储水罐液位计算机控制系统设计
基于DCS实验平台实现的水箱液位控制系统综合设计

基于DCS实验平台实现的水箱液位控制系统综合设计水箱液位控制系统是一种常见的自动控制系统,用于控制水箱中水的液位,并实现自动注水或放水。
在本综合设计中,我们基于DCS(Distributed Control System)实验平台实现了一套水箱液位控制系统。
DCS是一种分布式控制系统,由多个控制器通过网络连接,并共享信息和资源,实现综合控制和监测。
本设计包含以下组成部分:1.水箱:水箱是整个系统的控制对象,用于存储水。
我们使用了一个实验型水箱,通过电动阀门来控制水的流入和流出。
2.传感器:系统中使用了液位传感器来监测水箱中水的液位。
通过传感器,我们可以获取实时的液位数据。
3.执行器:系统中使用了电动阀门作为执行器,用于控制水的注入和排出。
电动阀门可以根据控制信号打开或关闭,实现自动控制。
4.控制器:我们使用了DCS实验平台提供的控制器来实现水箱液位控制算法。
控制器通过接收传感器的反馈信号,并根据设定点和控制算法计算出相应的控制信号,再通过通信网络发送给执行器。
5.计算机界面:我们使用了DCS实验平台提供的计算机界面来监测和操作水箱液位控制系统。
通过计算机界面,操作人员可以实时查看水箱液位、设定控制参数,并监控系统的运行状态。
在系统运行时,控制器会不断地读取传感器的反馈信号,并根据设定点和控制算法计算出相应的控制信号。
控制信号通过通信网络发送给执行器,执行器根据控制信号打开或关闭电动阀门,实现水的自动注入或排出。
同时,系统的运行状态和液位数据会通过计算机界面实时显示,方便操作人员监控和调整。
实验结果表明,我们设计的水箱液位控制系统能够准确地控制水箱中的液位,并实现自动注水或放水的功能。
通过DCS实验平台的分布式控制和监测能力,系统的可靠性和稳定性得到了有效提高。
通过本实验,我们深入了解了水箱液位控制系统的原理和设计方法,熟悉了DCS实验平台的使用,并通过实践掌握了水箱液位控制系统的综合设计过程。
总之,基于DCS实验平台的水箱液位控制系统综合设计是一个充满挑战但又非常有意义的实验项目,通过实验我们可以提升我们在自动控制和DCS技术方面的能力,并为工业自动化控制系统的设计和实施奠定基础。
基于MCGS组态编程的液位控制系统设计

摘要应用组态软件设计一个仿真实验监控系统,实现对实际工程问题的过程控制,现在我们的具体问题是实现对水箱液位过程控制。
为了能设计一个解决实际工程问题的仿真实验监控系统,我们可以基于各种组态软件来设计这个仿真平台.而MCGS组态软件具有操作简便、可视性好、可维护性强、高性能等突出特点,它可以快速构造和生成上位机监控系统,并可稳定运行于多种操作系统.。
以MCGS组态软件为开发平台,设计一个仿真实验监控平台来实现对实际工程问题的控制.不仅能对水箱的液位进展监控,采集实验数据建立实验报表,而且能够脱机进展仿真实验、模拟控制。
为了能够很好的实现对水箱液位控制系统的仿真,综合考虑多方面的因素,本文将用MCGS组态软件设计一个仿真实验监控平台来对其进展实时控制.具体地,要将MCGS组态软件实现此方案。
在该系统中,利用MCGS组态软件完成数据采集、控制信息输出以及人机交互等工作,完成仿真实验监控平台的设计,最终到达对水箱液位实时监控,实验数据采集,报表的输出和数据的同步显示。
关键词:MCGS组态软件;液位系统;仿真实验AbstractTo design a simulation experiment monitoring platform with application configuration software, realizing the actual engineering problems of process control, currently, our concrete problem is to achieve the temperature of the boiler and water tank level process control.In order to be able to solve real engineering problems to design a simulation experiment monitoring platform, we can base on a variety of configuration software to design this simulation platform. The MCGS configuration software has simple operation, perfect visibility, strong maintainability, high performance and other salient features. It can construct and generate hostputer monitoring system quickly, and can be run on different kinds