轴对称中几何动点最值问题总结

合集下载

初中数学中利用轴对称性求最值问题例析_王水友

初中数学中利用轴对称性求最值问题例析_王水友

段两端的距离相等知,PA=PD,所以求 PC+PD 的最
小值就转化为求 PC+PA 的最小值,即求 AC 的长度
即可。
例 2 已知抛物线
y
y =ax2 + c 经 过 A (0,1), P(2姨 3 ,-3)。
(1) 求 抛 物 线 的 解 析 式 并 判 定 C( 姨 3 ,0) 是否在此抛物线上;
A
D
C
O
x
M
P
(2) 点 M 是 抛 物 线
对称轴上的动点,连 MP、MC,试 求△PCM 周 长 的 最
小值。
【分析】 此题第二问是二次函数中利用轴对称
性求三角形周长的最小值问题 。由于 PC 的长度 保
持不变,要使△PCM 的周长最小,只要使 CM+MP的
值最小即可,这样问题就转化成例 1 的类型。
和点 B(2,1)。 (1) 求 此 抛 物 线 解
析式; (2) 点 C、D 分别是
x 轴和 y 轴上的动点, 求 四 边 形 ABCD 的 周 长的最小值。
y A′(-1,3)
D
A(1,3)
B(2,1)
E
C
x
B′(2,-1)
(3) 过 点 B 作 x 轴 的 垂 线 ,垂 足 为 E 点 ,点 P
A
N
B 线 时 ,BN′ 的 长 就 是 BM + MN 的 最 小 值 ,而 BN′大 于
或等于 BH,所以 BH 的长就是 BM+MN 的最小值,
容易算出 BH=4。
(五) 两动两定型
已知两定点,分别在两条直线上找两点,使这
两点与已知两定点构成的四边形周长最小。
例 7 已知抛物线 y=ax2+bx+1 经过点 A(1,3),

对称问题和最值问题

对称问题和最值问题

补充练习
1、如果AC 0, BC 0, 则直线Ax By C 0 不通过() ( A)第一象限( B)第二象限(C )第三象限( D)第四象限
2、已知 By C 0的图形如下,则() Ax
A、若C>0;0,B>0 C、若C<0,则A>0,B<0 D、若C<0,则A>0,B>0 y x
初中我们证明过这样一个问题:
等腰三角形底边上任一点到两腰的距离之和等于
一腰上的高。
你能用解析几何的方法证明此问题吗?
③点C(a,b)关于直线y=m的对称点为 C‘(a,2m-b)
④点D(a,b)关于直线x=n的对称点为 D‘(2n-a,b) ⑤点E(a,b)关于直线y=x的对称点为 E‘(b,a) ⑥点F(a,b)关于直线y=-x的对称点为 F‘(-b,-a) ⑦点P(a,b)关于直线y=x+m的对称点为 P‘(b-m,a+m) ⑧点Q(a,b)关于直线y=-x+n的对称点为 Q‘(-b+n,-a+n)
和l2:x+y+6=0截得的线段长为5,求直线l的方程。
例:一等腰三角形的底边所在直线l1的方程为x+y-1=0,
一腰所在直线l2方程为x-2y+1=0,又另一腰所在直 线l3过点(-2,0),求l3的直线方程。
补充练习
下列命题是真命题的是 A、 经 过 (x 0,y 0 的 直 线 都 可 以 写 成 P ) y - y 0 k ( x x0 ) B、 经 过 任 意 两 个 不 同 点P1 x1 , y1 ), P2 ( x 2 , y2 ) 的( 的 直 线 都 用 - y 1 )( x 2 x1 ) ( x x1 )( y2 y1 ) (y 表示 x y C、 不 经 过 原 点 的 直 线 可 以 用 1表 示 都 a b D、 经 过 定 点 (0, b )的 直 线 都 可 以 用 kx b表 示 A y

第八课解析几何中的最值定值对称问题

第八课解析几何中的最值定值对称问题

二轮复习之八解析几何中的最值、定值、对称问题一、最值问题 (1)函数法例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2219x y +=上移动,试求PQ 的最大值。

练习:若(,0)A a ,P 为双曲线221169x y -=上一点,若P 为双曲线左顶点时,AP 长度最小,则_____________∈a(2)不等式法例2、已知:21,F F 是椭圆)0(12222>>=+b a b y a x 的两个焦点,P 是椭圆上任一点。

证明:(1)当P 为椭圆短轴端点时,三角形21F PF 面积最大。

(2)当P 为椭圆短轴端点时,21F PF ∠最大。

练习:设21,F F 是椭圆1422=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ∙的最大值是(3)几何法例题:函数8x 4x 73x 6x y 22+-+++=的最小值为____________。

