动量定理动量守恒
§4.1 动量定理与动量守恒定律

联立上两式,解得:
s
M Mm
L
s
m Mm
L
(解毕)
mvx Mvx 0
t
t
m 0 vxdt M 0 vxdt
x
ms Ms
(1)
s s
由图可知:
Hale Waihona Puke Chapter作4者. 动:量杨和茂角田动量
s s L
(2)
§4. 1 动量定理与动量守恒
联立上两式,解得:
u
速度从尾部跳出。
v0
m
M
v M
m u
则:系统水平方向动量守恒,下列式子正确的是( C )
(A) Mv ( mu ) ( M m )v0 (B) Mv m( v0 u ) ( M m )v0 (C) Mv m( v u ) ( M m )v0
1
2tdt
2 2( 2 t )2 dt
0
1
得: I 1.33 ( N S )
F
2
0
1
2 (t)
Chapter作4者. 动:量杨和茂角田动量
§4. 1 动量定理与动量守恒
例 有一方向不变的冲力 作用在原来静止的物体
解F由冲于量ΔI冲方t 力向21.方也330向不变不0.,变67,则(N其: )
得: I 1.33 ( N S )
F
2
(解毕)
0
1
2 (t)
Chapter作4者. 动:量杨和茂角田动量
§4. 1 动量定理与动量守恒
二、质点系的动量定理
例如:两个质点组成的质点系
分别应用质点的动量定理:
动量定理及动量守恒定律

20
动量定理及动量守恒定律
oy N1 − m1g = 0 又f1max = N1μ1
以 m2 为隔离体,m2 受重力W = m2 g ;桌面的支持力 N2 ; m1 的压力 N1′ (大小与 N1 相等); m1 作用在 m2 上的最大静摩擦力 f1max′(大小与 f1max 相等) ;桌面作用在 m2 上的
oA y A W3 − TA′ − TB′ = m3a3
(7)
因为不计滑轮及绳的质量,不计轴承摩擦. 且已知绳不可伸长.
∴ TA = TB = TA′ = TB′ = T
f A ,绳的拉力 TA , A 的动力学方程为
动量定理及动量守恒定律
W1 + N A + f A + TA = m1a1 建立如图 3.5.7(1)所示的坐标系 oA − xA y A .
oA xA TA − f A = m1a1
(1)
oA y A W1 − N A = 0
(2)
且 fA = NAμ
动量定理及动量守恒定律
第三章 动量定理及动量守恒定律
(Momentum and Conservation Law of Momentum)
一、内容简介(Abstract) 1.牛顿第一定律(Newton’s first law)
孤立质点静止或作等速直线运动,即质点在不受力或所受力的合力为零时,将保持静 止或匀速直线运动状态不变.(惯性定律) 2.牛顿第三定律(Newton’s third law)
g
y
x o
N
2
α m2
a2
W2
N1′
图3.5.(5 3)
y′
N1 f∗
m1
动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。
基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。
关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。
例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。
动量定理和动量守恒定律

动量定理和动量守恒定律
动量定理(或称为莱布尼兹动量定理)是物理学中的一条基本定理,它说明了物体受
力时动量发生变化的定律,即在任何时刻点,物体动量的变化等于向物体施加的力的矢量积。
动量定理的数学公式可以表达为:
$$\vec{P}= \frac{d\vec{p}}{dt} = \sum \vec{F_T}$$
其中,$P$ 代表物体的动量,$F_T$代表施加在物体上的外力,$p$代表物体的线速度,$t$代表时间。
从上式可以看出,动量的定义比较宽泛,除了物体的位置和速度外,还包括了力对物
体的作用,也就是动量改变的原因就是因为物体受力,所以又叫做力学定理。
在微分形式中,动量定理也可以写作:
动量定理的重要意义是:动量是物体受力变化的定律,这个定律蕴含着物体受力量变
化的定律,即动量守恒定律。
动量守恒定律是物理学中最基本也是最重要的定律,它非常宽泛地适用于物理学问题,它宣布了外力作用下物体总动量(包括质量和速度)保持不变。
即:
总动量 $$P_1 + P_2 + ...+ P_N = P_1^{'} + P_2^{'} + ...+ P_N^{'}$$
因此,当外力改变物体的总动量时,实际上就是通过物体内部各外力矢量积之和改
变物体的总动量。
动量守恒定律是一个强有力的物理定律,依照这个定律,动量的总和将
始终守恒不变。
动量定理动量守恒律

