∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.小明思考片刻,找到了解决方法,他作了辅助线.聪明的你知道他作的辅助线是什么吗?怎么证明的?小明又突然想到,在边AD上能找一点P,使得PB=PD,请你写出证明过程.27.(2022•宜城市模拟)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.28.(2022春•永丰县期中)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题;(2)应用:若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?29.(2020春•重庆期末)如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.(3)当∠A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.答案与解析一.选择题(共10小题,满分20分,每小题2分)1.(2022春•武城县期末)一个直角三角形的两条直角边分别为5和12,则斜边上的中线和高分别为()A.和B.和C.和D.和解:∵直角三角形的两条直角边分别为5和12,∴斜边长==13,∴斜边上的中线=,斜边上的高==,故选:C.2.(2022秋•北碚区校级期末)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,E是BD 的中点,BD=8,则△AEC的面积为()A.B.16 C.8 D.解:∵∠BAD=∠BCD=90°,E是BD的中点,BD=8,∴AE=CE=BD=4,∴∠ABE=∠BAE,∠CBE=∠BCE,∵∠AED=∠ABE+∠BAE=2∠ABE,∠CED=∠CBE+∠BCE=2∠CBE,∴∠AEC=2∠ABE+2∠CBE=2∠ABC,∵∠ABC=45°,∴∠AEC=90°,∴S△ACE=AE•CE=×4÷4=8.故选:C.3.(2022春•安乡县期末)如图是屋架设计图的一部分,其中∠A=30°,D是斜梁AB的中点,BC,DE垂直于横梁AC,DC=8cm,则DE的长为()A.2cm B.4cm C.6cm D.8cm解:∵∠A=30°,DC=8cm,D是斜梁AB的中点,∴CD=AB,∴AB=2CD=2×8=16,∵∠A=30°,∴BC=AB=8,∵BC、DE垂直于横梁AC,∴BC∥DE,∵点D是斜梁AB的中点,∴DE=BC=×8=4cm.故选:B.4.(2022春•闽侯县期中)如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,且BD=,若Rt△ABC 的面积为2,则它的周长为()A.+2 B.+4 C.2+4 D.2+2解:∵∠ABC=90°,点D是AC的中点,∴AC=2BD=2,∴AB2+BC2=AC2=8,∵Rt△ABC的面积为2,∴AB•BC=2,∴AB•BC=4,∴(AB+BC)2=AB2+BC2+2AB•BC=8+8=16,∴AB+BC=4或AB+BC=﹣4(舍去),∴△ABC的周长=AB+BC+AC=4+2,故选:C.5.(2022春•凤山县期末)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AC=8,BC=6,则△ADC 的周长为()A.14 B.24 C.12 D.18解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB=,∵D是AB的中点,∴AD=CD=AB=5,∴△ACD的周长为:AD+CD+AC=5+5+8=18.故选:D.6.(2022•碑林区校级模拟)如图,△ABC中,CD⊥AB,垂足为D,E为BC边的中点,AB=4,AC=2,DE=,则∠ACD=()A.15°B.30°C.22.5°D.45°解:∵CD⊥AB,E为BC边的中点,DE=,∴BC=2DE=2,∵AB=4,AC=2,∴AC2+BC2=4+12=16=AB2,∴△ABC是直角三角形,且∠ACB=90°,且∠ABC=30°,∴∠ACD+∠BCD=90°,∵∠ABC+∠BCD=90°,∴∠ACD=∠ABC=30°.故选:B.7.(2020秋•丹东期末)如图,在Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,AB=10,M是AB的中点,连接MC,MD,CD,若CD=6,则△MCD的面积为()A.12 B.12.5 C.15 D.24解:过M作ME⊥CD于E,∵∠ACB=∠ADB=90°,AB=10,M是AB的中点,∴CM=AB=5,MD=AB=5,∴CM=DM,∵ME⊥CD,CD=6,∴CE=DE=3,由勾股定理得:EM===4,∴△MCD的面积为==12,故选:A.8.(2020•汝阳县模拟)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,且∠ACD=30°,DE∥BC 交AC于点E,BF⊥CD于点F,连接EF.若AC=2,则EF的长是()A.2 B.C.1 D.解:∵∠ACB=90°,D为AB的中点,∴CD=AD=BD,∴∠A=∠ACD,∵∠ACD=30°,∴∠A=30°,∴AB=2BC,∠ABC=60°,∵AC2+BC2=AB2,AC=2,∴(2)2+BC2=(2BC)2,解得:BC=2(负数舍去),∴AB=2BC=4,∵AB=4,D为AB的中点,∴BD=AD=2=BC,∵BF⊥CD,∴CF=DF,∵DE∥BC,D为AB的中点,∴AE=CE,∴EF=AD==1,故选:C.9.