数列中的不等式的证明

合集下载

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式
模型
2n 2 n 1 2 n 1 奇偶型: ; 2n 2n 1 2n 1
2n 1 2n 1
奇偶型放缩为可求积
指数型可放缩 为等比模型
一. 放缩目标模型——可求和
(一)形如 a k (k为常数)
i i 1 n
1 1 1 1 例1 求证: 2 3 L n 1 (n N ) 2 2 2 2
* 2 2 2
证明
1 1 1 1 1 1 2 ( ) (n 2) Q 2 (2n 1) 4n 4n 4n(n 1) 4 n 1 n
1 1 1 1 1 1 ) 左边 1 (1 ) ( ) L ( 4 2 2 3 n 1 n 1 1 1 (1 ) 1 1 5 n 2 4 n 4 4
n
接求和,就先求和再放缩;若不能直接求和的,一般要 先将通项 an 放缩后再求和.
问题是将通项 an 放缩为可以求和且“不大不小”的 什么样的 bn 才行呢?其实,能求和的常见数列模型并不 多,主要有等差模型、等比模型、错位相减模型、裂项 相消模型等. 实际问题中, bn 大多是等比模型或裂项相 消模型.
评注
放缩法的证明过程就像“秋风扫落叶”一样干脆利落!
1 5 7 对 2 放缩方法不同,得到的结果也不同. 显然 2 , 3 4 n
故后一个结论比前一个结论更强,也就是说如果证明了变式 3,
1 那么变式 1 和变式 2 就显然成立. 对 2 的 3 种放缩方法体现了 n n 5 1 三种不同“境界” ,得到 2 的三个“上界” ,其中 最接近 3 k 1 k
用放缩法证明 数列中的不等式
张家界市第一中学 高三数学组
放缩法灵活多变,技巧性要求较高,所谓“放大一点 点就太大,缩小一点点又太小”,这就让同学们找不到头 绪,摸不着规律,总觉得高不可攀!

求解数列不等式证明问题的方法

求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式数列的放缩法是一种通过递推关系以及寻找合适的不等式对数列进行估计的方法。

该方法在不失一般性的情况下,常常可以将原数列与一个已知数列进行比较,从而推导得出数列的性质。

本文将通过数学归纳法,对给定的数列进行放缩法证明,并给出详细推导过程。

假设我们有一个数列${a_n}$,其中$n \geq 1$。

我们要证明数列中的不等式,即要证明对于任意的$n \geq 1$,有$a_n \leq b_n$,其中${b_n}$是一个已知的数列。

我们将使用数学归纳法来证明这个结论。

首先,我们对$n=1$进行证明,即证明$a_1 \leq b_1$。

因为$n=1$是最小的情况,所以我们直接检验$a_1$和$b_1$的大小关系即可。

接下来,我们假设当$n=k$时,不等式$a_k \leq b_k$成立,即数列前$k$项满足不等式。

然后,我们要证明当$n=k+1$时,不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数列的递推关系,我们可以推导出数列前$k+1$项的关系式:$$a_{k+1}=f(a_k)$$其中$f(x)$是一个函数,表示数列的递推关系。

由于我们已经假设在$n=k$时$a_k \leq b_k$成立,因此我们可以得到:$$a_{k+1} = f(a_k) \leq f(b_k)$$这是因为$f$是一个单调递增的函数,所以不等式保持不变。

根据已知数列${b_n}$的性质,我们可以得到:$$f(b_k) \leq b_{k+1}$$这里的不等式是基于对已知数列的假设,即已知数列${b_n}$满足这个不等式。

综合以上的不等式关系$$a_{k+1} \leq f(b_k) \leq b_{k+1}$$因此,当$n=k+1$时不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数学归纳法原理,我们可以得出结论:对于任意的$n \geq 1$,数列${a_n}$满足不等式$a_n \leq b_n$。

