数列型不等式的证明.docx
求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩
导数数列型不等式证明问题

导数数列型不等式的证明涉及到导数的概念、性质和运算,通常需要运用放缩、构造辅助函数、微分中值定理等方法。
以下是一些常见的导数数列型不等式的证明方法:
放缩法:通过放缩不等式,使得不等式的证明变得更加容易。
例如,可以利用导数的性质,将原不等式转化为容易证明的等式或不等式。
构造辅助函数法:根据导数的性质,构造出一个辅助函数,通过研究该函数的性质,证明不等式。
例如,可以构造一个函数,使其在指定区间上单调递增或递减,从而证明不等式。
微分中值定理法:利用微分中值定理,将不等式转化为一个容易证明的等式或不等式。
例如,可以根据微分中值定理,将原不等式转化为一个关于某个变量的函数,然后对该函数求导,证明其单调性,从而证明不等式。
需要注意的是,在证明导数数列型不等式时,需要充分理解导数的性质和运算规则,并能够灵活运用。
同时,还需要注重证明过程中的严谨性和准确性,避免出现错误。
数列、极限、数学归纳法·用数学归纳法证明不等式8页word文档

数列、极限、数学归纳法·用数学归纳法证明不等式教学目标1.牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程.2.通过事例,学生掌握运用数学归纳法证明不等式的思想方法.3.培养学生的逻辑思维能力,运算能力,和分析问题、解决问题的能力.教学重点与难点重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.难点:应用数学归纳法证明的不同方法的选择及解题技巧.教学过程设计(一)复习回顾师:上次课我们已经学习了数学归纳法以及运用数学归纳法解题的步骤,请同学们联想“多米诺骨牌”游戏,说出数学归纳法的步骤?生:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P(n).(1)证明当n取第一个值n0时,结论正确,即验证P(n0)正确;(2)假设n=k(k∈N且k≥n0)时结论正确,证明当n=k+1时,结论也正确,即由P(k)正确推出P(k+1)正确,根据(1),(2),就可以判定命题P(n)对于从n0开始的所有自然数n都正确.师:演示小黑板或运用投影仪讲评作业.(讲评作业的目的是从错误中进一步强调恰当地运用归纳假设是数学归纳法的关键)作业中用数学归纳法证明:2+4+6+8+…+2n=n(n+1).如采用下面的证法,对吗?证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即2+4+6+…+2k=k(k+1).当n=k+1时,2+4+6+…+2k+(k+1)所以n=k+1时,等式也成立.根据(1)(2)可知,对于任意自然数n,原等式都能成立.生甲:证明过程正确.生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)(二)讲授新课师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx.师:首先验证n=2时的情况.(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x ≠0获得,为下面证明做铺垫)(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑.生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x)k+1=(1+x)k (1+x),因为x>-1(已知),所以1+x>0于是(1+x)k(1+x)>(1+kx)(1+x).师:现将命题转化成如何证明不等式(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.提问:证明不等式的基本方法有哪些?生甲:证明不等式的基本方法有比较法、综合法、分析法.(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)生乙:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.(1+kx)(1+x)-[1+(k+1)x]=1+x+kx+kx2-1-kx-x=kx2>0(因x≠0,则x2>0).所以,(1+kx)(1+x)>1+(k+1)x.生丙:也可采用综合法的放缩技巧.(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.生丁:……(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.(板书)将例1的格式完整规范.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+lx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.根据(1)和(2),原不等式对任何不小于2的自然数n都成立.(通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)师:下面再举例子,来说明合理放缩的重要性.(板书)例2证明:2n+2>n2,n∈N+.师:(1)当 n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.(2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2.现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立.生:利用归纳假设2k+1+2=2.2k+2=2(2k+2)-2>2·k2-2.师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立.生:因为k2-2k-3=(k-3)(k+1),而k∈N,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.师:不成立的条件是什么?生:当k=1,2时,不等式k-3≥0不成立.师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证?生:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书)(2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k+2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0)≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立.师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1.扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.(板书)例3求证:当n≥2时,(由学生自行完成第一步的验证;第二步中的假设,教师应重点讲解n=k到n=k+1命题的转化过程)师:当n=k+1时,不等式的左边表达式是怎样的?生:当n=k+1时,k项,应是第2k项,数列各项分母是连续的自然数,最后一项是以3k在3k后面还有3k+1、3k+2.最后才为3k+3即3(k+1),所以正确(在这里,学生极易出现错误,错误的思维定势认为从n=k到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,教师在这里要着重分析,化解难点.)运算,应针对问题的特点,巧妙合理地利用“放缩技巧”,使问题获得简捷的证明:(板书略)师:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命题的转化途径是:要注意:这里 S′(k)不一定是一项,应根据题目情况确定.(三)课堂小结1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.3.数学归纳法也不是万能的,也有不能解决的问题.错误解法:(2)假设n=k时,不等式成立,即当n=k+1时,则n=k+1时,不等式也成立.根据(1)(2),原不等式对n∈N+都成立.(四)课后作业1.课本P121:5,P122:6.2.证明不等式:(提示:(1)当n=1时,不等式成立.(2)假设n=k时,不等式成立,即那么,这就是说,n=k+1时,不等式也成立.根据(1)(2)可知不等式对n∈N+都成立.)3.对于任意大于1的自然数n,求证:(提示:(2)假设n=k时,不等式成立,即这就是说,n=k+1时,原不等式成立.根据(1),(2)可知,对任意大于1的自然数n,原不等式都成立.)用数学归纳法证明①式:(1)当n=3时,①式成立.(2)假设 n=k(k≥3,k∈N)时,①式成立,即2k>2k+1.那么2k+1=2k·2>2(2k+1)=2(k+1)+1+(2k-1)>2(k+1)+1(因k≥3,则2k-1≥5>0).这就是说,当n=k+1时,①式也成立.根据(1)(2)可知,对一切n∈N,n≥3①式都成立,即f课堂教学设计说明1.数归法是以皮亚诺的归纳公理作为依据,把归纳法与演绎法结合起来的一种完全归纳法.数学归纳法证明中的两个步骤体现了递推思想.在教学中应使学生明确这两个步骤的关系:第一步是递推的基础;第二步是递推的依据,缺一不可,否则就会导致错误.为了取得良好的教学效果,不妨利用“多米诺骨牌”游戏来加深这两步骤之间的关系的理解,在演示时,应分三种情况:(1)推倒第一张,接着依次倒下直至最后一张;(2)推倒第一张,中途某处停止,最后一张不倒;(3)第一张不倒,后面不管能否推倒,都不会全部倒下.通过具体生动的模型,帮助学生理解数学归纳法的实质.2.用数学归纳法证明不等式,宜先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形,一般地只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明.3.要注意:在证明的第二步中,必须利用“n=k时命题成立”这一归纳假设,并且由f(k)到 f(k+1),并不总是仅增加一项,如例2,4.要教会学生思维,离开研究解答问题的思维过程几乎是不可能的,因此在日常教学中,尤其是解题教学中,必须把教学集中在问题解答者解答问题的整个过程上,培养学生构作问题解答过程的框图,因为用文字、符号或图表简明地表达解答过程或结果的能力,叙述表达自己解题思路的能力,这也是问题解答所必需的.。
利用定积分证明数列和型不等式

利用定积分证明数列和型不等式数列和型不等式是数列中项的和与数列项的不等关系之间的一种定理。
利用定积分可以证明数列和型不等式。
首先我们先回顾一下数列和的定义。
对于n个实数a1, a2, ..., an,我们定义它们的和为S = a1 + a2 + ... + an。
数列和型不等式就是研究这种和与数列项的不等关系。
接下来我们将使用定积分来证明数列和型不等式。
定积分是微积分中一个重要的概念。
给定一个函数f(x),我们可以通过定积分来计算函数在一些区间上的面积。
假设我们有一个数列{an},其中每个项an都是一个非负实数。
我们可以定义一个函数f(x),其在区间[0, n]上的积分值就是数列{an}的和。
我们令S = ∫₀ⁿ f(x)dx。
现在我们来看定积分的性质。
对于一个非负函数f(x),如果在区间[a, b]上有f(x) ≤ g(x),那么∫ₐᵇf(x)dx ≤ ∫ₐᵇ g(x)dx。
也就是说,如果函数f(x)在整个区间上都小于等于另一个函数g(x),那么f(x)的积分值一定小于等于g(x)的积分值。
现在我们可以使用定积分来证明数列和型不等式了。
假设{an}是一个非负数列,且存在一个非负函数f(x),使得在整个区间[0, n]上都有0≤ an ≤ f(x)。
我们令S = ∫₀ⁿ f(x)dx。
根据定积分的性质,对于任意的项an,有0 ≤ an ≤ f(x)。
因此对于数列的和S,我们有0 ≤ S ≤ ∫₀ⁿ f(x)dx。
根据定义,∫₀ⁿ f(x)dx就是数列{an}的和。
因此我们得到了数列和型不等式:0 ≤ S ≤ a₁ + a₂ + ... + an。
数列和型不等式有一个重要的应用就是用来估计数列的和。
当我们能找到一个函数f(x),使得在整个区间[0, n]上都有an ≤ f(x)成立时,我们可以通过计算∫₀ⁿ f(x)dx来得到数列{an}的一个上界。
这个上界就是数列的和的一个估计值。
总结起来,利用定积分可以证明数列和型不等式。
谈数列型的不等式证明题

所 有
再设 等 比数列
}的 公 比 为 9 则 根 据 条 件 可
若 从 等 差 数 列 和等
比数 列 的 图 像 加 以丹 析 可 知 等 差 数 列 的 图 像
(8
—
1 )十 ( q 一9 :2( ~3) 8 ) 8 ,
Y 是 一 条 直 线 , 比数 . 等 列 的 图 像 是 一 条 曲
=
.