(2019春•嘉祥县期末)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是边AB的中点,AB=10,DE=4,则S△AEC=()A.8 B.7.5 C.7 D.6解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,∴AE=BE=CE=AB=5,∵CD⊥AB,DE=4,∴CD==3,∴S△AEC=S△BEC=BE•CD=3=7.5,故选:B.10.(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2022春•南岗区校级期中)如图,∠ABC=∠ADC=90°,E是AC中点,∠BDE=52°,则∠DEB的度数为76°.解:∵∠ABC=∠ADC=90°,E是AC中点,∴DE=AC,BE=AC,∴DE=BE,∴∠BDE=∠DBE=52°,∴∠DEB=180°﹣∠BDE﹣∠DBE=76°,故答案为:76°.12.(2022春•渝中区校级月考)如图,Rt△ABC中,∠BAC=90°,∠C=20°,点D为斜边BC的中点,连接AD,AE⊥BC于点E,则∠DAE为50度.解:∵∠BAC=90°,点D为斜边BC的中点,∴AD=CD=BC,∴∠C=∠DAC=20°,∴∠ADE=∠C+∠DAC=40°,∵AE⊥BC,∴∠AEC=90°,∴∠EAD=90°﹣∠ADE=50°,故答案为:50.13.(2022春•广安期末)如图,在△ABC中,∠BAC为钝角,AF,CE都是这个三角形的高,P为AC的中点.若∠B=35°,则∠EPF的度数为110°.解:∵CE⊥BE,AF⊥BC,∴∠CEB=∠AFC=90°,∵∠B=35°,∴∠ECB=90°﹣∠B=55°,∵点P是AC的中点,∴PF=PC=AC,PE=PC=AC,∴∠PFC=∠PCF,∠PEC=∠PCE,∵∠APF是△CFP的一个外角,∴∠APF=∠PFC+∠PCF,∴∠APF=2∠PCF,∵∠APE是△CEP的一个外角,∴∠APE=∠ACE+∠PEC,∴∠APE=2∠ACE,∴∠EPF=∠APE+∠APF=2∠PCF+2∠ACE=2∠ECB=110°,故答案为:110°14.(2022春•紫阳县期末)如图,在△ABC中,AB=AC=4,∠CAB=30°,以AC为斜边作Rt△ADC.使∠ADC=90°,∠CAD=∠CAB,E,F分别是BC,AC的中点,则DE的长为2.解:∵∠ADC=90°,∠CAD=30°,F是AC的中点,∴DF=AF=AC=×4=2,∴∠FDA=∠CAD=30°,∴∠DFC=∠FDA+∠CAD=60°∵E、F分别是BC、AC的中点,∴EF∥AB,EF=AB=×4=2,∴∠EFC=∠CAB=30°,∴∠EFD=60°+30°=90°,∴ED===2.故答案为:2.15.(2021春•龙岗区校级期末)如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.解:如图,连接DM,DN,由图可以得到M的轨迹是一条线段(AD的垂直平分线的一部分),M在AN上的时候最大(此时AM最大,MN最小),当M在AN上时,如图,设AM=x,则MN=3﹣x,DM=AM=x,∵D、N分别是BC、AC的中点,∴DN=AB=,在直角三角形DMN中,根据勾股定理,得DM2=DN2+MN2,∴x2=(3﹣x)2+2.52,解得x=,∴3﹣x=,此时AM﹣MN=﹣=.∴AM﹣MN的最大值为.故答案为:.16.(2021秋•诸暨市期中)如图,在△ABC中,∠BAC为钝角,AF、CE都是这个三角形的高,P为AC 的中点,若∠B=40°,则∠EPF=100°.解:∵CE⊥BA,∠B=40°,∴∠BCE=50°,∵AF⊥BC,CE⊥BA,P为AC的中点,∴PF=AC=PC,PE=AC=PC,∴∠PFC=∠PCF,∠PEC=∠PCE,∴∠EPF=2∠PCF+2∠PCE=2∠BCE=100°,故答案为:100°.17.(2021秋•温州期中)如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=75°.解:∵∠ACB=90°,点E是AB中点,∴EC=EA=EB=AB,∴∠ECA=∠CAB=30°,∴∠CEB=60°,∵AD=BD,点E是AB中点,∴DE⊥AB,即∠AED=90°,∴∠DEC=180°﹣90°﹣60°=30°,∵∠ADB=90°,点E是AB中点,∴DE=AB,∴ED=EC,∴∠EDC=75°,故答案为:75.18.(2020春•揭西县期末)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为6.解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故答案为6.19.(2019春•瑶海区期末)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为.解:连接CM、CN,由勾股定理得,AB=DE==5,∵△ABC、△CDE是直角三角形,M,N为斜边的中点,∴CM=,CN=,∠MCB=∠B,∠NCD=∠D,∴∠MCN=90°,∴MN=,故答案为:.20.(2017春•武侯区校级月考)如图,∠MON=90°,边长为4的等边△ABC的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,等边三角形的形状保持不变,运动过程中,点C到点O的最大距离为2+2.解:如图,取AB的中点D,连接OD、CD,∵△ABC是等边三角形,∴CD==2,∵∠MON=90°,∴OD=AB==2,由图可知,当点O、C、D三点共线时点C到点O的距离最大,最大值为2+2.