数列不等式的证明方法

数列不等式的证明方法

数列不等式证明的几种方法数列和不等式都是高中数学重要内容,这两个重点知识的联袂、交汇融合,更能考查学生对知识的综合理解与运用的能力。

这类交汇题充分体现了“以能力立意” 的高考命题指导思想和“在知识网络交汇处”设计试题的命题原则。

下面就介绍数列不等式证明的几种方法,供复习参考。

、巧妙构造,利用数列的单调性例1•对任意自然数n,求证:%■(1十00 + -)-(14 —「刚也-「加卄‘一证明:构造数列2ti + 2 2ti + 2加4 - 1二2北十2所以>细,即鼠}为单调递增数列所以,即点评:某些问题所给条件隐含数列因素或证明与自然数有关的不等式问题,均可构造数列,通过数列的单调性解决。

、放缩自然,顺理成章例2.已知函数£(只)=3 5討+x J,数列%}爲九)的首项引",以后每项按如下方式取定:曲线"住)在点:仗M珑j))处的切线与经过(0 , 0 )和:1 |::'两点的直线平行。

求证:当时:(1)(2)07证明:(1)因为,所以曲线’二--—处的切线斜率为0又因为过点(0, 0)和两点的斜率为k = * +吕,所以结论成立。

(2)因为函数h(H)- z3 + X, > Q时单调递壇则有叮+s a = +轴*1 w斗%J +刼曲=(%+1严+(:孤*1 二1所以%£也1,即砥2,因此7又因为M 1 f Ji ' - ・ _ ・”1 ' ' - ' r I令,且" 0f(x) = In 设 所以点评:本题是数列、函数、不等式、解析几何、导数等多知识点的综合题,在证 明过程中多次运用放缩,放缩自然,推理逻辑严密,顺理成章,巧妙灵活。

三、导数引入,更显神威丄丄丄…詁皿“+丄丄丄—丄 E例 3.求证:2 3 4 11 3 3 4 n+1] =丄证明:令5一门"红—口,且当心2|时,恥厂血讥f (口1,所以C n = SL - S R _i = ln(n4 1) - In n = In n +“。

数列证明题的解题方法

数列证明题的解题方法
2 2
n n(n 1) n 1
n
n(n 1) n 1 2 2 2

用放缩法证明数列中的不等式问题,判断 证明的方向是至关重要的,决定到解题的 思路和方向,因此一定要熟记常见的放缩 法证明的结论的特点,本题的要证明的结 论是一个等差数列前n项和的形式,所以放 缩应该放所为等差数列,请同学们结合下 面要将的方法仔细比较分析加以区别。
I
1 首项为1,公比为- 的等比数列是否为B -数列?请说明理由; 2 设S n是数列{x n }的前n项和。给出下列两组判断: ③数列{S n }是B -数列。 ④数列{S n }不是B -数列。
A组:①数列{x n }是B -数列。 ②数列{x n }不是B -数列。 请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题 判断所给命题的真假,并证明你的结论; ( Ⅲ )若数列{ an }是B 数列,证明:数列{ an 2 }也是B 数列。
祝大家新年快乐!
再见!
先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,
则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、 差比数列(这里所谓的差比数列,即指数列{an }满足条件an 1 an f n )求和 或者利用分组、裂项、倒序相加等方法来求和.
二.先放缩再求和 1.放缩后成等差数列,再求和
2.放缩后成等比数列,再求和
例3.(1)设a,n N*,a 2,证明:a 2 n ( a )n ( a 1) a n; 1 (2)等比数列an 中,a1 ,前n项的和为An,且A7,A9,A8成等差数列. 2 an 2 1 设bn ,数列bn 前n项的和为Bn,证明:Bn 1 an 3