重
种 . 运 用 中 有 时 还 要 注 意 它 的 灵 活 性 和 变 形 式 合 在
理 的选 择 公 式 形 式 将 使 问 题 的 解 决 变 得 自然 流 畅 .
!十 。 =。_ : L 。 , 『 一 一 . I-
盟 ul l+ l
,
例 2 设
n }和 { .分 别 是 等 差 数 列 和 等 比
关 的 问 题 时 . 能 正 确 运 用 , 将 起 到 特 殊 的作 用 若 必 例 1 设 l。 :是 正 项 等 比 数 列 . . 其 前 n项 s 是
… 明: s. -
n 一6 : . 1一 日 ( )
=
一 ( 一1 ] n )
= Ⅱ ( II
丁 分 类 讨 论 2 灵 活 选 用 数 列 公 式 数 列 中 最 常 用 到 的 公 式 就 是 求 通 项 与 求 和 两
给 我 们 带 来 定 的 困 难 仔 细 分 析 不 难 发 现 . 等 等 在
数 列 和 等 比数列 中得 用 等 差 中项 和等 比中 砸这 要 的 性 质 可 将 条 件 和 结 论 联 系 起 来
卫 。 : 6 . + : 6川 . .。 .
数 列 置 a .= 6 > 0, : 6 > 0 若 。 Ⅱ l≠ n . 比 :菌
微专题。用导数证明数列型不等式

微专题。
用导数证明数列型不等式方法1:利用不等式1-≤lnx≤x-1,(x>1)证明数列型不等式背景知识:n=2×3×…×n,lnn=ln2+ln3+…+lnn-11.求证:1+1/2+…+1/n<lnn<1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1),(n≥2,n∈N*)证明:在不等式中令x>1,1-x≤lnx≤x-1,n=2,3,…,n,可得个不等式,相加可以得证。
ln2+ln3+…+lnn-1≤1+1/2+…+1/nln2+ln3+…+lnn-1>1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1)2.求证:n≥2,n∈N*,时,2×3×…×n<n^n-1证明:2×3×…×n<2×2×…×2=n^(n-1)3.求证:ln(n^2+1)<1+2lnn!(n≥2,n∈N*)证明:由lnx0),令x=n^2+1,则有ln(n^2+1)<2n^2/(n^2+1)2n^2/(n^2+1)<2lnn。
即n^2/(n^2+1)<lnn。
整理得ln(n^2+1)<1+2lnn!4.已知函数f(x)=xlnx,g(x)=x^2+x-a(a∈R)Ⅰ)若直线x=t(t>0)与曲线y=f(x)和y=g(x)分别交于A,B 两点,且曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,求a的取值范围;Ⅱ)设Sn=1/2+1/3+…+1/n,证明:ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2Sn解:(Ⅰ)f(x)=xlnx,(x>0),∴f′(x)=1+lnx,∵曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,∴f′(t)=g′(t)在(0,+∞)有解,即lnt=a-t在(0,+∞)有解,∵t>0,∴a>0.令x=e,则得t=e,∴a=e-1 Ⅱ)当x∈(0,e)时,F′(x)>0,F(x)单调递增,其中F(x)=ln(x^2+1),则有ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<F(2)+F(3)+…+F(n),由于F(x)单调递增,故F(2)+F(3)+…+F(n)<∫(1,n)F(x)dx,又因为F(x)在(0,+∞)上单调递增,故∫(1,n)F(x)dx<∫(1,n)F(n)dx=nF(n)-ln(n^2+1)/2,所以ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<nlnn-ln(n^2+1)/2,即ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2(1/2+1/3+…+1/n)=2Sn。
例析数列不等式的若干证明方法