故答案为:2+2.三.解答题(共9小题,满分60分)21.(2022春•汉滨区期中)如图,BN,CM分别是△ABC的两条高,点D,E分别是BC,MN的中点.(1)求证:DE⊥MN;(2)若BC=26,MN=10,求DE的长.(1)证明:如图,连接DM,DN,∵BN、CM分别是△ABC的两条高,∴BN⊥AC,CM⊥AB,∴∠BMC=∠CNB=90°,∵D是BC的中点,∴DM=BC,DN=BC,∴DM=DN,∵E为MN的中点,∴DE⊥MN;(2)解:∵BC=26,∴DM=BC=13,∵点E是MN的中点,MN=10,∴ME=5,由勾股定理得:DE==12.22.(2021春•抚顺期末)如图,BN、CM分别是△ABC的两条高,点D、点E分别是BC、MN的中点,求证:DE⊥MN.证明:如图,连接DM,DN,∵BN、CM分别是△ABC的两条高,∴BN⊥AC,CM⊥AB,∴∠BMC=∠CNB=90°,∵D是BC的中点,∴DM=BC,DN=BC,∴DM=DN,又∵E为MN的中点,∴DE⊥MN.23.(2019春•房山区期中)如图,锐角△ABC中,AD,CE为两条高,F,G分别为AC,DE的中点,猜想FG与DE的位置关系并加以证明.解:FG⊥DE,理由如下:连接FE、FD,∵AD,CE为两条高,∴AD⊥BC,CE⊥AB,∵F为AC的中点,∴EF=AC,FD=AC,∴FE=FD,∵G为DE的中点,∴FG⊥DE.24.(2021春•新泰市期中)如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E为AC的中点.EF⊥BD,垂足为F.(1)求证:BE=DE;(2)若AC=26,EF=5,求BD的长.解:(1)∵∠ABC=∠ADC=90°,点E为AC的中点,∴BE=DE=AC;(2)∵BE=DE,EF⊥BD,∴BD=2BF,∵BE=AC,AC=26,∴BE=13,∵EF=5,∴BF===12,∴BD=2BF=24.25.(2020春•江岸区校级月考)在三角形△ABC中,D是BC边的中点,AD=BC.(1)△ABC的形状为直角三角形.(2)如图,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;(3)在(2)的条件下,AN=2.解:(1)结论:△ABC是直角三角形.理由:∵BD=DC,AD=BC,∴DA=DB=DC,∴∠BAC=90°.故答案为直角三角形.(2)如图,设CN=x.∵∠B=45°,∠BAC=90°,∴∠ACB=∠B=45°,∴AB=AC,∵BD=DC,∴AD⊥BC,将△BAM绕点A逆时针旋转90°得到△ACH,连接NH.∵∠ACB=∠ACH=∠B=45°,∴∠NCH=90°,∵∠MAN=45°,∠MAH=90°,∴∠NAM=∠NAH=45°,∵NA=NA,AM=AH,∴△NAM≌△NAH(SAS),∴MN=NH,∵BM=CH=3,BC=12,∴CM=12﹣3=9,∴MN=NH=9﹣x,∵NH2=CH2+CN2,∴(9﹣x)2=x2+32,解得x=4.∴CN=4.(3)在Rt△ADN中,∵∠ADN=90°,AD=BD=CD=6,DN=CD﹣CN=6﹣4=2,∴AN===2.故答案为2.26.(2019春•城关区校级期中)小明在学完北师大数学八年级(下)第一章后,看到这样一道题目:“已知,如图∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.小明思考片刻,找到了解决方法,他作了辅助线.聪明的你知道他作的辅助线是什么吗?怎么证明的?小明又突然想到,在边AD上能找一点P,使得PB=PD,请你写出证明过程.解:①连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM,又N为BD的中点,∴MN⊥BD;②∵BM=DM,∴M在BD的垂直平分线上,∵PB=PD,∴P在BD的垂直平分线上,∴PM垂直平分BD,∴MN⊥BD.27.(2022•宜城市模拟)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC=,求EC的长.(1)证明:∵AD⊥DB,点E为AB的中点,∴DE=BE=AB.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,DC=,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴EC===.28.(2022春•永丰县期中)同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”(1)请写出它的逆命题在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半;(2)应用:若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?解:(1)逆命题为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,故答案为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半;(2)过C点作CD⊥AB交AB的延长线于点D,∵AB=BC=20m,∠A=15°,∴∠A=∠ACB=15°,∴∠DBC=∠A+∠ACB=30°,∴CD=BC=10cm,∴S△ABC=AB•CD=×20×10=100(cm2).29.(2020春•重庆期末)如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.