高考数学复习考点题型专题讲解12 数列中的不等式证明及放缩问题

高考数学复习考点题型专题讲解12 数列中的不等式证明及放缩问题

高考数学复习考点题型专题讲解专题12 数列中的不等式证明及放缩问题数列中的不等式证明问题的常用放缩技巧(1)对1n2的放缩,根据不同的要求,大致有三种情况(下列n∈N*):1 n2<1n2-n=1n-1-1n(n≥2);1 n2<1n2-1=12⎝⎛⎭⎪⎫1n-1-1n+1(n≥2);1 n2=44n2<44n2-1=2⎝⎛⎭⎪⎫12n-1-12n+1(n≥1).(2)对12n的放缩,根据不同的要求,大致有两种情况(下列n∈N*):1 2n >1n+n+1=n+1-n(n≥1);1 2n <1n+n-1=n-n-1(n≥1).类型一关于数列项的不等式证明(1)结合“累加”“累乘”“迭代”放缩;(2)利用二项式定理放缩;(3)利用基本不等式或不等式的性质;(4)转化为求最值、值域问题.例1 设正项数列{a n }满足a 1=1,a n +1=a n +1a n(n ∈N *).求证:(1)2<a 2n +1-a 2n ≤3;(2)3n -13n -2≤a n +1a n ≤2n2n -1. 证明 (1)因为a 1=1及a n +1=a n +1a n(n ≥1),所以a n ≥1,所以0<1a 2n≤1.因为a 2n +1=⎝ ⎛⎭⎪⎫a n +1a n 2=a 2n+1a 2n +2, 所以a 2n +1-a 2n =1a 2n+2∈(2,3],即2<a 2n +1-a 2n ≤3.(2)由(1)得2<a 22-a 21≤3,2<a 23-a 22≤3,2<a 24-a 23≤3,⋮2<a 2n +1-a 2n ≤3,故2n <a 2n +1-a 21≤3n ,所以2n +1<a 2n +1≤3n +1, 即2n -1<a 2n ≤3n -2(n ≥2),而n =1时,也满足2n -1≤a 2n ≤3n -2, 所以2n -1≤a 2n ≤3n -2, 所以a n +1a n =1+1a 2n ∈⎣⎢⎡⎦⎥⎤3n -13n -2,2n 2n -1.即3n -13n -2≤a n +1a n ≤2n 2n -1. 训练1(2022·天津模拟)已知数列{a n }满足a n =n n -1a n -1-13n ·⎝ ⎛⎭⎪⎫23n(n ≥2,n ∈N *),a 1=49.(1)求数列{a n }的通项公式;(2)设数列{c n }满足c 1=12,c n +1=⎝ ⎛⎭⎪⎫23k +1a k·c 2n +c n ,其中k 为一个给定的正整数,求证:当n ≤k 时,恒有c n <1. (1)解 由已知可得:a n n =a n -1n -1-13⎝ ⎛⎭⎪⎫23n(n ≥2),即a n n -a n -1n -1=-13⎝ ⎛⎭⎪⎫23n, 由累加法可求得a n n =⎝ ⎛⎭⎪⎫a n n -a n -1n -1+⎝ ⎛⎭⎪⎫a n -1n -1-a n -2n -2+…+⎝ ⎛⎭⎪⎫a 22-a 11+a 11 =-13⎝ ⎛⎭⎪⎫23n-13⎝ ⎛⎭⎪⎫23n -1-…-13⎝ ⎛⎭⎪⎫232+49=⎝ ⎛⎭⎪⎫23n +1,即a n =n ⎝ ⎛⎭⎪⎫23n +1(n ≥2),又n =1时也成立,故a n =n ⎝ ⎛⎭⎪⎫23n +1(n ∈N *).(2)证明 由题意知c n +1=1kc 2n +c n ,∴{c n }为递增数列, ∴只需证c k <1即可. 当k =1时,c 1=12<1成立,当k ≥2时,c n +1=1k c 2n +c n<1kc n c n +1+c n ,即1c n +1-1c n>-1k,因此1c k =⎝ ⎛⎭⎪⎫1c k -1c k -1+…+⎝ ⎛⎭⎪⎫1c 2-1c 1+1c 1>-k -1k +2=k +1k ,∴c k <k k +1<1,∴当n ≤k 时,恒有c n <1. 类型二 对求和结论进行放缩对于含有数列和的不等式,若数列的和易于求出,则一般采用先求和再放缩的策略证明不等式.例2 已知数列{a n }满足a 1=2,(n +1)a n +1=2(n +2)a n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设S n 是数列{a n }的前n 项和,求证:S n <2a n . (1)解 法一 由题意得a n +1n +2=2·a nn +1, 又a 11+1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1是首项为1,公比为2的等比数列,所以a n n +1=2n -1,所以a n =(n +1)·2n -1(n ∈N *). 法二 由题意得a n +1a n =2(n +2)n +1, 所以a n a 1=a n a n -1·a n -1a n -2·…·a 2a 1=2(n +1)n ·2n n -1·2(n -1)n -2·…·2×32=(n +1)·2n -2.因为a 1=2,所以a n =(n +1)·2n -1(n ∈N *).(2)证明 因为a n =(n +1)·2n -1,所以S n =2×20+3×21+4×22+…+n ·2n -2+(n +1)·2n -1,① 2S n =2×21+3×22+…+(n -1)×2n -2+n ×2n -1+(n +1)×2n ,② ②-①得S n =-2×20-(21+22+…+2n -1)+(n +1)×2n =n ·2n . 因为S n -2a n =n ·2n -(n +1)2n =-2n <0, ∴S n <2a n .训练2(2022·广州模拟)在各项均为正数的等比数列{a n }中,a 1=2,-a n +1,a n ,a n +2成等差数列.等差数列{b n }满足b 1=a 2+1,2b 5-3b 2=a 3-3. (1)求数列{a n },{b n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1(2n +1)b n 的前n 项和为T n ,证明:T n <16.(1)解 设等比数列{a n }的公比为q (q >0), 因为-a n +1,a n ,a n +2成等差数列, 所以2a n =a n +2-a n +1, 所以2a n =a n ·q 2-a n ·q . 