用 “ 板 法 "求 解 无差 异 元 素 的 分 配 问题 插
陈 红旗 河 南省 汝 阳一 高 ( 7 0 4 0 ) l 2
无差 异 元素 的分 配 问题 ,是 排列 组 合 问题 中的 基 本类 型 ,是 对 排列 组合 思 想 的充 分 体 现 .认 真 研 究 ,大有裨 益 .本文将 例析 该类 题 目的类 型及 解法 . 例 1将 1 0个相 同 的小 球分 别装 入 4个不 同的盒 子 中 ,且 每 盒至 少 一 个小 球 ,问有 多 少种 不 同的装
当 n=k 1 , +时
一
一 2. 4
= 日4川
一
也 就是 说 ,当 =k 时 ,结 论成立 . +1
( — x ) +( ~ ) 3 2f b 4 3 2 k
2 ,+3 a
5 1
/筹 一 5 = =
—
根据 (i)和 ( i i)知
,
/ 2<6 a , ,= 1 2, … . 4 z , 3,
1 1 r1
一
求 : 于 , 知1 , 证 证 对 6已 ( < 求 一 ] ( - 一 2 , …
分析 此 不 等 式在 结 构 上类 似 于 贝 努 利 不 等 式
1、 1 1 5
6一一 1 一 一 一’ +I一+J64 1 22 + 2 \ J <
解 将 l 0个小 球排 成一 排 ,在 其 两 两之 间的 9
个 空挡 中任意 插 入三个 板 ,这 样 就将 1 小球 分成 0个
例 4 方程 X + +Y =4有 多少组 自然 数解? 解 本 题可理 解 为将 4个… ’ 配给 、Y、z 1分 三 个字 母 ,由于 、Y、 z 自然 数 ,所 以 、 Y、z 是 可 以不 分配 到… ’然而“ 1. 插板法 ” 所解 决 的问题是 “ 个 每 位置上至少一个元素” ,因此 ,我们可以先添加 4个 “ ” 相 当于把 8个“ ” 插板 法” 给 X Y、 z 1, 1用“ 、 三 个 字母 至少 分配 一个 “” 然 后再 各取 一个 “” 1, 1,就 实
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列型不等式证明的常用方法一. 放缩法数列型不等式证明是前见年高考中的一个热点,在多省试题中常常作为压轴题出现。
放缩法是数列不等式证明的 一个重要方法,它具有很强的技巧性的特点,学生往往无从下手,下面总结放缩法证明的一些常用技巧,例如 归一技巧、抓大放小技巧、回头追溯技巧、利用函数性质技巧 ,仅供参考 .1 归一技巧归一技巧,指的是将不容易求和的和式中的所有项或若干项全部转化为 同一项 ,或是将和式的通项中的一部分转 化为 同一个式子 (或数值),既达到放缩的目的,使新的和 式容易求和 .归一技巧有 整体归一、分段归一。
例如11 1 1设 n 是正整数,求证n 1n 21.2 2n111【证明】 n 1n 2L2n1 1 1 11 .2n 2n2n 2n214444244443个 1n2n11L1另外: n 1 n 22n1 1 1 1n n n n1 .144424443n个 1 n11【说明】在这个证明中,第一次我们把n 1 、n2、11L2n 这些含 n 的式子都 “归一” 为 2n ,此时式子同时变小,11L11顺利把不易求和的 n 1 n 2 2n 变成了 n 个 2n 的 和,既将式子缩小,同时也使缩小后的式子非常容易求和,这就是 “归一” 所达到的效果。
而不等式右边的证明也类似.1.1 整体归一放缩法中,如果通过将所有项转化为同一项而达到放缩目的的,称之为“整体归一” .例 1. 数列 a n 的各项均为正数, S n 为其前 n 项和,对于任意 n N * ,总有 a n , S n ,a n 2成等差数列 .( Ⅰ ) 求数列 a n 的通项公式;( Ⅱ ) 设数列 b n 的前 n 项和为 T n,且b nln n x,求证:对2a n任意实数 x 1, e ( e 是常数, e =)和任意正整数 n ,总有 T n 2 ;(Ⅰ)解:由已知:对于nN * ,总有 2S na n a n 2 ①成立∴ 2S n 1an 1an 12(n ≥ 2 )②① -- ②得 2a n a na n2an 1a n 12∴ a nan 1a na n 1anan 1∵ a n , a n 1 均为正数, ∴ a n a n11(n ≥ 2)∴数列 a n是公差为 1 的等差数列又n=1 时, 2Saa2, 解得 a1111 =1∴ a nn .