(3)当∠A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.(1)证明:如图(1),连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME,又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB),=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A),=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,理由如下:连接DM,ME,在△ABC中,∠ABC+∠ACB=180°﹣∠BAC,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC,=2(180°﹣∠BAC),=360°﹣2∠BAC,∴∠DME=180°﹣(360°﹣2∠BAC),=2∠BAC﹣180°.。
初二-第02讲-直角三角形(培优)-教案

学科教师辅导讲义学员编号:年级:八年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-直角三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握直角三角形的性质与判定方法;②进一步掌握推理证明的方法,培养演绎推理能力;授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。
定理:有两个角互余的三角形是直角三角形。
2、勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
3、勾股定理的逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
4、逆命题、逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个体系搭建命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。
5、斜边、直角边定理定理:斜边和一条直角边分别相等的两个直角三角形全等。
简述为“斜边、直角边定理”或“HL”定理。
考点一:直角三角形全等的判定例1、在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点【解析】选D.例2、如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解析】∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.例3、如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解析】(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等【解析】选:D.2、如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=AD或BC=BDC.AC=AD且BC=BD D.以上都不正确【解析】从图中可知AB为Rt△ABC和Rt△ABD的斜边,也是公共边.跟据“HL”定理,证明Rt△ABC≌Rt△ABD,还需补充一对直角边相等,即AC=AD或BC=BD,故选B.3、如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°【解析】∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.4、如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5 B.6C.7 D.8【解析】∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.5、如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)【解析】∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.6、如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=60°或90°时,△AOP为直角三角形.【解析】若∠APO是直角,则∠A=90°﹣∠AON=90°﹣30°=60°,若∠APO是锐角,∵∠AON=30°是锐角,∴∠A=90°,综上所述,∠A=60°或90°.故答案为:60°或90°.7、如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.8、底角为30°,腰长为a的等腰三角形的面积是a2.【解析】如图,过点A作AD⊥BC于D,∵△ABC是等腰三角形,∴BC=2BD,∵底角∠B=30°,∴AD=AB=a,由勾股定理得,BD==a,∴BC=2BD=a,∴三角形的面积=×a×a=a2.故答案为a2.9、如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【解析】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.10、已知:如图,在△ABC中,AB=AC=2,∠B=15°.过点C作CD⊥BA,交BA的延长线于点D,求△ACD的周长.【解析】如图,在△ABC中,AB=AC=2,∠B=15°,∴∠B=∠ACB=15°,∴∠DAC=2∠B=30°.