因为a n >0,所以q 2-q -2=0, 解得q =2或q =-1(舍去), 又a 1=2,所以a n =2n (n ∈N *). 设等差数列{b n }的公差为d , 由题意,得b 1=a 2+1=5, 由2b 5-3b 2=a 3-3=5,得2(b 1+4d )-3(b 1+d )=-b 1+5d =-5+5d =5,解得d =2, 所以b n =b 1+(n -1)d =5+2(n -1)=2n +3(n ∈N *).(2)证明1(2n +1)b n =1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, 则T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17⎦⎥⎤+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3=16-12(2n +3).因为n ∈N *,所以12(2n +3)>0,所以T n <16.类型三 对通项公式放缩后求和在解决与数列的和有关的不等式证明问题时,若不易求和,可根据项的结构特征进行放缩,转化为易求和数列来证明.例3(2022·济南模拟)在数列{a n }中,a 1=2,2na n +1=(n +1)·a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =a 2n16n 2-a 2n ,若数列{b n }的前n 项和是T n ,求证:T n <12.(1)解 由题知2na n +1=(n +1)a n , 所以a n +1n +1=12×a n n ,a 11=2, 故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,所以a n=n·22-n(n∈N*).(2)证明由(1)可知a n=n·22-n,所以b n=a2n16n2-a2n=14n-1=12n+1×12n-1,根据指数增长的特征知,对任意n∈N*,2n≥2n恒成立,所以22n≥(2n)2,即4n≥4n2.所以14n-1≤14n2-1=12⎝⎛⎭⎪⎫12n-1-12n+1,所以b n≤12⎝⎛⎭⎪⎫12n-1-12n+1,所以数列{b n}的前n项和T n ≤12⎝⎛⎭⎪⎫1-13+13-15+…+12n-1-12n+1=12⎝⎛⎭⎪⎫1-12n+1<12.训练3 已知数列{a n}的前n项和为S n,3a n=2S n+2n(n∈N*). (1)证明:数列{a n+1}为等比数列,并求数列{a n}的前n项和S n,(2)设b n=log3(a n+1+1),证明:1b21+1b22+…+1b2n<1.证明(1)∵3a n=2S n+2n,n∈N*,∴当n=1时,3a1=2S1+2,解得a1=2;当n≥2时,3a n-1=2S n-1+2(n-1),两式相减得a n=3a n-1+2,∴a n+1=3(a n-1+1),即an+1an-1+1=3,a1+1=3,∴数列{a n+1}是以3为首项,3为公比的等比数列,∴a n+1=3n,则a n=3n-1,∴S n=3+32+…+3n-n=3(1-3n)1-3-n=3n+12-n-32.(2)b n=log3(a n+1+1)=log33n+1=n+1,∵1b2n=1(n+1)2<1n(n+1)=1n-1n+1,∴1b21+1b22+…+1b2n<⎝⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n-1n+1=1-1n+1<1.类型四求和后利用函数的单调性证明数列不等式若所证的数列不等式中有等号,常考虑利用数列的单调性来证明. 例4 已知数列{a n}的前n项和为S n,且满足2a n-S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=an+1(a n+1-1)(a n+2-1),数列{b n}的前n项和为T n,求证:23≤T n<1.(1)解已知2a n-S n=1,令n=1,解得a1=1,当n≥2时,2a n-1-S n-1=1(n∈N*),两式相减得a n=2a n-1,∴数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n-1(n∈N*).(2)证明由(1)可得b n =an+1(a n+1-1)(a n+2-1)=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,∴T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=1-12n +1-1. ∵⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1-12n +1-1是单调递增的数列, ∴1-12n +1-1∈⎣⎢⎡⎭⎪⎫23,1.∴23≤T n <1. 训练4 已知等差数列{a n }的公差d ≠0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求使不等式a n ≥0成立的最大自然数n ;(2)记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为T n ,求证:-1325≤T n ≤1225.(1)解 由题意,可知a 211=a 1·a 13, 即(a 1+10d )2=a 1·(a 1+12d ), ∴d (2a 1+25d )=0. 又a 1=25,d ≠0,∴d =-2,∴a n =-2n +27, ∴-2n +27≥0,∴n ≤13.5, 故满足题意的最大自然数为n =13. (2)证明1a n a n +1=1(-2n +27)(-2n +25)=-12⎝⎛⎭⎪⎫1-2n +27-1-2n +25, ∴T n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=-12⎣⎢⎡⎝ ⎛⎭⎪⎫125-123+⎝ ⎛⎭⎪⎫123-121+…⎦⎥⎤+⎝⎛⎭⎪⎫1-2n +27-1-2n +25 =-12⎝ ⎛⎭⎪⎫125-1-2n +25 =-150+150-4n .从而当n ≤12时,T n =-150+150-4n单调递增,且T n >0; 当n ≥13时,T n =-150+150-4n单调递增,且T n <0, ∴T 13≤T n ≤T 12,由T 12=1225,T 13=-1325,∴-1325≤T n ≤1225.