练习:函数1)4x (25)4x (y 22++-+-=的最大值为M ,最小值为N ,则M -N=_________ 二、定值问题例题:如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹。

练习:在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.三、对称问题 (1)代入法对称例题:已知双曲线C :1222=-y x ,点M (0,1),设P 是双曲线上的点,Q 是点P 关于原点的对称点,记t =的范围求t ,∙练习:曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.(2)解析法对称例题:已知椭圆方程为13422=+y x ,试确定实数m 的取值范围,使得椭圆上有不同的两点关于直线m x y +=4对称。

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相似比得出方程。

⑤利用a、t范围,运用不等式求出a、t的值。

①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。

⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

专题复习1:利用轴对称求最值_

专题复习1:利用轴对称求最值_

专题复习1:利用轴对称求最值Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。

即将连接两点的折线转化为线段最短问题1.直接运用两点间线段最短解决问题.例:如图8,已知A(1,1)B(3,-3),C为x轴上一个动点,当AC+BC最小时,C点坐标为,此时AC+BC的最小值为.练习:如图9,四边形ABCD为边长为5的正方形,以B为圆心4为半径画弧交BA与M,交BC于N,P在MN上运动,则PA+PB+PC的最小值为.2.平移后应用两点间线段最短例:已知:如图10,A(1,2),B(4,-2),C(m,0),D(m+2,0)(1)在图中作出当AC+CD+DB最小时C点的位置,并求出此时m的值(2)求AC+CD+DB的最小值.练习:如图11,NP,MQ为一段河的两岸(河的两侧为平坦的地面,可以任意穿行),NP∥MQ,河宽PQ 为60米,在NP一侧距离河岸110米处有一处藏宝处A,某人从MQ一侧距离河岸40米的B处出发,随身携带恰好横穿(与河岸垂直)河面的绳索(将绳索利用器械投掷至河对岸并固定,人扶绳索涉水过河),请计算此人从出发到目的地最少的行进路程,并确定固定绳索处(MQ一侧)到B处的最近距离.3.旋转后应用两点间线段最短例:如图12,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31+时,求正方形的边长.练习:点O 为正方形ABCD内一点,(1)正方形边长为4,求OB+OD的最小值(2)若OB+OC+OD的最小值为26+,求正方形的边长4.对称后应用两点间线段最短数学模型已知:如图14,直线l 及直线同侧两点P、Q,在直线l 上求作点M,使线段PM+QM最小,并说明理由关系探究上图中:相等的角:线段关系:类型一:单动点单对称轴(直线同侧两线段和转化为异侧,进而应用两点间线段最短)练习:1.如图15,已知菱形ABCD的边长为6,M、N 分别为AB、BC边的中点,P为对角线AC上的一动点,则PM+PN的最小值.2. 如图16,已知菱形ABCD的边长为6,点E为AB边的中点,∠BAD=60°,点P为对角线AC上的一动点,则PE+PB的最小值..3. 如图17,已知正方形ABCD的边长为2,点M为BC 边的中点,P为对角线BD上的一动点,则PM+PC的最小值4. 如图18,正方形ABCD的面积为a,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,PD+PE的和最小值为4,则a= .5.如图19,已知⊙O的半径为1,AB、CD为⊙O的两互相垂直的直径,点M在弧AD上,且∠MOD=30°,点P为半径OD上的一动点,则PM+PA的最小值.6. 如图20,已知⊙O的半径为1,AB为⊙O的直径,C是⊙O上的一点,且∠CAB=30°点M是弧CB的中点,,点P为直径AB上的一动点,则PM+PC的最小值.7.如图21,⊙O的直径为10,A,B在圆周上,AC⊥MN,BD⊥MN,AC=6,BD=8.P为MN上一个动点,则PA+PB的最小值为.8.如图22,已知∠AOB=60°,OA=6,C为OA的中点,OD平分∠AOB,M为OD上一动点,则AM+CM的最小值为9.如图23,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为.10.如图24,已知抛物线y=x2-2x-3,与x轴相交于点A、B两点(点A在点B的左边),与y轴相较于点C,P 为抛物线对称轴上的一点,则PO+PC的最小值是.11.如图25,以正方形ABCD中AB为边向外作等边三角形AMB,N为对角线BD上一点,若AN+MN的最小值为2226,则正方形边长为.12.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设C为AB的中点,P为OB上一动点,求PC+PA取最小值时P点的坐标.13.如图27,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由14.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.类型二:双动点单对称轴(在类型一基础上应用垂线段最短)例:如图,已知∠CAB=30°,BA=6,AF平分∠BAC,P,Q分别为AB,AF上的动点,则BQ+PQ的最小值为练习:1.如图29,正方形ABCD中,AE为∠BAC的平分线,M,N分别为AE,AB上的动点,若MN+BM最小值为3,则正方形边长为.2.如图30,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D, M、N分别是AD和AB上的动点,则BM+MN的最小值是___________ .3.如图31,矩形ABCD中,AB=6,BC=8,M,N分别为BD,BC上的动点,则CM+MN的最小值为. 类型三:单动点双对称轴例:如图32,已知:∠AOB=30°,P为∠AOB内一点,OP=6,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.练习:1.如图33,已知:∠AOB=60°,P为∠AOB内一点,OP=10,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.2.如图34,两个镜子成45°角,P为夹角内一个光源,P距离交点2米,光线从P发出后经过OB,OA反射后经过点P,则光线经过的路线长为.3.如图35,已知A(3,2)为坐标平面上一点,在x,y 轴上确定点M,N,使△AMN周长最小,并求出此时M,N坐标.类型四. 双动点双对称轴例:已知P,Q为∠AOB内两个定点,M,N分别为OA,OB上的动点。