又∵CD⊥BA,∴CD=AC=1,∴根据勾股定理得到AD==,∴△ACD的周长=AD+CD+AC=+1+2=+3.答:△ACD的周长是+3.➢课后反击1、要判定两个直角三角形全等,下列说法正确的有()①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.6个B.5个C.4个D.3个【解析】故选B2、如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AASC.SSS D.ASA【解析】∵OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,又∵OE=OF,AO为公共边,∴△AEO≌△AFO.故选A.3、直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【解析】如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选B.4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,则∠CDA=()A.30°B.45°C.60°D.75°【解析】如图,∵在Rt△ABC中,∠ACB=90°,∠A=60°,∴AC=AB,又∵过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,∴AD=BD∴AC=AD,∵∠A=60°,∴△ADC是等边三角形,∴∠CDA=60°.5、如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE 的长为()A.10 B.6C.8 D.5【解析】∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=AB=×10=5,故选D.6、如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【解析】AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.7、如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【解析】∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.8、如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为6.【解析】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.9、如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【解析】AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).10、在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.【解析】∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.S(Summary-Embedded)——归纳总结重点回顾1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。
初二-第01讲-三角形的证明(培优)-教案

学科教师辅导讲义学员编号:年级:八年级(下) 课时数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲-三角形的证明授课类型T同步课堂P实战演练S归纳总结教学目标①掌握等腰三角形、直角三角形的概念与性质;②掌握线段的垂直平分线与角平分线的性质与定理;③掌握各种思想的运用。
授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。
(AAS)(2)等腰三角形的两底角相等。
即等边对等角。
(3)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
即三线合一。
(4)等边三角形的三个内角都相等,并且每个角都等于60°。
体系搭建2、等腰三角形的判定定理(1)有两条边相等的三角形是等腰三角形。
(2)有两个角相等的三角形是等腰三角形。
即等角对等边。
(3)三个角都相等的三角形是等边三角形。
(4)有一个角等于60°的等腰三角形是等边三角形。
3、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
4、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。
定理:有两个角互余的三角形是直角三角形。
5、勾股定理:勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
6、勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
7、逆命题、逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。
8、斜边、直角边定理定理:斜边和一条直角边分别相等的两个直角三角形全等。
简述为“斜边、直角边定理”或“HL”定理。
9、线段垂直平分线的性质定理:定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
八年级(上)培优讲义:第1讲-三角形的初步知识(1)

