电磁场与电磁波(第二章)

合集下载

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。

如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。

解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。

解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。

由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。

解:以球心为坐标原点,转轴(一直径)为$z$轴。

设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。

电磁场与电磁波第四版第二章部分答案

电磁场与电磁波第四版第二章部分答案

习题二2.9无限长线电荷通过点(6,8,0)且平行于z轴,线电荷密度为ι,试求点P(x,y,x)处的电场强度E。

解:线电荷沿z方向为无限长,故电场分布与z无关,设P位于z=0的平面上。

则则P点的E为ιιι2.10半径为a的一个半圆环上均匀分布着线电荷ι,如图所示。

试求垂直于半圆环所在轴线的平面上z=a处的电场强度。

解:P(0,0,a)的位置矢量是=电荷元ιι,ι2.12一个很薄的无限大导体带电平面,其上的面电荷密度为。

试证明:垂直于平面的z轴上z=处的电场强度中,有一半是由平面上半径为的圆内的电荷产生的。

解:取面积元,电荷元在处产生的电场强度整个平面在处的电场强度为当时,当时,2.15半径为a的导体球形体积内充满密度为的体电荷。

若已知球形体积内外的电位移分布为式中A为常数,试求电荷密度解:有,得0,此时此时2.22通过电流密度为J的均匀电流的长圆柱体导体中有一平行的圆柱形空腔,其横截面如图所示,试计算各部分的磁感应强度,并证明空腔内的磁场是均匀的。

解:将题所示非对称电流看成两个对称电流的叠加,电流密度为的电流分布在半径为b的圆柱内,电流密度为-的电流分布在半径为a的圆柱内。

根据安培环路定律在半径为b的圆柱体内,当,2,即当2,即在半径为a的圆柱体内,当时,同理可得,=当时,同理可得,圆柱外(),圆柱内的空腔外(,)()空腔内()是到的位置矢量,故空腔内的磁场是均匀的2.23 在平面上沿方向有均匀面电流,如图所示,若将平面视为无限大,求空间任意一点的。

解:作垂直于平面的矩形闭合线abcda,由安培环路定理可得在的区域内,有即在的区域内,同理可得综上所述:,为面电流的外法向单位矢量2.25平行双线与一矩形回路共面,如图所示,设a=0.2m,b=c=d=0.1m,i=0.1cos()A,求回路中的感应电动势。

解:由安培环路定理得,设矩形回路与左线的距离为r,左右方向:垂直纸面向内则左右]左右左右]=V2.30煤质1的电参数为,煤质2的电参数为,,.两种煤质分界面的法向单位矢量为,由煤质2指向煤质1.若已知煤质1内临近分界面的点p处的磁感应强度求p点处下列量的大小:、、、.解:由磁场边界条件得,=由磁场边界条件可知:即:。

电磁场与电磁波理论基础 第二章 课后答案

电磁场与电磁波理论基础 第二章 课后答案

u=0
∂u 1 ∂u ∂u E = −∇u = − e ρ + eϕ + e z ρ ∂ϕ ∂z ∂ρ
得到 题 2-9 图
E = −∇u = 0, ρ ≤ a
a2 a2 E = − A 1 + 2 cos ϕ e ρ + A 1 − 2 sin ϕ eϕ , ρ ≥ a ρ ρ
代入得到
2 2
r1
-2 q
Y
S1 (-a, 0 , 0)
X
S 2 (a, 0, 0)
题 2-7 图
u (r ) =
q 4πε 0
1
( x + a)
2
+ y2 + z2

2 2 2 ( x − a) + y + z 2
电位为零,即令
q u (r ) = 4πε 0
∂u2 =0 ∂x
代入,得到
ρ S下 = −ε 0
∂u1 ∂x
=
x =0
ρd ρd ε U ε U x2 − 0 0 + 0 = − 0 0 + 0 2d 6 x =0 6 d d
ρ0
对于上极板,导体中的电位为常数
u1 = U 0

∂u1 =0 ∂x
上极板下表面电荷密度为
l
场分布具有柱对称性,电通密度矢量 D 仅有 e ρ 分量,由 高斯定理 题 2-15 图
D ⋅ dS = ρ
(S ) (V )
V
dV
取圆柱面为高斯面,有