of operating systems steadily.With MCGS configuration software development platform, designing a simulation experiment monitor platform to achieve the process control of the actual engineering problems. Not only can monitorthe level of the water tank and the temperature of the boiler, gathering the experiment data and establishing experiment reports, but also can do the off-line simulation experiment, simulation control.In order to control the water tank level and the water temperature of boiler well. Take a prehensive consideration on various factors; this article will design a simulation experiment monitoring platform with MCGS configuration software to achieve the real-time control for this system. Specifically, we should use MCGS configuration software to implement this program. In this system, realizing the data acquisition, controlling information output, as well as the human-machine interaction by the MCGS configuration software, and acplishing the design of the simulation experiment monitoring platform, which can to achieve the level of the water tank and the water temperature of the boiler in real-time monitoring, experimental data collection, report forms of the output and synchronized curve display ultimately.Key Words:MCGS configuration software; liquid level system; simulation experiment目录1绪论错误!未定义书签。
蓄水池液位控制系统课程设计

南华大学过程控制仪表课程设计设计题目PLC控制的蓄水池液位系统学生姓名吴港南专业班级自动化1002班学号***********指导老师刘冲目录1.设计的目的和意义 (2)1.1设计目的 (3)1.2设计意义 (3)2.控制系统工艺流程及控制要求 (4)2.1基本任务 (4)2.2基求控制要求 (4)2.3给定条件 (4)2.4主要性能指标 (4)2.5工艺流程图 (5)3.总体设计方案 (6)3.1控制方法选择 (7)3.1.1控制方法选择 (7)3.1.2系统组成 (7)3.2系统组成 (8)4.软硬件设计 (8)4.1建模过程 (8)4.2硬件开发及系统配置 (10)4.2.1PLC系统—CPU、模/数转换模块、数/模转换模块 (10)4.2.1回路表 (10)4.2.2PID指令 (11)4.2.3程序流程图 (12)4.2.4程序 (14)5.课程设计实验 (18)6.遇到的问题及解决方法 (18)7.收获和体会 (19)参考文献 (19)·第1章设计的目的及意义1.1设计目的对蓄水池液位/压力控制系统。
这是一个单回路反馈控制系统,控制的任务是使水箱的液位/压力等于给定值,减小或消除来自系统内部或外部扰动的影响。
用液位/压力参数为被控对象。
交流电动机带动齿轮泵通过阀1向上水箱供水,调节阀2使之同时向外排水,令入水的速度大于出水的速度,达到被控参数(液位/压力)的动态调整。
1.2设计意义在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。
因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。
可编程控制器(PLC)是计算机家族中的一员,是为工业控制应用而设计制造的,主要用来代替继电器实现逻辑控制。
双储液罐水位控制系统

