28.1锐角三角函数第三课时教案.doc

合集下载

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
2.学习特殊(30°、45°、60°)的正弦、余弦、正切值,并能熟练运用这些值进行相关计算。
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。

《锐角三角函数》教学设计

《锐角三角函数》教学设计

28.1.3锐角三角函数(3)教学设计一、新课导入1.课题导入情景:出示一副三角尺,老师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.(板书课题)2.学习目标(1)推导并熟记30°,45°,60°角的三角函数值.(2)能运用30°,45°,60°角的三角函数值进行简单的计算.(3)能由30°,45°,60°角的三角函数值求对应的锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导(1)自学内容:教材P65探究~P66例3上面的内容.①sin30°= ,cos30°= ,tan30°= ,sin45°= ,cos45°= ,tan45°= ,sin60°= ,cos60°= ,tan60°= .②sinα的值随着角α的增大而,cosα的值随着角α的增大而,tan α的值随着角α的增大而.这些常用的锐角三角函数值之间也是有规律的,互余的两个锐角的正弦值的平方和为1,互余的两个锐角的余弦值的平方和为1,它们的正切值的积为1.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进行针对性指导.(2)生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.第二层次学习1.自学指导(1)自学内容:教材P66例3~P67练习上面的内容. (2)自学时间:10分钟.(3)自学方法:先自主学习,再同桌之间讨论交流,互相纠错. (4)自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么? 熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.2.典例解析例1 求下列各式的值: ①cos 230°+sin 230°;②4545cos sin ︒︒-tan60°.解:①cos 230°+sin 230°=(32)2+(12)2=1.②4545cos sin ︒︒-tan45°=22÷22-1=1-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.63A B B C ==求∠A 的度数.,2263sin ===AB BC A.45 ︒=∠∴AB BBC36A 解: 在图中,例2 (1)如图所示,在Rt △ABC 中,∠C =90°,,33tan ===OB OBOB AO a.60 ︒=∴a3.强化(1)求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法则计算.(2)求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.(3)当A 、B 为锐角时,若A ≠B ,则sin A ≠sin B ,cos A ≠cos B ,tan A ≠tanB. 三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:根据学生的情感态度和学习效果等方面进行评价. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思).本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究”的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进行计算.评价作业一、基础巩固(70分)(2)如图所示,AO是圆锥的高, OB 是底面半径,AO = ,求α的度数.ABOα解: 在图中,3.(40分)求下列各式的值. (1)sin45°+cos45°;=2.(2)sin45°cos60°-cos45°;(3)cos 245°+tan60°cos30°;=2.(4)1-cos30°sin60°+tan30°.的度数.∵∠B是锐角且tan B=1,∴∠B=45°.∴∠C=180°-∠A-∠B=75°.二、综合应用(20分)5.(10分)在△ABC中,锐角A,B满足(sin A-32)2+|cos B-32|=0,则△ABC是(D)A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形6.(10分)如图,△ABC内接于⊙O,AB,CD为⊙O的直径,D E⊥AB于点E,BC=1,AC=3,则∠D的度数为30° .三、拓展延伸(10分)7.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α).(1)求sin 120°,cos 120°,sin 150°的值;解:sin120°=sin(180°-120°)=sin60°=3 2.Cos120°=-cos(180°-120°)=-cos60°=-1 2 .sin150°=sin(180°-150°)=sin30°=1 2 .(2)若一个三角形的三个内角的比是1∶1∶4,A,B是这个三角形的两个顶点,sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A=30°或120°,∠B=30°或120°.∴sin A=sin30°=12或sin A=sin120°=32,cos B=cos30°=32或cos B=cos120°=-1 2 .又∵sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,。