变质量问题
用火箭发射卫星
变质量问题
变质量问题的处理方法 (1)确定研究系统 (1)确定研究系统 (2)写出系统动量表达式 (2)写出系统动量表达式 (3)求出系统动量变化率 (3)求出系统动量变化率 (4)分析系统受力 (4)分析系统受力 (5)应用动量定理求解 (5)应用动量定理求解 匀加速提柔软链条 例1:匀加速提柔软链条 例2:装煤车的牵引力
(N Mg)τ = Mv Mv0 初状态动量为 M 2gh 末状态动量为0 末状态动量为0
得到 解得
(N Mg)τ = M 2gh
N = Mg + M 2gh /τ
3
代入M 的值,求得: 代入 、h、τ的值,求得: (1)
N = 3×10 ×(9.8 + 2×9.8×1.5 / 0.1) 5 顿 = 1.92 ×10 牛
变质量问题
例1:一长为 ,密度均匀的柔软链条,其单位长度的质量 :一长为l,密度均匀的柔软链条, 将其卷成一堆放在地面上,如图所示。 为λ,将其卷成一堆放在地面上,如图所示。若用手握住 链条的一端,以加速度a从静止匀加速上提 从静止匀加速上提。 链条的一端,以加速度 从静止匀加速上提。当链条端点 离地面的高度为x时 求手提力的大小。 离地面的高度为 时,求手提力的大小。
变质量问题
变质量问题的处理方法 (1) 确定研究系统 (2)写出系统动量表达式 (2)写出系统动量表达式 (3)求出系统动量变化率 (3)求出系统动量变化率 (4)分析系统受力 (4)分析系统受力 (5)应用动量定理求解 (5)应用动量定理求解 匀加速提柔软链条 例1:匀加速提柔软链条 例2:装煤车的牵引力
而是所有元冲量 的方向。 Fdt的合矢量 ∫t1 F dt的方向
动量定理和动量守恒

二、实验演示
三、实验注意事项
1、实验前应先调节斜槽,使其末端切线沿水平方 向,以保证小球碰撞前时速度沿水平方向。 2、重复实验时,每次都应使小球由斜面的同一位 置滚下。 3、为保证碰后两球速度方向相同,入射小球的质 量应大于被碰小球。 4、在本实验中,我们采用以各球的水平射程代替 程度,所以测量记录时一定要明白各线段代表的是物体 哪个时刻的速度。
③
随 堂 练 习
1、甲乙两船自身质量为120 kg,都静止在静水 中,当一个质量为 30 kg的小孩以相对于地面 6 m/s的水平速度从甲船跳上乙船时,不计阻力, 甲、乙两船速度大小之比v甲∶v乙= .
2、如图所示,A、B两质量相等的物体,原来静止在平板 小车C上,A和B间夹一被压缩了的轻弹簧,A、B与平板车 上表面动摩擦因数之比为3∶2,地面光滑。当弹簧突然 释放后,A、B相对C滑动的过程中 ①A、B系统动量守恒 ②A、B、C系统动量守恒 ③小车向左运动 ④小车向右运动 以上说法中正确的是( ) A.①② B.②③ C.③① D.①④
课 堂 小 结
概念
动量
动 量
动量变化: P=P2-P1 动量定理:Ft=P2-P1 规 律
成立条件:系统 所 受和外力为零 碰撞 应用 返冲运动
动量守恒定律
课 后 习 题
1、两球A、B在光滑水平面上沿同一直线,同一方 向运动, m A =1 kg , m B =2 kg , v A =6 m/s , v B =2 m/s。当A追上B并发生碰撞后,两球A、B速度的 可能值是( ) A.vA′=5 m/s,vB′=2.5 m/
矢量性:动量不仅有大小还有方向。 且其方向与速度方向一致。
动量的变化量:若一运动物体在某一过程中的初、末动量分 别为p、p′,则称∆p=p′−p为物体在该过程的变化。
专题:动量定理 动量守恒定律

专题:动量定理动量守恒定律考点一:动量定理的理解及应用【典例1】质量的篮球从距地板高处由静止释放,与水平地板撞击后反弹上升的最大高度,从释放到弹跳至h高处经历的时间,忽略空气阻力,重力加速度,求:篮球与地板撞击过程中损失的机械能;篮球对地板的平均撞击力.强化训练一1.蹦床运动有“空中芭蕾“之称,某质量的运动员从空中落下,接着又能弹起高度,此次人与蹦床接触时间,取,求:运动员与蹦床接触时间内,所受重力的冲量大小I;运动员与蹦床接触时间内,受到蹦床平均弹力的大小F。
2.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目一个质量为60kg的运动员,从离水平网面高处自由下落,着网后沿竖直方向蹦回离水平网面高处已知运动员与网接触的时间为若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小取3.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为、。
初始时A静止与水平地面上,B悬于空中。
先将B竖直向上再举高未触及滑轮然后由静止释放。
一段时间后细绳绷直绷直的时间极短,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。
取。
从释放到细绳绷直时的运动时间t;的最大速度v的大小;初始时B离地面的高度H。
4.某游乐园入口旁有一喷泉,喷出的水柱将一质量M的卡通玩具稳定地悬停在空中。
为计算方便起见,假设水柱从横截面积为S的喷口持续以速度竖直向上喷出;玩具底部为平板面积略大于;水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。
忽略空气阻力。
已知水的密度为,重力加速度大小为g。
求喷泉单位时间内喷出的水的质量;玩具在空中悬停时,其底面相对于喷口的高度。
考点二:动量守恒定律的理解及应用【典例2】在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光滑的圆弧,他们紧靠在一起,如图所示一个可视为质点的物块P,质量也为m,它从木板AB的右端以初速度滑上木板,过B点时速度为,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处若物体P与木板AB间的动摩擦因数为,求:物块滑到B处时木板AB的速度的大小;木板AB的长度L;滑块CD最终速度的大小.【典例3】如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求小球到达车底B点时小车的速度和此过程中小车的位移;小球到达小车右边缘C点处,小球的速度.强化训练二1. 如图,在光滑的水平面上,有一质量为 的木板,木板上有质量为 的物块 它们都以 的初速度反向运动,它们之间有摩擦,且木板足够长,求:当木板向左的速度为 时,物块的速度是多大?木板的最终速度是多大?2. 如图所示,A 、B 两木块靠在一起放于光滑的水平面上,A 、B 的质量均为 。
动量定理与动量守恒定律