有关坐标对称及最值问题5种题型

有关坐标对称及最值问题5种题型

坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。

这类问题需要运用对称思想,以及寻找最值的方法。

下面列举了5种常见的题型及相应的解法。

题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。

对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。

解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。

题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。

解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。

题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。

解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。

题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。

解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。

题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。

解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。

总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。

对于不同类型的题目,我们需要灵活运用这些方法来解决问题。

同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。

希望以上信息对您有所帮助。

如果您有任何具体问题或需要进一步的解释,请随时告诉我。

(完整word版)与轴对称相关的最值问题

(完整word版)与轴对称相关的最值问题

图(5)CEDPBA 与轴对称相关的最值问题【典型题型一】:如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P,使PA+PB 最小.【典型题型二】如图,直线l 和l 的同侧两点A 、B,在直线l 上求作一点P ,使PA+PB 最小。

【练习】1、(温州中考题)如图(5),在菱形ABCD 中,AB=4a ,E 在BC 上,EC=2a ,∠BAD=1200,点P 在BD 上,则PE+PC 的最小值是( )解:如图(6),因为菱形是轴对称图形,所以BC 中点E 关于对角线BD 的对称点E 一定落在AB 的中点E 1,只要连结CE 1,CE 1即为PC+PE 的最小值。

这时三角形CBE 1是含有300角的直角三角形,PC+PE=CE 1=23a 。

所以选(D )。

2、如图(13),一个牧童在小河南4英里处牧马,河水向正东方流去,而他正位于他的小屋B 西8英里北7英里处,他想把他的马牵到小河边去饮水,然后回家,他能够完成这件事所走的最短距离是( )(A ) 4+185英里 (B ) 16英里(C ) 17英里 (D) 18英里3.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC 。

已知AB=5,DE=1,BD=8,设CD=x.请问点C 满足什么条件时,AC +CE 的值最小?4.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上 一动点,则EC +ED 的最小值为_______。

即是在直线AB 上作一点E ,使EC+ED 最小作点C 关于直线AB 的对称点C ’,连接DC'交 AB 于点E,则线段DC ’的长就是EC+ED 的最小值。

在直角△DBC'中DB=1,BC=2, 根据勾股定理可得,DC'=错误!5.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边 上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小 作点B 关于AC 的对称点B',连接B ’E ,交AC 于点P,则B’E = PB'+PE = PB+PE B ’E 的长就是PB+PE 的最小值 在直角△B'EF 中,EF = 1,B'F = 3根据勾股定理,B'E = 错误!6.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内, 在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .2错误! B .2错误! C .3 D .错误!即在AC 上求一点P ,使PE+PD 的值最小点D 关于直线AC 的对称点是点B ,连接BE 交AC 于点P,则BE = PB+PE = PD+PE ,BE 的长就是PD+PE 的最小值BE = AB = 2 37.如图,若四边形ABCD 是矩形, AB = 10cm,BC = 20cm ,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PD 的最小值; 作点C 关于BD 的对称点C ’,过点C',作C ’B ⊥BC ,交BD 于点P ,则C ’E 就是PE+PCFP B'EACBC'DACBEPE BCD A H PEC'D ACB的最小值直角△BCD 中,CH = 错误!错误!未定义书签。