(nN * )(Ⅱ)证明:∵对任意实数x1, e 和任意正整数n ,总有ln nx1.b n2≤n2(放缩通项, 整体归一 )a n∴T1 111111n2 2 21 22 3n 1n12n(放缩通项, 裂项求和 )1111111 123n 1222nn例 2. 已知数列a n 中的相邻两项 a 2 k 1,a 2 k 是关于 x 的方程x2(3k 2k) x3k 2k0 的两个根,且a 2k 1 ≤ a 2k (k1,2,3,L ) .( I )求 a 1 , a 2 , a 3 , a 7 ;( II )求数列 a n 的前 2n 项和 S 2n ;1sin n(Ⅲ)记f (n)3,2sin nT n( 1) f (2)( 1) f (3)( 1) f (4)⋯( 1)f (n 1)a 1a 2a 3a 4 a 5a 6,a 2n 1a2n1≤ T ≤ 5(nN *)求证: 6n24【分析】( 1)略 . a 1 2 ; a 34 ; a 58时; a 712.( II )略 .S3n23n2n 12 .2n2( III )本题应注意到以下三点,① f (n) {1,2} ,且 f (n) 具有周期性 . f (n){1, 2} ,这就有 ( 1)f ( n){1,1} , f (n) 虽有周期性,可周期为2 .这就使当 n 很大时,和式通项(1)f (n1)的符号增加了不确定a 2n 1a2n性 .②很显然,当 n4时, a 2n 13n , a 2 n2n;当n3时, a 2n 12n, a 2n3n . 纵然没有符号的问题,通12n 如何求和?也需要解决.项3n③T11 1 , T 21 1 5,本题相当于证a 1a 2 6 a a2a a241 34明 T ≤ T ≤ T (n N *) .1n 2基于以上三点,我们可以看到:T 1 ≤ T n 等价于从第二项开始的项之和为非负数,可否考虑将第三项开始的项缩小,此时可以做两方面的“归一” ,一是符号“归一” ,二是分母的部分“归一” ,两者都是要达到容易求和的目的.【解答】 当 n ≥ 3时,T n111L(1)f ( n1)6 a 3a 4a 5 a 6,a 2n 1a2 n≥111L1从第三 起“ 一”6 a 3a 4a 5a 6a 2n 1a2 n=116(31931 241 2 n)64243n=11111 1)6466(3 224 23n 2n 111111L1⋯ ,n “ 一”6 6 2 2 632 42n(3,4,5,22)116 6 2n16 ,至于不等式右 原理一 :T n5 1 1 L( 1)f (n1)24 a 5a 6a 7 a 8a 2n 1a2n≤511 L1( 从第四 起“ 一”24 a 5a 6a 7a 8a2 n 1a2 n51111正249 2334243525L3n 2n5 1 1 1L 1(4,5, ⋯ ,n “ 一” 3)24 9 239 24 2n5 124 9 2n524 .T 111T115又 a a6,a aaa24 ,原结论成立22 4121 31.2 分段归一放缩法中,如果我们把和式分为若干段,每一段中的各个项都转化为同一项而达到放缩并容易求和的目的的,称之为“分段归一” .例 3已知数列{ a n } 和 { b n } 满 足a 1 2,a n 1a n (a n 1 1) ,b n a n1,数列 { b n } 的前 n 和为S n .( 1)求数列 { b n } 的通项公式;( 2)求证:对任意的 nn1N 有 1S 2nn成立.22分析:( 1)略 .bn1 .n( 2)此问可以用数学归纳法证明, 也可以用 “分段归一”的放缩法解答 .