第1讲三角形的初步知识1(认识三角形、定义与命题、证明)一、知识建构1. 三角形按角分类:(1)锐角三角形:三角形的,这样的三角形称之为锐角三角形(2)直角三角形:三角形有,这样的三角形称之为直角三角形(3)钝角三角形:三角形有,这样的三角形称之为钝角三角形2. 三角形的角平分线:在三角形中,,这个角的顶点与交点之间的线段叫做三角形的角平分线。
3.三角形的中线:在三角形中,,叫做这个三角形的中线。
(1)三角形的中线的形状也是一条;(2)三角形的三条角中线.4.三角形高的定义:从三角形的一个顶点线,的线段叫做三角形的高。
5.三角形三边之间的关系为:6.能清楚地规定某一名称或术语的句子叫做该名称或术语的______.7.对某一件事情作出_______判断的句子叫做命题.•每个命题都是由______•和______两部分组成的.8.思考下列命题的条件和结论分别是什么?并判断那些命题正确? 那些命题不正确?(1)相等的角是对顶角。
(2)直角三角形两锐角互余。
(3)同位角相等。
(4)一个角的补角一定大于这个角的余角。
9. 阅读教材内容后请回答:(1)怎样判断一个命题是真命题还是假命题?(1)真命题、公理、定理三者的区别与联系各是什么?10.判断下列命题是真命题还是假命题?如果是假命题,请说明理由;如果是真命题,请用推理的方法来说明.(1)如果ab=0,那么a=b=0;(2)如图,若AC∥DE,∠1=∠2,则AB∥CD.二、经典例题例1.对于同一平面内的三条直线a,b,c,给出下列5个判断:①a∥b②b∥c;•③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至少写两个命题).例2.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°例3. 如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则(1)θ1= , (2)θn= .例4.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.图1图2DC EA B例5. 一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( )A .1≤x ≤3B .1<x ≤3C .1≤x <3D .1<x <3例6. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是 .例7. 两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .例8.如图,已知AB ∥CD ,直线EF 分别截AB 、CD 于 点M 、N ,MG 、NH 分别是∠EMB 与∠END 的平分线.求证:MG ∥NH . 请根据分析思路,写出证明过程.三、基础演练1.在△ABC 中,若∠A +∠B =88°,则∠C =_______,这个三角形是______ 三角形.∠EMG=12∠∠ENH=12∠END可证∠EMG=∠MNH要证MG ∥NH 只需证:∠EMB=∠END已知AB ∥CDABCDE FHMN2.直角三角形的一个锐角为42°,则另一个锐角为_________.3.在△ABC 中,若∠A =35°,∠B =68°,则与∠C 相邻的外角等于_______ °.4.若5条线段长分别为1cm ,2cm ,3cm , 4cm ,5cm ,则以其中3条线段为边长可以构成三角形的个数是___________ .5.一木工师傅有两根70,100长的木条,他要选择第三根木条,将它们钉成三角形木架,则第三根木条取值范围_____________ ,木架周长的取值范围_____________ . 6. 如图所示,下面的推理中正确的是 ( ) A .∵∠1=∠2,∴AB ∥CDB .∵∠ABC +∠BCD =180°,∴AD ∥BC C .∵AD ∥BC ,∴∠3=∠4D .∵∠ABC +∠DAB =180°,∴AD ∥BC 7.命题“若a b >,则1ab>”是真命题还是假命题?请说明理由.8.若等腰三角形腰长为6,则底边x 的取值范围是 ( ) A . 6<x <12 B . 0<x <6 C . 0<x <12 D . 无法确定9. 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形 10.如图所示,在△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,过点D 作DE ∥BC •交AB 于点E ,过点D 作DF ⊥AB 于点F .求证:BC =DE +EF .四、直击中考1. (2013广西)一个三角形的周长是36cm ,则以这个三角形各边中点为顶点的三角形的周长是( )A .6cmB .12cmC .18cmD .36cm2.(2013衡阳)如图,∠1=100°,∠C =70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°3241D CBA B CE DF A3.(2013鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°4.(2013黔东南州)在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B ﹣∠A =∠C ﹣∠B ,则∠B = 度.5.(2013温州)如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.6.(2013雅安)若(a ﹣1)2+|b ﹣2|=0,则以a 、b 为边长的等腰三角形的周长为 .7.