一、基本技能练1.已知数列{a n }是等差数列,且a 2=3,a 4=7,数列{b n }的前n 项和为S n ,且S n =1-12b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记c n =a n b n ,数列{c n }的前n 项和为T n ,求证:T n <2. (1)解 因为数列{a n }是等差数列,a 2=3,a 4=7, 设数列{a n } 的公差为d , 则⎩⎨⎧a 1+d =3,a 1+3d =7,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1(n ∈N *).对于数列{b n },S n =1-12b n (n ∈N *),当n =1时,b 1=1-12b 1,解得b 1=23;当n ≥2时,b n =S n -S n -1=⎝ ⎛⎭⎪⎫1-12b n -⎝ ⎛⎭⎪⎫1-12b n -1,整理得b n =13b n -1,所以数列{b n }是首项为23,公比为13的等比数列,所以b n =23×⎝ ⎛⎭⎪⎫13n -1=23n (n ∈N *). (2)证明 由题意得c n =a n b n =2(2n -1)3n =4n -23n , 所以数列{c n }的前n 项和T n =23+632+1033+…+4(n -1)-23n -1+4n -23n ,则3T n =2+63+1032+…+4n -23n -1,两式相减可得2T n =2+43+432+…+43n -1-4n -23n =2+4×13⎝ ⎛⎭⎪⎫1-13n -11-13-4n -23n=4-4n +43n ,所以T n =2-2n +23n .所以T n <2.2.(2022·石家庄模拟)已知数列{a n }的前n 项和为S n ,a 1=3,a 2=4,S n +1+2S n -1=3S n -2(n ≥2).(1)证明:数列{a n-2}是等比数列,并求数列{a n}的通项公式;(2)记b n=2n-1anan+1,数列{b n}的前n项和为T n,证明:112≤T n<13.证明(1)当n≥2时,由S n+1+2S n-1=3S n-2可变形为S n+1-S n=2(S n-S n-1)-2,即a n+1=2a n-2,即a n+1-2=2(a n-2),所以an+1-2an-2=2(n≥2),又因为a1=3,a2=4,可得a1-2=1,a2-2=2,所以a2-2a1-2=2,所以数列{a n-2}是以1为首项,2为公比的等比数列,所以a n-2=2n-1,所以数列{a n}的通项公式为a n=2+2n-1(n∈N*).(2)由a n=2+2n-1,可得b n=2n-1anan+1=2n-1(2+2n-1)(2+2n)=12+2n-1-12+2n,所以T n=b1+b2+b3+…+b n=13-14+14-16+16-110+…+12+2n-1-12+2n=13-12+2n,因为12+2n>0,所以13-12+2n<13,即T n<13,又因为f(n)=13-12+2n,n∈N*,单调递增,所以T n≥b1=1(2+1)(2+2)=112,所以112≤T n <13.3.已知数列{a n }的前n 项和S n =n 2+n 2.(1)求{a n }的通项公式;(2)若数列{b n }满足对任意的正整数n ,b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2恒成立,求证:b n ≥4.(1)解 因为S n =n 2+n 2,所以当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n ,当n =1时,a 1=S 1=1满足a n =n , 所以{a n }的通项公式为a n =n (n ∈N *). (2)证明 因为b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2,所以当n ≥2时,b 1a 1·b 2a 2·b 3a 3·…·b n -1a n -1=n 2, 所以b n a n =(n +1)2n 2(n ≥2),又n =1时,b 1a 1=22=4,满足b n a n =(n +1)2n 2,所以对任意正整数n ,b n a n =(n +1)2n 2,由(1)得,a n =n , 所以b n =(n +1)2n=n 2+2n +1n=n +1n+2≥2n ·1n+2=4, 当且仅当n =1时,等号成立. 二、创新拓展练4.(2022·湖州质检)已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n a n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n 的前n 项和为T n ,求证:n4n +4<T n <12. (1)解∵4S n =a n a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2, ∴a 2=4,当n ≥2时,4S n -1=a n -1a n ,得4a n =a n a n +1-a n -1a n . 由题意知a n ≠0,∴a n +1-a n -1=4,∴数列{a n }的奇数项与偶数项分别为等差数列,公差都为4, ∴a 2k -1=2+4(k -1)=2(2k -1),a 2k =4+4(k -1)=2·2k ,∴该数列是等差数列,首项为2,公差为2. 综上可知,a n =2n ,n ∈N *.(2)证明∵1a 2n =14n 2>14n (n +1)=14⎝⎛⎭⎪⎫1n -1n +1, ∴T n =1a 21+1a 22+…+1a 2n >14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎪⎫1-1n +1=n4n +4.又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =1a 21+1a 22+…+1a 2n<12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.即得n4n +4<T n <12.。