九年级数学下册(人教版)28.1锐角三角函数教学设计

九年级数学下册(人教版)28.1锐角三角函数教学设计
(2)组织学生进行小组讨论,推导出锐角三角函数的基本关系式,并进行验证;
(3)结合实际例题,让学生运用锐角三角函数知识进行分析和求解。
3.巩固练习
设计不同难度的练习题,让学生在课堂上独立完成,巩固所学知识。同时,针对学生的错误,进行及时指导和纠正。
4.课堂小结
通过师生互动,总结本节课所学的主要内容,强化学生对锐角三角函数的认识。
2.提出问题:引导学生回顾直角三角形的性质和勾股定理,为新课的学习做好知识储备。
3.引入新课:在此基础上,引出本节课的主题——锐角三角函数,激发学生的好奇心和学习兴趣。
(二)讲授新知
1.锐角三角函数的定义:
(1)通过观察直角三角形,引导学生发现锐角三角函数的定义;
(2)结合图形,解释正弦、余弦、正切函数的概念;
三、教学重难点和教学设想
(一)教学重难点
1.重点:锐角三角函数的定义、基本关系式以及在实际问题中的应用。
2.难点:
(1)锐角三角函数的定义及其在直角三角形中的图形表示;
(2)锐角三角函数的基本关系式的推导和应用;
(3)将实际问题转化为锐角三角函数问题,并运用相关知识进行求解。
(二)教学设想
1.采用情境教学法,引入生活中的实际问题,让学生感受到数学知识的实用价值,激发他们的学习兴趣。
2.通过直观的图形演示,引导学生发现锐角三角函数的定义,培养他们的观察能力和抽象思维能力。
3.运用启发式教学法,引导学生通过自主探究、小组讨论等方式,推导出锐角三角函数的基本关系式,提高他们的逻辑思维能力和团队协作能力。
4.设计具有梯度的问题和练习,针对不同层次的学生进行差异化教学,使每个学生都能在原有基础上得到提高。
(3)利用计算器或计算工具,验证锐角三角函数的值。

人教版九年级数学下册优秀教学案例:28.1.3特殊角的锐角三角函数值

人教版九年级数学下册优秀教学案例:28.1.3特殊角的锐角三角函数值
五、案例亮点
1.生活情境的创设:本节课通过结合实际生活中的情境,如测量家具尺寸、计算建筑物的高度等,引导学生认识到数学知识的实用性,增强学生的学习兴趣和动力。这种生活情境的创设,使学生能够更好地理解和运用特殊角的锐角三角函数值,提高了教学的针对性和实效性。
2.问题导向的教学策略:本节课以问题为导向,教师设计了一系列具有启发性和挑战性的问题,引导学生主动思考、探究特殊角的锐角三角函数值。这种问题导向的教学策略,激发了学生的学习兴趣和求知欲,培养了学生的批判性思维和问题解决能力。
为了提高教学效果,我将以生动形象的语言、贴近生活的实例,将抽象的数学知识具体化、形象化,使学生在轻松愉快的氛围中掌握特殊角的锐角三角函数值。同时,关注学生的个体差异,针对不同程度的学生制定合适的教学策略,让每个学生都能在课堂上得到有效的锻炼和发展。
二、教学目标
(一)知识与技能
1.学生能够准确记忆特殊角的锐角三角函数值,如30°、45°、60°等;
2.学生分组讨论,相互交流自己的观点和发现;
3.教师巡回指导,给予学生必要的帮助和提示;
4.各小组派代表分享讨论成果。
(四)总结归纳
1.教师引导学生总结本节课所学内容,明确特殊角的锐角三角函数值的定义、计算方法和应用;
2.学生通过归纳总结,加深对知识的理解和记忆;
3.教师强调特殊角的锐角三角函数值在实际生活中的重要性;
5.反思与评价的教学环节:本节课设置了反思与评价的教学环节,引导学生对自己的学习过程进行反思,总结自己在探究特殊角的锐角三角函数值过程中的优点和不足。这种反思与评价的教学环节,有助于学生培养自我监控和自我调整的能力,提高学生的学习效果。
作为一名特级教师,我深知教学案例亮点的重要性,它是体现教学艺术和教学效果的关键。在本节课的教学中,我注重教学策略的设计,关注学生的个体差异,创设生动活泼的课堂氛围,激发学生的学习兴趣,提高学生的学习效果。同时,关注学生的全面发展,培养学生的创新意识和实践能力。通过本节课的教学,学生不仅掌握了特殊角的锐角三角函数值的知识,还培养了良好的学习习惯和合作精神,实现了知识、能力和情感的全面发展。

部审人教版九年级数学下册教学设计28.1 第3课时《特殊角的三角函数值》

部审人教版九年级数学下册教学设计28.1 第3课时《特殊角的三角函数值》

部审人教版九年级数学下册教学设计28.1 第3课时《特殊角的三角函数值》一. 教材分析人教版九年级数学下册第28.1节《特殊角的三角函数值》是三角函数基础知识的重要组成部分。

本节课主要让学生掌握30°、45°、60°特殊角的正弦、余弦、正切函数值,并能够运用这些知识解决实际问题。

教材通过引入特殊角的三角函数值,为学生深入学习三角函数奠定基础。

二. 学情分析九年级的学生已经掌握了锐角三角函数的概念,对直角三角形的边角关系有一定的了解。

但部分学生对函数值的计算和应用还不够熟练,需要在本节课中加强训练。

此外,学生对于解决实际问题的能力有待提高,需要教师在教学中进行引导和培养。

三. 教学目标1.让学生掌握30°、45°、60°特殊角的正弦、余弦、正切函数值。

2.培养学生运用三角函数知识解决实际问题的能力。

3.提高学生的数学思维能力和团队协作能力。

四. 教学重难点1.重点:掌握30°、45°、60°特殊角的三角函数值。

2.难点:灵活运用特殊角的三角函数值解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究特殊角的三角函数值。