(2013东城).如图,∠ACD 是△ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A . 设A θ∠=,则1A ∠= ;n A ∠= 8.(2014杭州)下列命题中,正确的是( )A .梯形的对角线相等B . 菱形的对角线不相等C . 矩形的对角线不能互相垂直D . 平行四边想的对角线可以互相垂直五、能力拓展1.如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠DOC ,若∠MON =α,∠BOC =β,则∠AOD 可表示为( )A . 2α-βB . α-βC . α+βD . 2α2.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,•且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()A.150°B.130°C.120°D.1003.已知等腰三角形的周长为14cm,底边与腰的比为3:2,求各边长.4. 已知a,b,c是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|的结果是多少?5.如图所示,已知等腰直角三角形ABC中,∠ACB=90°,直线L经过点C,•AD•⊥L,BE⊥L,垂足分别为D,E.(1)证明:△ACD≌△CBE;(2)求证:DE=AD+BE;(3)当直线L经过△ABC内部时,其他条件不变,(2)中的结论还成立吗?如果成立,请给出证明;如果不成立,猜想这时DE,AD,BE有什么关系?证明你的猜想.六、挑战竞赛1. 在△ABC中,∠A= 50°, 高BE,CF所在的直线相交于点O,求∠BOC.FEC AB2.△ABC 中,已知∠ABC = 74°, ∠A = 56°, BE 是AC 边上的高,CF 是△ ABC 的角平分线,求∠ACF 和∠BFC .4.如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .5.如图,45AOB ∠=,过OA 上到点O 的距离分别为1,4,7,10,13,16,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为,,,321s s s …,观察图中的规律,第4个黑色梯形的面积=4S ,第n (n 为正整数)个黑色梯形的面积=n S .6.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.OA BCDEA EBCD图1 图2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学培优之直角三角形
阅读与思考
直角三角形是一类特殊三角形,有以下丰富的性质: 角的关系:两锐角互余;
边的关系:斜边的平方等于两直角边的平方和;
边角关系:30所对的直角边等于斜边的一半.
这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面.
在现阶段,勾股定理是求线段的长度的主要方法,若图形缺少条件直角条件,则可通过作辅助垂线的方法,构造直角三角形为勾股定理的应用创造必要条件;运用勾股定理的逆定理,通过代数方法计算,也是证明两直线垂直的一种方法.
熟悉以下基本图形基本结论:
例题与求解
【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________.
(2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________.
D
C
(太原市竞赛试题)
解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手.
【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°
(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础.
【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC =60°,求∠ACB的度数.
B C
(“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB的度数,综合运用条件PC=2PB及∠APC =60°,构造出含30°的直角三角形是解本例的关键.
【例4】如图,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD.
B
A C
(上海市竞赛试题)解题思路:已知FD为Rt△FAD的斜边,因此需作辅助线,构造以EF为斜边的直角三角形,通过全等三角形证明.
【例5】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:222
+=
BD AB BC
B
(北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中.
【例6】斯特瓦尔特定理:
如图,设D 为△ABC 的边BC 上任意一点,a ,b ,c 为△ABC 三边长,则
222
b BD
c DC AD BD DC a
+=-⋅.请证明结论成立.
B
解题思路:本题充分体现了勾股定理运用中的数形结合思想.
能力训练
A 级
1.如图,D 为△ABC 的边BC 上一点,已知AB =13,AD =12,AC =15,BD =5,则BC =_____________.