例析数列不等式的若干证明方法

例析数列不等式的若干证明方法

用 “ 板 法 "求 解 无差 异 元 素 的 分 配 问题 插
陈 红旗 河 南省 汝 阳一 高 ( 7 0 4 0 ) l 2
无差 异 元素 的分 配 问题 ,是 排列 组 合 问题 中的 基 本类 型 ,是 对 排列 组合 思 想 的充 分 体 现 .认 真 研 究 ,大有裨 益 .本文将 例析 该类 题 目的类 型及 解法 . 例 1将 1 0个相 同 的小 球分 别装 入 4个不 同的盒 子 中 ,且 每 盒至 少 一 个小 球 ,问有 多 少种 不 同的装
当 n=k 1 , +时

一 2. 4
= 日4川

也 就是 说 ,当 =k 时 ,结 论成立 . +1
( — x ) +( ~ ) 3 2f b 4 3 2 k
2 ,+3 a
5 1
/筹 一 5 = =

根据 (i)和 ( i i)知

/ 2<6 a , ,= 1 2, … . 4 z , 3,
1 1 r1

求 : 于 , 知1 , 证 证 对 6已 ( < 求 一 ] ( - 一 2 , …
分析 此 不 等 式在 结 构 上类 似 于 贝 努 利 不 等 式
1、 1 1 5
6一一 1 一 一 一’ +I一+J64 1 22 + 2 \ J <
解 将 l 0个小 球排 成一 排 ,在 其 两 两之 间的 9
个 空挡 中任意 插 入三个 板 ,这 样 就将 1 小球 分成 0个
例 4 方程 X + +Y =4有 多少组 自然 数解? 解 本 题可理 解 为将 4个… ’ 配给 、Y、z 1分 三 个字 母 ,由于 、Y、 z 自然 数 ,所 以 、 Y、z 是 可 以不 分配 到… ’然而“ 1. 插板法 ” 所解 决 的问题是 “ 个 每 位置上至少一个元素” ,因此 ,我们可以先添加 4个 “ ” 相 当于把 8个“ ” 插板 法” 给 X Y、 z 1, 1用“ 、 三 个 字母 至少 分配 一个 “” 然 后再 各取 一个 “” 1, 1,就 实