动量定理与动量守恒定律动量是物体运动的重要物理量,揭示了物体运动的性质以及相互作用过程中的变化规律。
动量定理和动量守恒定律是描述物体运动中动量变化和守恒的重要原理。
一、动量定理动量定理又称牛顿第二定律,它指出:当外力作用于物体时,物体的动量变化率等于外力的合力。
在公式表示上,动量定理可以表达为:F = ma其中,F为物体所受到的合外力,m为物体的质量,a为物体的加速度。
根据动量定理,可以得出以下结论:1. 外力对物体的作用时间越长,物体的动量变化越大。
2. 给定外力作用时间不变的情况下,物体的质量越大,其动量的变化越小。
3. 给定物体质量不变的情况下,外力的大小越大,物体的动量变化越大。
二、动量守恒定律动量守恒定律是描述封闭系统中动量守恒的原理。
在封闭系统中,物体之间发生相互作用,它们的动量之和保持不变。
根据动量守恒定律,可以得出以下结论:1. 在没有外力作用的封闭系统中,物体的总动量保持不变。
2. 当物体发生碰撞或相互作用时,只要没有外力干扰,物体的动量总和保持不变。
3. 动量的守恒还适用于多个物体之间的相互作用,无论是弹性碰撞还是非弹性碰撞。
应用动量守恒定律,可以对各种现象进行解释,例如:1. 汽车碰撞:当两辆车发生碰撞时,它们的合动量在碰撞前后保持不变,因此可以用动量守恒定律来分析和解释碰撞过程。
2. 运动员跳远:运动员在起跳瞬间通过腿部发力,推动自己前进。
由于系统是封闭的,跳远过程中动量守恒,从而产生更大的跳远距离。
3. 火箭喷气推进:火箭通过排出高速喷射的气体,产生反冲力推动自身前进。
根据动量守恒,喷气气体的动量变化与火箭的动量变化相互抵消,从而实现火箭的推进。
综上所述,动量定理和动量守恒定律是物理学中对物体运动和相互作用过程进行描述的重要原则。
了解和应用这些定律,可以更好地理解和解释物体的运动行为,对各种物理现象进行分析和解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预习题:
1. 质点动量定理和质点系动量定理的微分形式和积分形式是怎样?它们与动量守恒定律什么关系? t P F d d = 0
21P P t F t t -=⎰d 外互相等价的,守恒定律可以说是在质点系
受合外力为零时动量定理的一种特殊情况.
2. 质心和重心是一样的吗?
参考答案:
质心是物体系的质量中心,可按质心公式求出质心的位置。
而重心则是地球对物体系各质点重力的等效合力的 作用点,没有重力自然就没有重心,但质心永远存在。
对于地球上的不太大的物体,其质心与重心重合。
3. 内力是否会改变质点系的动量?
参考答案: 不会. 作业题:
1.一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?
解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p -=∆方向竖直向上,
大小 mg mv mv p =--=∆)(12
碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.
2. 一质量为m 的质点在xOy
平面上运动,其位置矢量为 j t b i t a r ωωsin cos +=
求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.
解: 质点的动量为 )cos sin (j t b i t a m v m p ωωω+-==
将0=t 和ω
π2=t 分别代入上式,得 j b m p ω=1,i a m p ω-=2 ,
则动量的增量亦即质点所受外力的冲量为
)(12j b i a m p p p I +-=-=∆=ω c a m F =
1 3. 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F
=(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.
解: (1)由题意,子弹到枪口时,有
0)(=-=bt a F ,得b a t = (2)子弹所受的冲量
⎰-=-=t bt at t bt a I 0221d )( 将b a
t =代入,得
b a I 22= (3)由动量定理可求得子弹的质量 0202bv a v I m == 另外 练习册:1.11 1.15。