前 言随着工业自动化水平的迅速提高,计算机在工业领域的广泛应用,人们对工业自动化的要求越来越高,种类繁多的控制设备和过程监控装置在工业领域的应用,传统的工业控制软件已无法满足用户的各种需求。
在开发传统的工业控制软件时,当工业被控对象一旦有变动,就必须修改其控制系统的源程序,导致其开发周期长;已开发成功的工控软件又由于每个控制项目的不同而使其重复使用率很低,导致它的价格非常昂贵;在修改工控软件的源程序时,倘若原来的编程人员因工作变动而离去时,则必须同其他人员或新手进行源程序的修改,因而更是困难。
通用工业自动化组态软件的出现为解决上述实际工程问题提供了一种崭新的方法,因为它能够很好地解决传统工业控制软件存在的种种问题,使用户能根据自己的控制对象和控制目的的任意组态,完成最终的自动化控制工程。
组态控制技术作为计算机控制技术发展的产物,其先进性和实用性已经被工业现场的广大技术人员认可并得到广泛应用。
组态软件适用于许多工业领域,因为其功能强大而倍受青睐。
一.本课题研究的背景双储液罐水位控制系统被控对象由上、下两个储液罐组成,上、下水位和温度分辨经2个压力变送器和温度变送器检测后,通过安装在出水管网上的远传压力传感器将压力信号转化为4-20mA的标准信号送入PLC,经PID运算与给定压力参数进行比较,得出调节参数,送给变频器,由变频器控制水泵转速,调节系统供水量,使系统的供水管网压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制器加泵。
根据用户用水量的大小来控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。
当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以压力设定值为基准的闭环控制系统。
二.组态软件的介绍组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。
罐区计算机控制系统设计与开发

罐区计算机控制系统设计与开发陈再良(湖南长岭炼油化工总厂计算机应用研究所,414012) 摘要:简述了一套由GE FANUC 的System90230与PC 机组成的分散型控制系统。
并且从系统的设计思想、所实现的功能以及系统在油罐区应用的特点进行了较详细的叙述。
关键词:操作站 控制站 罐量计算 事件驱动 网络 随着电子信息技术应用的迅猛发展和工业水平的提高,工业控制对象也变得大型化和复杂化,工业控制规模由局部控制发展到整个生产装置的全过程控制、优化和调度,乃至整个工厂的控制和管理一体化。
本文介绍的罐区计算机控制系统就是为了适应我厂电子信息技术应用发展的要求设计并开发出来的。
1 原系统存在的问题1.1 我厂原罐区计算机控制系统存在的问题1)原系统为国内一家公司首次开发的非标准化I/O 模件,不便于维护。
2)系统只有一级控制,可靠性、安全性都很差,再加之手动也是通过计算机I/O 起作用,计算机万一出故障,手操也起不了作用。
3)系统不具有网络功能,数据不能共享,各个数据采集站各采一部份数据,相互之间没有信息连通,因而罐区实时报表难以实现,各个操作站之间不能互为热备份。
4)系统没有高级语言接口,不便于开发先进控制和复杂控制。
5)系统不易于扩展。
112 新系统开发的原则针对原系统存在的问题及我厂电子信息技术的发展规划,我们在对原系统进行改造时,提出了如下原则:1)改造后的新系统必须满足长远发展的要求,从规模上讲,要能够达到75个罐的控制和管理,因此系统必须便于扩展,软件上必须便于重新组态、开发。
2)系统必须采用局域网结构,同时必须具有与全厂主干网联网的接口。
3)系统必须是二级控制,以保证系统的安全性和可靠性。
4)系统应用软件必须具有高级语言接口功能,便于优化控制程序的开发。
5)人2机界面友好,画面直观,操作简单。
2 系统组成根据上述的原则和罐区使用现场的实际,我们设计并建立了1套如图1所示的油罐区计算机测控管理系统。
基于PLC的液位控制系统研究毕业设计(论文)

毕业设计论文基于PLC的液位控制系统研究摘要本文设计了一种基于PLC的储罐液位控制系统。
它以一台S7-200系列的CPU224和一个模拟量扩展模块EM235进行液位检测和电动阀门开度调节。
系统主要实现的功能是恒液位PID控制和高低限报警。
本文的主要研究内容:控制系统方案的选择,系统硬件配置,PID算法介绍,系统建模及仿真和PLC编程实现。
本设计用PLC编程实现对储罐液位的控制,具有接线简单、编程容易,易于修改、维护方便等优点。
