沉井基础的适用条件
第九章 沉井基础

2.下沉系数的计算 kst=(Gk-Ffw,k)/Ffk Gk—沉井自重标准值 Ffw,k—下沉过程中水的浮托力标准值 Ffk—井壁总摩阻力标准值 要求下沉系数kst≥1.05 上海地基规范中,下沉系数1.05~1.25,位于淤泥质土 层中取小值,其他土层中取大值。? 天津地基规范中,下沉系数1.05~1.15,位于软弱土层 中1.05,其他土层中1.15。 浙江地基规范中,下沉系数1.05~1.25,位于淤泥质土 层中取小值,土质条件较好时取大值。 其他地区参考上述取值,土质条件差(淤泥、淤泥质 土)时1.05,其他1.25。
1.封底阶段 当沉井沉至设计标高并浇筑封底砼后应进行抗浮验算, Gk包括井壁及封底砼自重标准值;若在底板施工后停止降水, 则Gk包括井壁、封底砼及底板砼自重标准值,此时要求封底 砼与底板砼间以插筋连接。 若抗浮不能满足要求,则应延长降水时间,再增加其他 结构自重来加大抗浮系数。若仍不能满足要求,则应考虑拉 锚等措施。 2.使用阶段 Gk除井壁、封底砼及底板砼自重外,再增加其他结构自 重,如内筒、顶板、抹坡砼等。
3.3 沉井的下沉计算
1.井壁与土的摩阻力计算 1)单位面积摩阻力选用 在岩土工程勘察技术委托时,若可能存在沉井,通常 要求勘察单位提供各土层的单位面积摩阻力。若报告中未 提出,则参见沉井结构设计规程取值。
在取值时,粘性土根据液性指数IL的高、低取其下、 上限;砂、石土根据其标准 ? 2)摩阻力沿井壁外侧的分布
27
28
顶板
以混凝土填心的沉井可用素混凝土顶 板;空心或以其它松散料填心的沉井需用 钢筋混凝土顶板,其厚度一般为1.0-2.0m,配 筋由承载力计算和构造要求确定。排水下 沉的沉井,其顶面在地面或水位以下时, 应在井壁顶部设置挡土防水墙。
沉井基础

沉井结构设计计算
沉井结构设计计算
8.3.3 沉井井壁计算
沉井井壁应进行竖直和水平两个方向的 内力计算。 1)竖直方向 在沉井的下沉过程中,当沉井被四周土 体箝固着而刃脚下的土已被掏空时,应 验算井壁接缝处的竖向拉应力。
沉井结构设计计算
接缝处:混凝土不承受拉应力而由接缝处 的钢筋承受,此时钢筋的抗拉安全系数可 采用1.25;同时并须验算钢筋的锚固长度。 井壁摩阻力可假定沿沉井全高按倒三角形 分布,即在刃脚底面处为零,在地面处为 最大,此时最危险的截面在沉井入土深度 的1/2处
x x
沉井结构设计计算
简支支承双向板计算简图
沉井结构设计计算
③求出弯矩值后,封底混凝土的厚度
验算建议值
沉井结构或受其影响建筑物的安全 纵向钢筋最小 等级与拉力计算取值 构造配筋率 一级 二级 0.30G 三级 0.25G 钢筋混凝土最 小配筋率不宜 于少0.1%;少 筋混凝土不宜 少于0.05%
沉井施工 状态 排水下沉 不排水下 沉 泥浆套中 下沉
0.50G
0.40G
0.30G
0.25G
沉井结构设计计算
沉井外侧直立时的井壁受拉计算图
沉井结构设计计算
按《公路桥涵地基与基础设计规范》, 最大竖向拉力Plmax为此时沉井全部重 力G的1/4,即
Pl max G / 4
实际工程中,沉井被卡住较为常见,也 出现过被拉裂的沉井 。
沉井结构设计计算
表8-2 沉井竖向拉力计算及其最小配筋率
①计算刃脚外侧的土压力和水压 力。 ②由于刃脚下的土已被掏空,故 刃脚下的垂直反力Rv和刃脚斜面 水平反力U等于零 ③作用在井壁外侧的摩阻力T ④刃脚计算时重力g与前面相同 ⑤计算在刃脚外侧的钢筋(竖直) 数量
沉井与沉箱的定义、特点、用途及应用范围