2.运用合作学习法,培养学生团队协作能力和沟通能力。

3.利用案例分析法,让学生学会将理论知识应用于实际问题。

六. 教学准备1.准备相关案例,用于引导学生解决实际问题。

2.准备多媒体教学设备,用于展示特殊角的三角函数值。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体展示特殊角的三角函数值,引导学生回顾已学知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍30°、45°、60°特殊角的正弦、余弦、正切函数值,让学生直观地感受这些特殊角的三角函数值。

3.操练(10分钟)让学生分组讨论,运用特殊角的三角函数值解决实际问题。

教师巡回指导,帮助学生克服困难。

九年级数学《锐角三角函数》第三课时 教案

九年级数学《锐角三角函数》第三课时 教案

中学“自导式”教学设计方案 课时累计: 主备: 备课组长: 审阅:时间年 月 日 第 周星期 年级学科 九年级数学 课题28.1.3 特殊角的三角函数值 教学目标 (四维) 1.知识:熟记30°、45°、60°角的三角函数值2.技能:能够进行30°、45°、60°角的三角函数值的计算;3.思维:发展学生的推理能力和计算能力.4.素养:学生在经历自学、探究、交流等活动中感受数学学习的乐趣.重点难点 重点:运用30°、45°、60°角的三角函数值进行计算.难点:特殊角三角函数值的应用. 教学 策略 自主探究、小组合作学习,学生展示交流导学环节一、 自学新知学生自学教材65-67页内容, 熟记30°、45°、60°角的三角函数值.二、 探究新知(一)学生练习后小组讨论更正1.在Rt △ABC 中,∠C=90°,AB=0.5,AC=0.3,则cos A=____,sin B=____,tan B=____.2.在Rt △ABC 中,∠C=90°,若tan A=32,AC=6,则BC=____,AB=_____. 3.两块三角尺中有几个不同的锐角?这几个锐角的正弦值、余弦值和正切值各是多少?(二)教师引导学生完成1.如图,在Rt △ABC 中,∠C=90°,∠A=30°,设BC=1,则AB=____,AC=____.于是有sin30°=____,cos30°=____,tan30°=____;sin60°=____,cos60°=____,tan60°=____.2.如图,在Rt △ABC 中,∠C=90°,∠A=45°,设BC=1,则AC=____,AB=____.于是有sin45°=____,cos45°=____,tan45°=____. <特殊角的三角函数值表>例3 求下列各式的值:(1) cos 260°+sin 260° (2)°45sin °45cos -tan45° 解:(1) 原式=14341232122=+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ (2) 原式=22÷22-1=1-1=0例4 (1)如图(1),在Rt △ABC 中,∠C=90°,AB=6,BC=3,求∠A 的度数.(2)如图(2),AO 是圆锥的高,OB 是底面半径,AO=3OB ,求α的度数.解:(1) 在图(1)中,∵ sin A=AB BC =63=22,∴ ∠A=45° (2) 在图(2)中,∵ tan α=OBAO =OB BO 3=3 ∴ α=60° 当A ,B 均为锐角时,若A ≠B ,则sin A ≠sin B ,cos A ≠cos B ,tan A ≠tan B 三、巩固练习(两个小组黑板展示后学生讲解)1.求下列各式的值:(1) 1-2sin30°cos30° (2) 3tan30°-tan45°+2sin60°(3) (cos 230°+sin 230°)×tan60°解:(1) 原式231232121-=⨯⨯-= (2) 原式1323132321333-=+-=⨯+-⨯= (3) 原式3341433212322=⨯⎪⎭⎫ ⎝⎛+=⨯⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛= 注:对于任意锐角α,有:sin 2α+cos 2α=12.在Rt △ABC 中,∠C=90°,BC=7,AC=21,求∠A ,∠B 的度数.解:如图,∵ tan B=BC AC =721=3 ∴ ∠B=60° ∴ ∠A=90°-∠B=30°四、课堂小结(教师抽小组小结)1.本节课你有哪些收获?2.还有没解决的问题吗?课后作业课后反思。