关键字:储罐;液位控制;仿真;PLCAbstractThis article is designed based on PLC, tank level control system. It takes a series s7-200 CPU224 and an analog quantities of EM235 expansion module to level detection and electric valve opening regulation.System main function is to achieve constant low level PID control and limiting alarm.The main contents of this paper: the choice of the control system plan, system hardware configuration, PID algorithm introduced, system modeling and simulation, and PLC programming. PLC programming with the design of the tank level control have the advantage of simple wiring, easy programming, easy to modify, easy maintenance and so on.Key word: tank ; level ;control ;simulation ;plc目录摘要 (I)ABSTRACT ........................................................... I I 1 绪论. (1)1.1盐酸储罐恒液位控制任务 (1)1.2本文研究的意义 (2)1.3本文研究的主要内容 (2)2 控制系统方案设计 (3)2.1储罐液位控制的发展及现状 (3)2.2系统功能分析 (3)2.3系统方案设计 (4)3 系统硬件配置 (5)3.1电动控制阀的选择 (5)3.1.1 控制阀的选择原则 (5)3.1.2 ZAJP 精小型电动单座调节阀性能和技术参数介绍 (10)3.2液位测量变送仪表的选择 (13)3.2.1 液位仪表的现状及发展趋势 (13)3.2.2 差压变送器的测量原理 (13)3.2.3 差压式液位变送器的选型原则 (14)3.2.4 DP系列LT型智能液位变送器产品介绍 (15)3.3PLC机型选择 (16)3.3.1 PLC历史及发展现状 (16)3.3.2 PLC机型的选择 (18)3.3.3 S7-200系列CPU224和EM235介绍 (20)4 PID算法原理及指令介绍 (21)4.1PID算法介绍 (22)4.2PID回路指令 (24)5 系统建模及仿真 (28)5.1系统建模 (28)5.2系统仿真 (30)5.2,1 MATLAB语言中Simulink交互式仿真环境简介 (30)5.2.2 系统仿真 (31)第6章系统编程实现 (33)6.1硬件设计 (33)6.1.1 绘制控制接线示意图 (33)6,1.2 I/O资源分配 (33)6.2软件设计 (34)6.2.1 STEP 7 Micro/Win V4.0 SP6编程软件介绍 (34)6.2.2 恒液位PID控制系统的PLC控制流程 (35)6.2.3 编写控制程序 (36)6.2.4 程序清单 (39)结束语 (40)参考文献 (41)致谢 (42)1 绪论1.1 盐酸储罐恒液位控制任务如图1.1所示为某化工厂稀盐酸储罐,该罐为钢衬聚四氟乙烯储罐,罐体高6米,容量为50立方米,重500千克。
基于PLC的液位控制系统的方案设计书

因为有两个水箱,所以把它分成两个部分来分别设计。
系统设计 1 上水箱液位的自动调节在这个部分中控制的是上水箱的液位。
系统原理图如图2-1所示。
单相泵正常运行,打开阀1和阀2,打开上水箱的出水阀,电动调节阀以一定的开度来控制进入水箱的水流量,调节 ...<P>因为有两个水箱,所以把它分成两个部分来分别设计。
<BR>系统设计<BR>1 上水箱液位的自动调节<BR>在这个部分中控制的是上水箱的液位。
系统原理图如图2-1所示。
单相泵正常运行,打开阀1和阀2,打开上水箱的出水阀,电动调节阀以一定的开度来控制进入水箱的水流量,调节手段是通过将压力变送器检测到的电信号送入中,经过A/D变换成数字信号,送入数字PID调节器中,经PID算法后将控制量经过D/A转换成与电动调节阀开度相对应的电信号送入电动调节阀中控制通道中的水流量。
<BR>当上水箱的液位小于设定值时,压力变送器检测到的信号小于设定值,设定值与反馈值的差就是PID调节器的输入偏差信号。
经过运算后即输出控制信号给电动调节阀,使其开度增大,以使通道里的水流量变大,增加水箱里的储水量,液位升高。
当液位升高到设定高度时,设定值与控制变量平衡,PID调节器的输入偏差信号为零,电动调节阀就维持在那个开度,流量也不变,同时水箱的液位也维持不变。
<BR>系统的控制框图如图3-1所示。
其中SP为给定信号,由用户通过计算机设定,PV为控制变量,它们的差是PID调节器的输入偏差信号,经过PLC的PID程序运算后输出,调节器的输出信号经过PLC的D/A转换成4~20mA的模拟电信号后输出到电动调节阀中调节调节阀的开度,以控制水的流量,使水箱的液位保持设定值。
水箱的液位经过压力变送器检测转换成相关的电信号输入到PLC的输入接口,再经过A/D转换成控制量PV,给定值SP与控制量PV经过PLC的CPU的减法运算成了偏差信号e ,又输入到PID调节器中,又开始了新的调节。