Dρ ρ ldϕ = 20 ρ e
0 0 0

电磁场与电磁波_章二习题答案

电磁场与电磁波_章二习题答案

静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。

5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。

若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。

求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。

解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。

()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。

电磁场与电磁波(第5版)第2章

电磁场与电磁波(第5版)第2章

电磁场与电磁波(第5版)第2章本节介绍了电磁学的基本概念和原理,包括电荷、电场、电势、电场强度和电势差等。

本节讨论了静电场和静磁场的性质和特点,包括库伦定律、电场强度的计算、电场线和磁感线的性质等。

本节介绍了电场和磁场的性质,包括电场的叠加原理、高斯定律、环路定理和安培定律等。

本节讨论了电场和磁场相互作用的现象和规律,包括洛伦兹力、洛伦兹力的计算和洛伦兹力的方向等。

本节介绍了电磁波的基本概念和特征,包括电磁波的产生、传播和检测等。

本节讨论了电磁波的性质,包括电磁波的速度、频率、波长和能量等。

本节介绍了电磁波谱的分类和特点,包括射线、微波、红外线、可见光、紫外线、X射线和γ射线等。

本节讨论了电磁波在生活和科学研究中的广泛应用,包括通信、雷达、医学诊断和天文观测等。

本章节将介绍电荷的性质以及电场的基本概念。

首先,我们将讨论电荷的性质,包括电荷的类型和带电体的基本特征。

之后,我们将深入研究电场,包括电场的定义、电场的强度和方向,以及电场的计算公式。

电荷是物质的一种基本特性,它可以分为正电荷和负电荷两种类型。

正电荷表示物体缺少电子,而负电荷表示物体具有多余的电子。

电荷是一种离散的量子化现象,它以元电荷为单位进行计量。

带电体是指带有正电荷或负电荷的物体,而不带电的物体则是不具有净电荷的。

电场是指电荷周围所具有的一种物理现象,它可以影响周围空间中其他电荷的运动和状态。

电场的强度和方向决定了电场对其他电荷的力的大小和方向。

电场的强度用符号E表示,单位是牛顿/库仑。

电场的方向由正电荷朝向负电荷的方向确定。

库仑定律是描述电荷间作用力的基本定律。

根据库仑定律,两个电荷之间的作用力正比于它们的电荷量的乘积,反比于它们之间距离的平方。

电场强度是描述某处电场强度大小和方向的物理量。

电场强度的计算公式正是库仑定律的一种推导结果,它可以通过已知电荷量和距离来计算。

以上是《电磁场与电磁波(第5版)第2章》中2.1节的内容概述。

电磁场与电磁波第三版 郭辉萍 第二章习题解答

电磁场与电磁波第三版 郭辉萍 第二章习题解答

D2 z ( x, y,0) = 2
所以
r r r r D2 ( x, y, 0) = ax ⋅ 3 y − a y ⋅ 3x + az ⋅ 2 r E2 ( x, y, 0) = r r r r ax ⋅ 3 y − a y ⋅ 3 x + az ⋅ 2 D2 = ε0 ⋅εr2 3⋅ε0
故不能求出区域 2 中任一点处的 E2 和 D2 2.15 同轴电容器内导体半径为 a, 外导体内直径为 b, 在 a<r<b′部分填充介电常数为ε 的电介质, 求: (1) 单位长度的电容; (2) 若a=5 mm、 b=10 mm、 b′=8 mm, 内外导体间所加电压为 10 000 V, 介 质的相对介电常数为εr=5, 空气的击穿场强为 3×106 V/m, 介质的击穿场强为 20×106 V/m, 问电介质是否会被击穿? 解:
r
r
r
r
r
r
D2 z ( x, y,0) = 2 ,
(1)
r r ax D2 x ( x, y,0) + a y D2 y ( x, y,0) 3 ⋅ ε0
由(1)和(2)解得
=
r r ax ⋅ 2 y − a y ⋅ 2 x 2 ⋅ ε0
(2)
D2 x ( x, y,0) = 3 y ,
D2 y ( x, y,0) = −3 x ,
φab = ∫ E ⋅ d r = ∫
a
b
ur
r
b
a
ρs a ρs a b dr = ln ε 0r ε0 a
1 1
要使 ρ >b 的区域外电场强度为 0,即:
r ur ρ s a + ρ s b uu b 2 E= 1 ar =0,得 ρ S1 = − ρ s2 ε 0r a

电磁场与电磁波(第二章)

电磁场与电磁波(第二章)

S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章

电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解质⼦的质量271.710kg m -=?、电量191.610C q -=?。

由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。

解以球⼼为坐标原点,转轴(⼀直径)为z 轴。

设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R eR R
0
为真空中介电常数。 0
1
36
109
F
/
m
二、电场强度矢量 E
❖真空中点电荷q在P点处产生的电场强度:
F
q
q
R
E(r ) lim q qs 0 s
4 0 R2 eR
r'
q
q
1
R
( )
4 0 R3
4 0 R
O
P
r Rr r'
其中
(
1) R
eR R2
证明
对 qs 取极限是避免引入试验电荷影响原电场; P
❖引入电流密度矢量 J 描述空间电流分布状态。
1、体电流密度
❖电荷在一定体积空间内流动所形成的电流成为体电流。
❖体电流密度 J 定义:
设正电荷沿 e j 方向流动,则在垂直
e j 方向上取一面元S,若在t 时
间内穿过面元的电荷量为 q,则:
I
q
J lim lim
s0 S s0 t S
t 0
ej
(r
')(
1 R
)dl
'
四、例题
例题一:如图所示,一个半径为 a 的半圆环上均匀分 布线电荷,其电荷线密度为 l 。求垂直于圆环平面的
轴线上任一点的电场强度E
解:取线元 dl ',其上电量为:
dq ldl ' lad '
其所产生的电场为:
z
dE
P r
dE
❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l J
线元的电流为 I ,则定义
S
Js
lim I l0 l
dI dl
同样可求得: J sv
穿过任意曲线的电流:
I
n
l
dl J S
l J S n dl
I l Js
n
注意:体电流与面电流是两个独立概念,并非有体 电流就有面电流。
2、面电荷密度
❖面电荷:当电荷只存在于厚度可以忽略不计的表面上,称电
荷为面电荷。
❖面电荷密度 s (r )的定义: 在面电荷上,任取面积元 S ,其中电荷量为 q