第1题
2.如图,在Rt △ABC 中∠C =90°,BE 平分∠ABC 交AC 于E ,DE 是斜边AB 的垂直平分线,且DE =1cm ,则AC =_____________cm.
第2题
3.如图,四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠B =90°,则∠DAB =_____________.
第3
题
A
B
C
(上海市竞赛试题)
4.如图,在△ABC 中,AB =5,AC =13,边BC 上的中线AD =6,则BC 的长为
_____________.
第4题
D B
(湖北省预赛试题)
5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30 º,那么这个三角形的形状是( )
A.直角三角形
B. 钝角三角形
C. 锐角三角形
D.不能确定
(山东省竞赛试题)
6.如图,小正方形边长为1,连结小正方形的三个顶点可得△ABC ,则AC 边上的高为( )
B.
C.
D. 第6题
C
B
(福州市中考试题)
7.如图,一个长为25分米的梯子,斜立在一竖直的墙上,这时梯足距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯足将滑( )
A. 15分米
B. 9分米
C. 8分米
D. 5分米
第7
题
8.如图,在四边形ABCD 中,∠B =∠D =90°,∠A =60°,AB =4,AD =5,那么
BC
CD
等于( ) A.1 B. 2
C.
D.
5
4
第8题
A
9. 如图,△ABC 中,AB =BC =CA ,AE =CD ,AD ,BE 相交于P ,BQ ⊥AD 于Q ,求证:BP =2PQ.
D
C
(北京市竞赛试题)
10. 如图,△ABC 中,AB =AC.
(1)若P 是BC 边上中点,连结AP ,求证:22BP CP AB AP ⋅=-
(2)P 是BC 边上任意一点,上面的结论还成立吗?若成立,请证明;若不成立,请说明理由;
(3)若P 是BC 边延长线上一点,线段AB ,AP ,BP ,CP 之间有什么样的关系?请证明你的结论.
B
P
11.如图,直线OB 是一次函数2y x =图象,点A 的坐标为(0,2),在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.
12.已知:如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,求△BED 的面积.
D
(山西省中考试题)
B 级
1.若△ABC 的三边a,b,c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为_____________.
2.如图,在等腰Rt △ABC 中,∠A =90°,P 是△ABC 内的一点,PA =1,PB
=3,PC ,则∠CPA =_____________.
第2题
A
3. 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为_____________.
4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是( )
A. CF >GB
B. CF =GB
C. CF <GB
D. 无法确定
第4题
A
B
5. 在△ABC 中,∠B 是钝角,AB =6,CB =8,则AD 的范围是( ) A. 8<AC <10 B. 8<AC <14 C. 2<AC <14 D. 10<AC <14
(江苏省竞赛试题)
6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )
A. 1个
B. 2个
C. 3个
D.4个
(浙江省竞赛试题)
7.如图,△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,E ,F 分别是
AB ,AC 边上的点,且DE ⊥DF ,若BE =12,CF =5,求△DEF 的面积.
D
B
C
(四川省联赛试题)
8.如图,在Rt △ABC 中,∠A =90°,D 为斜边BC 中点,DE ⊥DF ,求证:222EF BE CF =+
B
(江苏省竞赛试题)
9.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明有几个.
(全国联赛试题)
10.如图,在△ABC 中,∠B AC =45°,AD ⊥BC 于D ,BD =3,CD =2,求△ABC 面积
.
B
C
(天津市竞赛试题)
11.如图,在△ABC 中,∠B AC =90°,AB =AC ,E ,F 分别是BC 上两点,若∠EAF
=45°,试推断BE ,CF ,EF 之间数量关系,并说明理由.
A C
12.已知在Rt △ABC 中,∠ACB =90°,AC =BC ,∠MCN =45°. (1)如图1,当M ,N 在AB 上时,求证:222MN AM BN =+
(2)如图2,将∠MCN 绕点C 旋转,当M 在BA 的延长线上时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.
图1
N
A
B M
图2
N B
M
(天津市中考试题)。