沉井与沉箱的定义、特点、用途及应用范围1. 定义沉井是修筑地下结构和深基础的一种结构形式。
是先在地表制作成一个井筒状的结构物,然后在井壁的围护下通过从井内不断挖土,使沉井在自重及上部荷载作用下逐渐下沉,达到设计标高后,再进行封底。
沉箱基础又称之气压沉箱基础,它是以气压沉箱来修筑结(构)筑物的一种基础形式。
建造地下结(构)筑物时,在沉箱下部预先构筑底板,在沉箱下部形成一个气密性高的钢筋混凝土结构工作室,向工作室内注入压力与刃口处地下水压力相等的压缩空气,使其在无水的环境下进行取土排土,箱体在本身自重以及上部荷载的作用下下沉到指定深度,然后进行封底施工。
2. 特点(1)沉井与沉箱整体刚度大,抗震性好;(2)与地下施工相比更优越,地质适用范围更广;(3)沉井与沉箱结构本身兼作围护结构,且施工阶段不需要对地基作特殊处理,既安全又经济;(4)施工对周围环境影响小,尤其是气压沉箱工法,更适用于对土体变形敏感的地区;3. 用途及适用范围沉井与沉箱在工种中的应用已有百余年的历史,早在1841年法国工程师特利其尔(Triger)就提出用气压沉箱方法施工桥墩,1849 年首次应用成功,1900 年俄国工程师提出用钢筋混凝土的沉箱。
2 0 世纪30 年代,莫斯科及西欧的地下隧道、美国的桥梁基础均相应采用了沉井或沉箱结构。
自20 世纪50 年代起,我国已将该技术应用于各项工程中,其体积从直径仅2m 的集水井到巨大的泰州长江大桥中塔沉井(58.4m×44.4m×76m),为使沉井下沉记录能够不断被刷新,各种新型施工技术被开发研制并应用于实际工程中,从最早1946~1963 年间利用喷射压缩空气和触变泥浆下沉130m,到江阴长江大桥北锚沉井喷射高压空气减阻法下沉,以及振动法下沉技术,上述技术措施的不断革新都带来了良好的效果。
气压沉箱诞生的初期包括我国过去的沉箱施工也主要是以人工为主,沉箱下部工作空间小、气压高、温度大、噪音大,条件比较艰苦,又比较危险,工作效率低下,由于减压顺序的控制不当容易患较严重的职业病(称为沉箱病)。
沉井基础施工

沉井基础施工沉井一般由①井壁、②刃脚、③隔墙、④井孔、⑤凹槽、⑥射水管、⑦封底和⑧盖板等组成,如图2-5所示。
沉井在施工中具有独特优点:占地面积小;不需要板桩围护;与大开挖相比较,挖土量小;对邻近建筑的影响比较小;操作简便,无需特殊的专用设备。
图2-5 沉井基础示意图一、准备工作沉井钻孔要求:(1)面积在200m2以下(包括200m2)的沉井,应有一个钻孔(可布置在中心位置)。
(2)面积在200m2以上的沉井,在四角(圆形为相互垂直的两直径端点)应各布置一个钻孔。
(3)特大沉井可根据具体情况增加钻孔。
(4)钻孔底标高应深于沉井的终沉标高。
(5)每座沉井应有一个钻孔提供土的各项物理力学指标、地下水位和地下水含量资料。
二、沉井制作沉井的制作程序主要包括:测量定位、沉井分节、铺设承垫木、模板支设及拆除、施工缝处理等内容。
具体规定如下:1.平整场地(1)沉井位于浅水或可能被水淹没的岸滩上时,宜就地筑岛制作。
在地下水位较低的岸滩,若土质较好时,可开挖基坑制作沉井。
(2)在岸滩上或筑岛制作沉井,要先将场地平整夯实,以免在灌筑沉井过程中和拆除支垫时,发生不均匀沉陷。
若场地土质松软,应加铺一层30~50cm 厚的砂层,必要时,应挖去原有松软土层,然后铺以砂层。
当石渣、漂卵石等取材方便时,常不挖除松软土壤,可直接回填夯实,以便施工。
(3)沉井在制作至下沉过程中位于无被水淹没可能的岸滩上时,如地基承载力满足设计要求,可就地整平夯实制作;如地基承载力不够,应采取加固措施。
(4)沉井可在基坑中灌筑,但应防止基坑为暴雨所淹没。
并应注意观察洪水,做好防洪措施。
在总的进度安排中,应抓住枯水期的有利季节。
(5)运输线路,风、水管路,电力线的铺设以及混凝土厂起吊设备的布置等,均应事先详细计划,妥善安设,以免干扰沉井施工作业。
2.测量定位在沉井地点进行测量工作,应符合下列要求:(1)定位轴线应保证能随时可以检查沉井的下沉位置。
(2)检查沉井标高的临时水准点应设在沉井施工影响范围以外,且安全可靠的地方。
沉井的解析及应用