s (r )
lim
S 0
q S
dq dS
q S s (r )ds
3、线电荷密度
❖线电荷:当电荷只分布在一条细线上时,称电荷为线电荷。
3、线电流与电流元 ❖电荷只在一条线上运动时,形成的电流即为线电流。
❖电流元Idl :长度为无限小的线电流元。
三、电流的连续性方程
I
电荷守恒定律:从任一闭合面流出的电
流等于该闭合面内电荷的减少率
即: J (r ) ds dq
s
dt
q为闭合面S内的电荷量
q V (r,t)dV
( J )dV (r,t) dV
V
V t
电流连续性方程积分形式
J
t
J 0
t
电流连续性方程微 分形式
讨论:1)对于恒定电流,有
0
t
故:恒定电流的电流连续性方程为
J 0 s J ds 0
意义:流入闭合面S的电流等于流出闭合面S的电流。
2)对于面电流,电流连续性方程为:
l JS
(n dl )
s
r r'
O
❖设体电荷密度为(r ),图中 d ' 在P点产生的电场为:
dq
dE(r , r
')
(r ')d 4 0 R3
'
R
Rr r'
则整个体积 内电荷在P点处产生的电场为:
E(r )
1
dE(r , r ')
4 0
(r ')
R3
Rd
'
b)面分布电荷系统
类似地,面电荷在空间某点处产生的电场强度
特殊地,当点电荷q位于坐标原点时,
r'0
Rr
E(r )
q
4 0r 2
er
q (1)
4 0 r
r qO Rr
三、点电荷系统和分布电荷产生的电场
1、多点电荷系统产生的电场
真空中,N个点电荷:
电荷量: q1, q2 ,…,qN
由矢量叠加原理:
电荷位置: r1 ', r2 ', …,rN '
E(r ) E1 E2 … EN
0
r0 r 0
❖电荷的定向运动形成电流。电流大小用电流强度i描述。
❖电流强度i的定义:
设在 t 时间内通过某曲面S的电量为 q ,则定义通
过曲面S的电流为:
i(t) lim q dq t0 t dt
❖电流强度的物理意义:单位时间内流过曲面S的电荷量。
❖恒定电流: i(t) const 即电流大小恒定不变。:
第二章 电磁场中的基本物理量 和基本实验定律
第一节 电磁场的源量 ——电荷和电流
一、电荷与电荷密度
1、体电荷密度 ❖体电荷:电荷连续分布在一定体积内形成的电荷体。
❖体电荷密度 (r )的定义:
在电荷空间V内,任取体积元 V ,其中电荷量为 q
则 (r ) lim q dq
V 0 V dV
q V (r )dV
❖线电荷密度 l (r ) 的定义:
在线电荷上,任取线元 l ,其中电荷量为 q

l (r )
lim
l 0
q l
dq dl
q l l (r )dl
4、点电荷
❖点电荷:当电荷体体积非常小,可忽略其体积时,称为 点电荷。点电荷可看作是电量q无限集中于一个几何点上。
(r ) lim q
V 0 V
二、电流与电流密度
S t
dS
对时变面电流
l JS (n dl ) 0
对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
q2
r
F12
q1 q2
4 0 R 2
eR
q1 q2
4 0 R3
R
r'
O
式中: R r r ' R R
1 N
40 i1
式中:Ri r ri '
qi 3 Ri Ri
q2 q E合 1
P(r ) R2
R1 r2 ' r RN
EN
r1 ' O rN '
qN
E1
P(r )
E2
2、分布电荷系统产生的电场,矢量积分公式
a)体分布电荷系统
❖处理思路:
d '
R
P(r )
1) 无限细分区域 2)考查每个区域 3)矢量叠加原理
E(r )
dE(r , r ') 1
S'
4 0
S
'
s (r
R3
')
RdS
'
1
40
S
s
(r
')(
1 R
)dS
'
c)线分布电荷系统
类似地,线电荷在空间某点处产生的电场强度
E(r ) dE(r , r ') 1 l (r ') Rdl '
l'
40 l ' R3
1
4 0
lห้องสมุดไป่ตู้
'
l
S
lim v S t v
s0 t S
t 0
讨论:1) J v
式中: 为空间中电荷体密度,v 为
正电荷流动速度。
2) I J (r ) ds J (r ) nds
S
S
S J (r ) cos ds
n
S
J (r )
2、面电流密度
❖当电荷只在一个薄层内流动时,形成的电流为面电流。
相关文档
最新文档