28.1 锐角三角函数 第3课时 特殊角的锐角三角函数值

28.1 锐角三角函数      第3课时 特殊角的锐角三角函数值

∴ 2 sin2α + cos2α - 3tan (α+15°)
= 2 sin245°+cos245°- 3tan60°
2
2
2
2 2
+
2 2

3
3
3.
2
课堂测试
1. 3 tan (α+20°)=1,锐角 α 的度数应是 ( D)
A.40° B.30° C.20° D.10°
2
∴ ∠A=45°,∠B=60°, ∠C=180°-45°-60°=75°, ∴ △ABC 是锐角三角形.
4. 已知:| tanB- 3 | + (2 sinA-3 )2 =
解:∵ | tanB- 3 | + (2 sinA- 3 )2 =0,
∴ tanB=
3 ,sinA=
3, 2
∴ ∠B=60°,∠A=60°.
第3课时
特殊角的锐角三角函数值
复习导入
说说锐角三角函数是如何定义的.
复习引入
sin A =
∠A的对边
斜边
BC . AB
cos A =
∠A的邻边
斜边

AC . AB
tan A =
∠A的对边
∠A的邻边
AC . AB
∠B A
斜边



A ∠A 的邻边 C
若∠A为30°,你能立即说出它对应的三
角函数值吗?
cos A
tan A
30°
1 2 3 2 3 3
45° 60°
2
3
2
2
2
1
2
2
1
3
例1 求下列各式的值:

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例
4.定期对学生的学习成果进行评价和总结,激发学生的学习动力,提高学生的数学素养。
四、教学评价
1.评价学生的知识掌握程度:通过课堂提问、作业批改等方式,了解学生对锐角三角函数知识的掌握情况;
2.评价学生的实践操作能力:通过实际问题解决,评价学生运用锐角三角函数解决实际问题的能力;
3.评价学生的合作交流能力:通过小组讨论、互动交流等方式,评价学生在团队合作中的表现;
3.讲练结合:在课堂中及时进行练习,巩固所学知识,提高学生的实际操作能力;
4.反馈调整:根据学生的学习情况,及时调整教学方法,以提高教学效果。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生思考并引入锐角三角函数的概念;
2.自主探究,小组合作:让学生在小组内讨论交流,共同探究锐角三角函数的定义及应用;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生学习数学的内在动力;
2.培养学生合作交流的意识,提高学生团队协作的能力;
3.让学生感受数学与生活的紧密联系,培养学生的应用意识;
4.通过对本节课的学习,使学生树立正确的数学学习观念,相信自己通过努力可以掌握并运用好数学知识。
三、教学重难点
4.评价学生的情感态度与价值观:通过观察学生的学习态度、课堂表现等,评价学生对数学学科的兴趣和热爱。
五、教学拓展
1.利用多媒体技术,展示锐角三角函数在实际生活中的应用,激发学生的学习兴趣;
2.推荐相关的数学读物和网站,让学生课后进行拓展学习,提高学生的数学素养;
3.结合学校或社区的活动,让学生运用所学知识解决实际问题,提高学生的实践能力。
六、教学反思
在教学过程中,教师应不断反思自己的教学方法、教学内容等方面,以确保教学的质量和效果。同时,关注学生的学习反馈,根据学生的需求调整教学策略,以提高教学效果。通过不断的反思和调整,使教学更加符合学生的实际情况,提高学生的数学素养。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.1锐角三角函数(第三课时)
一、【教材分析】
1. 熟记30°、 45°、 60°角的各
个三角函数值,会计算含有这三个知识
目标特殊锐角的三角函数值的式子.
2.会由一个特殊锐角的三角函数值说出这个角的度数.

学 1. 加深学生对锐角三角函数的认识,了解特殊与一般的关系,并对学能力
生进行逆向思维的训练.

目标 2. 会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐标
角的三角函数值说出这个角的度数.
情感
目标 1.引导学生积极参加数学活动,增强学习数学的好奇心.
教学
会计算含有这三个特殊锐角的三角函数值的式子.
重点
教学
会由一个特殊锐角的三角函数值说出这个角的度数.
难点
二、【教学流程】
教学
教学问题设计师生活动教学反思环节
【问题 1】一个直角三角形中,
一个锐角正弦是怎么定义的?
情一个锐角余弦是怎么定义的?
景一个锐角正切是怎么定义的?