沉井的解析及应用一种收集污水的装置,在基坑上建成,用长臂挖机下沉到一定标高,再用顶管连成一体,做好流槽,盖上盖子就可,盖子一般现浇,密实性好,预制工期短。
沉井基础是以沉井法施工的地下结构物和深基础的一种型式。
是先在地表制作成一个井筒状的结构物(沉井),然后在井壁的围护下通过从井内不断挖土,使沉井在自重作用下逐渐下沉,达到预定设计标高后,再进行封底,构筑内部结构。
广泛应用于桥梁、烟囱、水塔的基础;水泵房、地下油库、水池竖井等深井构筑物和盾构或顶管的工作井。
技术上比较稳妥可靠,挖土量少,对邻近建筑物的影响比较小,沉井基础埋置较深,稳定性好,能支承较大的荷载。
中文名称:沉井英文名称:open caisson;sinking well;caisson其他名称:开口沉箱定义1:对横断面为圆形、方形或矩形,顶底都敞开的井筒,在井筒内挖土,并靠井筒自重下沉后接长井筒,继续挖土和浇筑混凝土建成的基础工程。
应用学科:电力(一级学科);水工建筑(二级学科)定义2:各种形状的无底筒式结构物,用于浇筑混凝土的基础工程。
应用学科:海洋科技(一级学科);海洋技术(二级学科);海洋工程(三级学科)定义3:由刃脚和井壁筒组成的结构物。
应用学科:煤炭科技(一级学科);矿井建设(二级学科);井巷掘进(三级学科)定义4:在圆形、方形或矩形,上下敞开的井筒内挖土,并靠井筒自重下沉后接长井筒,继续在井筒内开挖和浇筑混凝土的基础工程。
应用学科:水利科技(一级学科);水利工程施工(二级学科);地基处理(水利)(三级学科)采用沉井基础的桥梁1.国内规模最大的桥梁沉井基础:江阴长江公路大桥,锚锭的钢筋混凝土沉井,平面尺寸为69米×51米,下沉58米2.世界上规模最大的桥梁沉井基础:日本明石海峡大桥,主塔的钢壳沉井,平面尺寸为80米×70米和78米×67米,下沉60米3.采用沉井基础的其他结构物:取水泵房沉井基础的分类1.按沉井形状分(1)按平面形状分①圆形沉井:形状对称、挖土容易,下沉不宜倾斜,但与墩、台截面形状适应性差②矩形沉井:与墩、台截面形状适应性好,模板制作简单,但边角土不易挖除,下沉易产生倾斜③圆端形沉井:适用于圆端形的墩身,立模不便,但控制下沉与受力状态较矩形好(2)按立面形状分①柱形:构造简单,挖土较均匀,井壁接长较简单,模板可重复使用②阶梯形:除底节外,其他各节井壁与土的摩擦力较小,但施工较复杂,消耗模板多2.按沉井的建筑材料分:(1)混凝土沉井:下沉时易开裂(2)钢筋混凝土沉井:常用(3)钢沉井:多用于水中施工沉井基础的特点:将位于地下一定深度的建筑物或建筑物基础,先在地表制作成一个沉井,然后在井壁的围护下通过从井内不断挖土,使沉井在自由作用下逐渐下沉,达到预定设计标高后,再进行封底,构筑内部结构。
第四章沉井基础