中考数学复习:专题三:动点或最值问题

中考数学复习:专题三:动点或最值问题

点拨:在 Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO = 22-12= 3,①当点 P 从 O→B 时,如图 1、图 2 所示,点 Q 运动的 路程为 3;②当点 P 从 B→C 时,如图 3 所示,这时 QC⊥AB,则∠ACQ =90°,∵∠ABO=30°,∴∠BAO=60°,∴∠OQD=90°-60°= 30°,∴cos30°=ACQQ,∴AQ=cosC3Q0°=2,∴OQ=2-1=1,则点 Q 运动的路程为 QO=1;③当点 P 从 C→A 时,如图 3 所示,点 Q 运动的 路程为 QQ′=2- 3;④当点 P 从 A→O 时,点 Q 运动的路程为 AO=1, ∴点 Q 运动的总路程为 3+1+2- 3+1=4,故答案为 4
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
解决最值问题的两种方法: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连接直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆的所有弦中,直径最长. (2)运用代数证法: ①运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式.
【例 2】 (2016·雅安)如图,在矩形 ABCD 中,AD=6,AE⊥BD, 垂足为 E,ED=3BE,点 P,Q 分别在 BD,AD 上,则 AP+PQ 的最小 值为( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称中几何动点最值问题总结
轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。

比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。

利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:
(1)两点之间线段最短;
(2)三角形两边之和大于第三边;
(3)垂线段最短。

初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,
点两线三类线段和的最值问题。

下面对三类线段和的最值问题进行分析、讨论。

问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。

核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。

方法:1.定点过动点所在直线做对称。

2. 连结对称点与另一个定点,则直线段长度就是我们所求。

变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。

1.如图,直线I和I的同侧两点A B,在直线I上求作一点P,使PA+PB最小。

问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个
动点使线段和最短核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。

变异类型:
1.如图,点P是/ MON内的一点,分别在OM ON上作点A, B。

使△
PAB的周长最小。

(3)两点两线的最值问题:(两个动点+两个定点)
问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点
间的距离保持不变。

核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。

变异类型:
1.如图,点P, Q为/ MON内的两点,分别在OM ON上作点A,B。

使四边形PAQB勺周长最小。

2.如图, 点A是/ MON外的一点,在射线OM上作点P,使PA与点P到射线ON的距离之和最
小。

、1

Q f
2•如图,已知A (1 , 3), B (5, 1),长度为2的线段PQ在x轴上平行移动,当AP+PQ+QB 的值最小时,点P的坐标为()
\■
Z
O戸Q
3.
核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两
点之间线段最短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点
与直线上各点的所有线段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。

变异类型:演变为多边形周长、折线段等最值问题。

1.如图,点A是/ MON内的一点,在射线ON上作点P,使PA与点P到射线0M的距离之和最小。

、常见题目
Parti、三角形
1.如图,在等边厶ABC中,AB=6, AD丄BQ E是AC上的一点,M是AD上的一点,且AE=2, 求EM+EC勺最小值。

2.如图,在锐角厶ABC中,AB=42 / BAC= 45 °,/ BAC的平分线交BC于点D, M N分别
是AD和AB上的动点,贝U BM+M的最小值是_____
3.如图,△ ABC中,AB=2, / BAC=30 ,若在AC AB上各取一点M N,使BM+M的值最小, 则这个最小值。

30u
Part2、正方形
1 如图,正方形ABCD勺边长为8, M在DC上,丐DM= 2, N是AC上的一动点,DN+ MN的最小值为_________________ 。

即在直线AC上求一点N,使DN+M最小。

2.如图所示,正方形ABCD的面积为12,^ ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD^ PE的和最小,则这个最小值为()
A. 2..3 B . 2、6 C . 3 D . ■ 6
4.如图,四边形ABCD是正方形, 求
PC+PE的最小值;
也中点, P为BD上的一个动点;
AB = 10cm , E 为边B
Part3、矩形
1.如图,若四边形ABCD是矩形,AB = 10cm BC= 20cm, E为边BD上的一个动点,求PC+PD的最小值;
Part4、菱形1.如图,若四边形ABCD是菱形,AB=10cm / ABC=45 , E为边BD上的一个动点,求PC+PE
的最小值;BC上的一个动点,P为
BC上的一个动点,P为
Part5、直角梯形
1.已知直角梯形ABCD中,AD// BC AB丄BC AD=2, BC=D(=5,点P在BC上秱动,则当PA+PD )
Part6、一次函数
一次函数y二kx+ b的图象与x, y轴分别交于点A(2,0), B(0,4).
(1)求该函数的解析式;
(2)O为坐标原点,设OA, AB的中点分别为C,D , P 为0B上一动点,求PC+ PD 的最小值,并求取得最小值时P点坐标.。

相关文档
最新文档