【解答】左边证明Sn111122 32 n111111 111(111() (5678) ()n 11n )2349162211(1 1) (1111) (11 )(1n1n )244888 816162214243142438 个12n 1 个 1162n11 1 1 12222144424443个 12=1+n211111里我 以2 ,22 ,3 ,4 ,⋯⋯,2n界,将22和式111 分 n 段,每段11⋯⋯i 1i 12 3n1 2 2221 (i1,2,3, , n ),每段中的数 小 一12i, 就2i1使每一段的数 小后和,从而得 .2至于不等号右 ,原理 似:S n 111 1 223 2 n1 11111 1 11(111)11( )() ()n 1n 11n n2 345678 91522212 1(11)(1111)(11) (11)(1 1 )12 24444881616n 1n 1n22214243142431442443个116个1n1个11682n 1111111n144424443n个12n12n1n2【说明】本题我们需要关注到不等号两边的性质:一方1+ n111面, 22 2 ,接着我们把不等式中间的和式除114243n个121外的部分拆分成 n 段,每段都不小于 2 ;另一方面,n11111,接着我们把不等式中间的和式除121424322n n个1外的部分拆分成n 段,每段都不大于1;在归一放缩时,我们需要注意到题设的条件和式子的性质,它是我们考虑如何归一、往哪个地方归一的关键.2 抓大放小在将和式通项中,我们保留式子主要的、数值较大的部分,去掉次要的、数值相对较小的部分,以便达到放缩和容易求和的目的,这种放缩技巧,我们称之为“抓大放小”技巧 .例如求证 :123n221222 2 332 nn通项放缩为nn, 求和即证。
2 nn2 n直接抓大放小例 4 设数列a n 的前 n 项和为 S n ,对任意的正整数n ,都有 a5S1 成立,记 b n4a n (nN *).nn1 a n( I )求数列 b n的通项公式;( II )记 c n b 2 n b 2 n 1 (nN *) ,设数列c n的前 n 项和为T n ,求证:对任意正整数n都有 T n3 .2【解答】(Ⅰ)略 .bn4n 1(1)nn ( n41)(Ⅱ)由(Ⅰ)知 b n45( 4)n1c nb2nb2 n 1552542n42n 142n 1 1(42 n1)(42n 4)2542n2542n25(分母直接抓大放44n342n444n16n小)b3,b13 ,c4又 12313当n1时,T132当n2时, T n 42511K1) 3(16316n162412 [1( 1 )n 1] 2516163111641 2516269331148216【说明】这里的分母44 n 3 42n 4 阻碍了式子的求和,式子 44n 3 42 n 4 中,最大的是44n,他起到了决定整个这个式子数值大小的作用, 3 42 n 4 相比它来说小很多,由此,我们能把44n留在,去掉342 n 4 ,这里既能起到放大式子的要求,也能使通项转化为等比数列,使和式容易求和 .就象整棵大树,我们留下了主干,把枝梢末节的地方去掉了。
拆大抵小“拆”大“抵”小指的是通项中有一两个数值在放缩时无法直接消去,只能从主要的数值中拆出一部分出来与之相抵,达到放缩的效果 .例5 设数列 a n 的前 n 项和为n,满足 2S an 1,n N ,Snn 1且 a 1 , a 2 3, a 3 成等差数列 .( 1) 求 a 1, a 2, a 3 的值;( 2) 求数列 a n 的通项公式;1 1L13( 3) 证明:对一切正整数n ,有 a a 2 an2.分析( 1)略 . 111, a 2=4, a 3 =13a(2)略 .a1(3n1)n212( 3)由( 2)知 a n3n1如果将通项{2} 分母中的 1消去,通项将转化为等n31比数列{2},可这个转化是一个缩小的放缩,与和式放大3n矛盾,因而不能直接去掉1.我们可以从通项{ 2 }n3n1 分母中的 3 中拆出一部分出 来与 1相抵,为了达到放大的目的, 拆出来的部分必须比 1大 .【解答】12221( 3)由 a3n1 2 3n 13n 112 3n 13n 1 ,n(拆大抵小 )11L1111故有: a 1 a 2a n33n 1113133n1122 3n 123【说明】抓大放小的技巧在于留住式子中主要的部分,既保留了式子的数值,也达到了放缩和容易求和的目的.又例如 求证 :1111521221 2 312 n1 3如果 2n1 2 2n 1 1 2n 12n 1 1 2n 1 ,那么11,则放大过头!2 n1 2n 1因为 2n1 4 2n 21 3 2n 22n 21 3 2n2 (n 2)所以通项放缩为111(n2) ,求和即证。