例谈证明数列不等式问题的三种途径

例谈证明数列不等式问题的三种途径
数列不等式问题,常需采用数学归纳法和构造函数
法来进行求证,但这两种方法较为繁琐,且运算量
较大.
(作者单位:山东省聊城市东阿县实验高中)
Copyright©博看网. All Rights Reserved.
∴不等式1 +
n
2
3
1
通过观察发现,该数列的通项公式为
,很难
n
1
1 <
求 得 数 列 的 和 ,于 是 先 将
进行放缩:
n
n
∴1+
)
n - n - 1 ,然后再进行求和,这样数列中的部分
放缩方式.
= 2 k + 1,
= 2 n,
(
Hale Waihona Puke 项便会相互抵消,化简所得的结果,即可证明不等式
c1 + c 2 + ⋯ + c k + c k + 1 < 2 k +
又 ∵∠CEF = 90° ,
即 EF ⊥ CE ,
∴PB ⊥ CE ,PB ⊥ 平面 PAC ,
∴ 正三棱锥 P - ABC 的三条侧棱两两互相垂直,
把三棱锥补形为正方体,则正方体的外接球即为
半径为 6 ,
2
公式进行求解.
三棱锥的外接球,
其直径为 D = PA2 + PB2 + PC 2 = 6 ,
∴ 三棱锥 P - ABC 为正三
棱锥,
∴顶点 P 在底面的射影
O1 为底面三角形的中心,连接
图8
BO1 交 AC 于 G ,
∴AC ⊥ BG ,
又 PO1 ⊥ AC ,PO1 ⋂ BG = O1 ,
∴AC ⊥ 平面 PBG ,∴PB ⊥ AC ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列中的不等式的证明
证明数列中的不等式的一般方法:
1.数学归纳法:
①直接应用数学归纳法:这是由于数学归纳法可以用来证明与正整数相关的命题,当然也包括与正整数
相关的不等式(即数列不等式);
②加强命题后应用数学归纳法:直接应用数学归纳法并不能证明所有数列不等式,有些数列不等式必须
经加强后才能应用数学归纳法证出.
2.放缩法:
①单项放缩:将数列中的每一项(通项)进行相同的放缩;
②裂项放缩:将数列中的每一项裂开放缩成某两项之差;
③并项放缩:将数列中的两项合并放缩成一项;
④舍(添)项放缩:将数列中的某些项舍去或添加;
⑤排项放缩:将数列中的项进行排序(即确定数列的单调性),从而求出数列中项的最值,达到证明不
等式的目的,能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然; ⑥利用基本不等式放缩:例如平均数不等式也可在数列不等式的证明中起作用.
一、直接应用数学归纳法证明
1.已知函数ax x x f +-=3
)(在)1,0(上是增函数. )1(求实数a 的取值集合A
(2)当a 中取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+且)1,0(1∈=b a ,b 为常数,试比较n n a a 与1+的大小
(3)在(2)的条件下,问是否存在正实数c 使10<-<c a n 对一切+∈N n 恒成立?
2. (2007.全国1理第22题)已知数列{}n a 中12a =
,11)(2)n n a a +=+,123n =,,,….
(1)求{}n a 的通项公式;
(2)若数列{}n b 中12b =,13423
n n n b b b ++=
+,123n =,,,…
43n n b a -<≤,123n =,,,…. 3.已知012)2(112=++++++n n n n a a a a ,2
11-=a 求证:(1)01<<-n a (2)122->n n a a (3)}{12-n a 递增.
4.(2004.辽宁理科高考第21题) 已知函数223)(x ax x f -=的最大值不大于6
1,又当.8
1)(,]21,41[≥∈x f x 时 (1)求a 的值; (2)设.1
1.),(,21011+<∈=<<++n a N n a f a a n n n 证明 5.(2005.重庆理科高考第22题)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a n n n 且. (1)用数学归纳法证明:)2(2≥≥n a n ;
(2) 已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….
6. (200
7.全国2理第21题)设数列{}n a 的首项113(01)2342
n n a a a n --∈=
=,,,,,,…. (1)求{}n a 的通项公式;
(2)设n b a =,证明1n n b b +<,其中n 为正整数.
7. (2005.辽宁卷第19题)已知函数).1(1
3)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=
(1)用数学归纳法证明1
2)13(--≤n n
n b ; (2)证明.3
32<n S 8.(2004.重庆理第22题)设数列{}n a 满足).3,2,1(,1,211 =+==+n a a a a n
n n 12)1(+>n a n 证明对一切正整数n 成立;
的大小,与,判断令1)3,2,1(,)2(+==
n n n n b b n n a b 并说明理由.
二、应用单项放缩或数学归纳法或排项放缩或基本不等式证明
9.(2007重庆理科高考第21题)已知各项均为正数的数列{n a }的前n 项和满足1>n S ,且
*),2)(1(6N n a a S n n n ∈++=
(1)求{n a }的通项公式;
(2)设数列{n b }满足1)12(=-n b n a ,并记n T 为{n b }的前n 项和,求证:
*2),3(log 13N n a T n n ∈+>+
10.求证:),1(212)1211()511)(311(∙∈>+>-+
++N n n n n
11.求证:11(11)(1)(1))432
n N n ∙+++>∈-
12. 求证:)(1
212642)12(531∙∈+<⨯⨯⨯⨯-⨯⨯⨯N n n n n 13.已知2,1≥>n a ,且+∈N n ,求证)1(1a a n a
a n n ->-
三、应用裂项放缩证明
14. 已知)(x f y =,1)1(=-f ,对任意实数y x ,满足:3)()()(-+=+y f x f y x f
(1)当N n ∈时求)(n f 的表达式
(2)若11=b ,)1(1-+=+n f b b n n ,求n b
(3)求证当+∈N n 时4
711121<+++n b b b 15.(2006年全国卷I 第22题)设数列{}n a 的前n 项的和14122333
n n n S a +=
-⨯+)(+∈N n , (1)求首项1a 与通项n a ;
(2)设2n
n n T S =)(+∈N n ,证明:132n i i T =<∑. 16. 已知+∈N n ,求证:3)11(2<+≤n n
. 17. 定义数列如下:*+∈+-==N n a a a a n n n ,1,2211,求证:
(1)对于*∈N n 恒有n n a a >+1成立。