8、沉井封底 沉井封底 基底检验合格后应及时封底。排水下沉时, 可采用普通混凝土封底;否则宜用水下混凝土封 底。若沉井面积大,可用多导管先外后内、先低 多导管先外后内、 多导管先外后内 后高依次浇筑。封底一般为素混凝土。 后高 9、井孔填充和顶板浇筑 井孔填充和顶板浇筑 封底混凝土达设计强度后,再排干井孔中水, 填充井内圬工。如井孔中不填料或仅填砾石,则 井顶应浇筑钢筋混凝土顶板,以支承上部结构。 然后砌筑井上构筑物,并拆除临时性井顶围堰。
二、水中沉井施工 1、水中筑岛 水中筑岛 当水深小于3m,流速≤1.5m/s时,可采用砂 或砾石在水中筑岛,周围用草袋围护;若水深或 流速加大,可采用围堤防护筑岛;当水深较大或 流速较大时,宜采用钢板桩围堰筑岛。岛面应高 出最高施工水位0.5 m以上。围堰筑岛时,围堰 距井壁外缘距离应满足一定要求。其余施工方法 与旱地沉井施工相同。
(7)、封底 封底:沉至设计标高进行清基后,在刃脚 封底 踏面以上至凹槽处浇筑混凝土形成封底。防止地 下水涌入井内,并承受地基土和水的反力。封底 顶面高出凹槽0.5m,厚度由应力验算决定。混凝 土强度≥C15,填充混凝土≥C10。 (8)、顶板 顶板:沉井封底后,为节省圬工量,减轻 顶板 基础自重,可做成空心沉井基础,或仅填砂石, 此时须在井顶设置钢筋混凝土顶板。顶板厚度一 般为1.5-2.0 m,钢筋配置由计算确定。
(4)、按立面形状 立面形状分为:柱形、阶梯形和锥形 立面形状 柱形沉井:受土体约束较均衡,下沉不易倾斜, 柱形沉井 井壁接长简单,模板可重复利用;侧阻力较大, 当土体密实,下沉深度较大时,易出现下部悬空。 用于入土不深或土质较松软的情况。 阶梯形沉井、锥形沉井 阶梯形沉井、锥形沉井:井壁摩阻力小;施工较 复杂,消耗模板多,沉井下沉过程中易发生倾斜。 用于土质较密实,沉井下沉深度大,且要求沉井 自重不太大时。锥形沉井井壁坡度为1/20-1/40, 阶梯形井壁的台阶宽约为100-200mm。
基础工程(第二版)沉井

11.08.2021
.
19
11.08.2021
式中:W为基底的截面模量。
11.08.2021
.
25
求得z0、tgω,代入式(5-3)和式(5-4),进而求得
zx6AHhz(z0 z)
d
2
3dH
A
当有竖向荷载N及水平力H同时作用时,则基底边缘
处的压应力为
m ax m in
N A0
3AHd
式中A0——基础底面积。
离地面或最大冲刷线以下z深度处基础截面上的弯矩
地基经检验及处理合乎要求后,应立即进行封底。如 封底是在不排水情况下进行,则可用导管法浇注水下混凝 土,待混凝土达设计强度后,再抽干井孔中的水。
11.08.2021
.
17
11.08.2021
.
18
三、水上沉井的施工
水上施工沉井有两种方法,如果水的流速不大,水 深在3或4m以内,可用水中筑岛的方法;如果水深较大, 筑岛法很不经济,且施工也困难,可改用浮运法施工, 沉井在岸边做成,利用在岸边铺成的滑道滑入水中,然 后用绳索引到设计墩位。
.
30Leabharlann 由朗金土压力理论可知 zxco4s(ztgc) 式中 为土的重度,和c分别为内摩擦角和粘聚力。
桥梁结构中,根据试验可知出现最大的横向抗力大 致在深度 z=h/3和z=h处h 3x,即12c4os3htgc
hx12c4oshtgc 式中hx/3 ——相应于z=h/3深度处的土横向抗力;
简述沉井基础的使用范围

简述沉井基础的使用范围
沉井基础是一种常用的地基工程技术,广泛应用于建筑、桥梁、码头等工程领域。
它是通过在地面上挖掘深井,然后将混凝土灌注到井内,形成一个坚固的基础结构。
沉井基础的使用范围非常广泛,下面将从多个角度来介绍其应用领域。
沉井基础适用于建筑工程中的高层建筑。
由于高层建筑的自重较大,地基的稳定性是确保建筑物安全的关键。
沉井基础能够通过深入地下,将建筑物的重量分散到更深的土层,增加地基的稳定性,从而确保高层建筑的安全性。
沉井基础也广泛应用于桥梁工程中。
桥梁是连接两个地点的重要交通设施,承受着车辆和行人的重量和振动。
为了确保桥梁的稳定性和安全性,需要在桥墩的下方设置沉井基础。
沉井基础能够通过深入地下,将桥墩的重量分散到更深的土层,增加桥梁的承载能力和稳定性。
沉井基础还适用于码头工程。
码头是船舶停泊和货物装卸的重要场所,承受着巨大的水平和垂直载荷。
为了确保码头的稳定性和安全性,需要在码头的下方设置沉井基础。
沉井基础能够通过深入地下,将码头的重量分散到更深的土层,增加码头的承载能力和稳定性。
沉井基础还可以应用于其他工程领域,如水坝、高架等。
无论是哪个领域,沉井基础都能够通过深入地下,增加地基的稳定性,从而
确保工程的安全性和稳定性。
沉井基础的使用范围非常广泛,几乎可以应用于所有需要增加地基稳定性的工程领域。
它通过深入地下,将结构的重量分散到更深的土层,增加地基的承载能力和稳定性。
无论是建筑、桥梁、码头还是其他工程领域,沉井基础都是一种可靠的地基工程技术。