【问题 2】在Rt△ABC中,∠
C=90°, AC=5,BC=12,求∠ B
的锐角三角函数值.
【探究1】请同学们拿出自己
的学习工具——一副三角尺,
思考并回答下列问题:
复习引入,提出问题,学生思考并解答 , 为学习特殊角的三角函数值做准备.
学生通过自主探究的方式,以小组为单位,获得特殊角的三角函数值 .
- 1 -
自主探究1 2
3 用列表的方法表示特殊角的三角
函数值,教给学生记忆的方法,
1 1 并引导学生观察此表格,归纳出
一些规律.
2
1、这两块三角尺各有几个锐
角?它们分别等于多少度?
30o60o45o
2、每块三角尺的三边之间有
怎样的特殊关系?如果设每
块三角尺较短的边长为 1,请你
说出未知边的长度 .
【探究 2】
锐角三
30°45°60°
角函数
sin a
cos a
tan a
1、求下列各式的值:
( 1)cos260 sin 2 60 ;
尝(2) cos45 tan 45 .
试sin 45
应2:( 1)如图(1),在 Rt△ ABC 用
6 ,
中,∠ C=90°, AB=
BC= 3 ,求∠A的度数.
( 2)如图( 2),已知圆锥的
出示题目后,学生观察题目对教材知识特点,找到解题方法,即将特殊的加固
三角函数值代入求值.
学生认真独立完成,巡视,
对学习较困难的学生适当的给予
指点.
出示题目后,让学生认真读
题,分析题目条件与要求的结论,
分析它们之间的关系,关注学生
的分析思路,适当时给予指点:
如图( 1),BC 边是∠ A 的邻边,
高 AO 等于圆锥的底面半径)OB 的 3 倍,求a.
1、求下列各式的值:
(1)1 2 sin 30o cos30o ;
(2)3 tan 30o tan 45o 2 sin 60o ;
(3) cos 60o 1
o
; sin 60
o
tan 30
1
(4) 2 sin 45o 1 cos 60o ( 1)2005
2
(1 2 )0 .
2、在 Rt △ABC 中,∠ C=
90°,BC 7 , AC 21 ,拓求∠ A、∠ B 的度数.
B

提7

A21 C
3、求适合下列各式的锐角αAB 是斜边,由此想到利用∠A 的
余弦值来求∠ A 的度数.图( 2)
中,OA 是 a 角的对边, OB 是 a
角的邻边,由此想到利用 a 角的
正切值来求 a 角的度数.
初次解这种类型的题目,要
板演解题过程,给学生规范的解
题格式.
出示题目,学生读题后,独
立完成此练习,巡视过程中,观
察学生对题目的理解,对学困生
给予指点.
提出问题,学生相互交流,
适时给予指点.要关注学生:
1.特殊角的三角函数值必须熟
记;
2.在直角三角形中,知道两边,
可求出每个锐角的各个三角函
数;反之,由特殊角的三角函数
值,可求出锐角的度数.
3.能否由任意的锐角求出三角
函数值,或知道任意三角函数
值都可以求出它所对应的锐角
呢?
强化解决此
类问题过程
中步骤的书
写.
对内容的
升华理解认识
总结
(1)3 tan a 3; (2) 2 sin a
1 0; (3)
2 cosa
1 1.
2
8 3
、已知 2 cosa 3 0(a 为锐 4
角),求 tan a 的值.
A
5、如图 , △ ABC 中, ∠ C=900, BD 平分∠ ABC, BC=12, BD= ,
求∠ A 的度数及 AD 的长 .
D
B
C
1. 通过本节课的学习你有什么

收获?

2. 你还有哪些疑惑?
总结本节关于特殊角的三角函
数值得记忆规律,同时总结此类知识的问题应用 .


1. 必做
布置作业,并提出要求 .
教科书习题 28.1 第 3 题 .
学生课下独立完成,延续课堂
.
2. 选做
《自主学习》 P156-157
三、【板书设计】
28.1锐角三角函数(特殊角的三角函数)
尝试运用拓展提高锐角三
1:练习:
30°45° 60°
角函数
sin a
2:
cos a
tan a
四、【教学反思】
本节课注重知识的生成过程,采用问题引入法,从教材探究性问题铺设水管的长度入手,
用特殊值探究锐角的对边与斜边的比,用学生已知的知识去探究未知的知识。

突破教学的重难点方面,注重数学方法的渗透。

本节课重、难点在于比值的理解,采
取以下措施:(1)突破角的任意性(从特殊到一般),(2)突破直角三角形大小的任意性(相似三角形性质的运用),使学生逐步认识到:在直角三角形中,对于固定的(30 度、 45 度、 60 度、一般任意锐角)的角,无论这个直角三角形大小如何,其对边与斜边的比值始终
保持不变。

加强学生的合作交流,注重突出学生的主体地位
问题提出后,由学生去想办法解决,加以引导和总结. 教学中,关注学生的情感态度,
对那些积极动脑,热情参与的同学,给予鼓励和表扬,促使学生的情感和兴趣始终保持最佳
状态,从而保证教学活动的有效性。

相关文档
最新文档