(2)当*∈>N n n 且2,有11211+=-+a a a a a n n n 成立。

(3)111121
12006
212006<+++<-a a a 18.求证:)(2
)12)(12(5323114222∙∈<+-++⨯+⨯<N n n n n n n 19.求证:)()12(2167)
12(151311222∙∈+->-++++
N n n n
四、应用并项放缩证明
20. 已知n n a a 211+=+,7
111=a ,求证(-1)a 1 +(-1)2a 2+…+(-1)n a n <1 21.(2004全国理科3高考第22题)已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n
(1)写出数列{}n a 的前三项321,,a a a ;
(2)求数列{}n a 的通项公式;
(3)证明:对任意的整数4>m ,有8
711154<+++m a a a . 22.已知()x x f x e e -=+,求证:12
(1)(2)(3)
()(2)n n f f f f n e +>+.
五、加强命题后应用数学归纳法证明或加强命题后应用排项放缩证明
23. 求证:),1(33322
1222∙∈><++++N n n n n
24.(2006福建理科高考第22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈
(1)求数列{}n a 的通项公式;
(2)证明:*122311...().232
n n a a a n n n N a a a +-<+++<∈ 25.(2006江西理科高考第22题)已知数列{a n }满足:a 1=
32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+- (1)求数列{a n }的通项公式;
(2)证明:对于一切正整数n ,不等式a 1∙a 2∙……a n <2∙n !
六、应用舍(添)项放缩证明
26.(2007浙江理科高考第21题)已知数列{}n a 中的相邻两项212k k a a -,是关于x 的方程
023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k -=≤,
,,. (1)求1a ,2a ,3a ,7a ;
(2)求数列{}n a 的前2n 项和2n S ;
(3)记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)
123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…,
求证:15()624n T n *N ≤≤.。

相关文档
最新文档