液位自动控制系统

随着电子技术、计算机技术和信息技术的发展,工业生产中传统的检测和控制技术发生了根本性的变化。
液位作为化工等许多工业生产中的一个重要参数,其测量和控制效果直接影响到产品的质量,因此液位控制成为过程控制领域中的一个重要的研究方向。
本文设计了一种以单片机为核心的液位控制系统,使得液位控制更加精确稳定,并具有良好的人机交互功能。
一、系统结构系统采用下位机以单片机为核心的控制系统。
系统由单片机、D/A、A/D转换、V/I转换、电动调节阀、放大电路以及液位传感器等组成。
其系统结构框图如图1所示。
系统的核心采用AT89C52单片机,该芯片具有极高的性价比,适用于多数嵌入式系统。
上位机采用普通PC机,通过串口与单片机进行通信。
同时利用Visual C 6.0设计了监控软件,使其具有友好的人机界面,方便监控室工作人员对液位进行监控。
二、硬件系统设计1.液位传感器系统选用CYB31型压力液位变送器来进行液位的测量。
CYB31系列隔离式液位变送器采用进口不锈钢隔离膜片的高精度、高稳定性的力敏芯片,经合理精密的结构设计和厚膜技术温度补偿、信号放大、V/I转换,对不锈钢壳体进行全密封焊接,使用有通风导管的防水电缆,使传感器背压腔与大气连通,从而制成工业标准的4~20mA或0~10mA信号输出且性能稳定可靠的全固态产品。
2.A/D转换模块考虑到转换器的转换位数和速率,本系统采用了TI公司的10位模数转换器TLC1549。
它采用CMOS工艺,具有内在的采样和保持,采用差分基准电压高阻输入,抗干扰,可按比例量程校准转换范围。
通过A/D转换器可以将传感器输入的模拟电压量转换为数字量通过串行通信送给计算机。
3.液位调节系统经过单片机得到控制量输出后,经D/A转换器转换为模拟量,再经放大器放大从而调节阀门的开度来改变液体的流量,以达到对液位的控制。
4.液位设定、显示及报警单片机的P1口连接了一个4×4的16键行列式键盘,通过键盘可以实现液位上、下限的设定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机控制技术课程设计储水罐液位计算机控制系统设计学生姓名学号学院名称专业名称指导教师2011年6月7日目录1.储水罐液位系统设计原理 01.1 本设计任务和主要内容 01.1.1设计任务 01.1.2主要内容 02.系统模型建立 (1)2.1系统组成 (1)2.2系统工作原理 (1)2.3系统模型 (2)3.硬件选择 (5)3.1 液体压力传感器选择 (5)3.2水泵选择 (5)3.3微控制器的选择 (6)3.3.1 80C51电源 (6)3.3.2 80C51时钟 (6)3.3.3 80C51 控制线 (6)3.3.4 80C51 I/O接口 (7)3.4 A/D转换器选择 (7)4.硬件电路设计 (9)4.1 80C51单片机外围电路设计 (9)4.1.1 时钟电路 (9)4.1.2 复位电路 (9)4.2水泵驱动电路设计 (9)4.2.1 继电器电路 (10)4.2.2 双向晶闸管过零调功调速原理 (10)4.2.3过零检测电路 (11)4.2.4 双向晶闸管触发电路 (12)4.3数码管电路 (12)5.系统软件设计 (13)5.1 软件设计流程图 (13)5.2 软件主函数 (14)5.3 软件水泵控制程序 (14)6.结论 (18)参考文献 (19)附录 (20)附录1 (20)附录3 (27)附录4 (29)1.储水罐液位系统设计原理1.1 本设计任务和主要内容1.1.1设计任务本设计主要研究水箱水位自动控制系统。
此系统实现了水位报警,水位实时显示。
在2min 内达到并稳定在1m水位高度,并且偏差在 10%。
1.1.2主要内容被控系统为一储水罐。
系统如图1-1所示,储水罐内为清水,下部设有出水管,流量记为Q2。
储水罐通过水泵将清水池内的清水补入罐内,流量记为Q1,清水池内的水位可视为固定值2米(即在储水罐补水过程中液位不变化)。
已知储水罐的截面积A=1平方米,高度H=2米,要求控制目标液位高度为1米。
当水箱水位低于1m时,启动水泵,从清水池抽水供给给储水罐;当水箱水位高于1m时水泵自动停止;当水箱水位高于1.8m时外部报警灯自动点亮,手动复位控制系统。
Q图1-1 储水罐系统2.系统模型建立2.1系统组成储水罐液位系统的原理图如图2-1所示。
此系统由清水池,储水罐,直流水泵,微控制器,液体压力传感器,A/D转换器等组成。
清水池在此设计中属于理想状态,即水位高度不变;直流水泵选用TPH2T6K型号,220V离心式水泵,此水泵工作效率为503m/H;微控制器选用Atmel公司生产的89C51单片机;液体压力传感器选用PT500-500液体压力传感器;A/D转换器则选用ADC0808 8位精度转换器。
图2-1 储水罐液位系统的原理图2.2系统工作原理此系统由液体压力传感器测出储水罐液位压力,以0~20mA电流形式输入到一个125 电阻上,A/D转换器采样电阻两端电压,然后输入微控制器80C51,微控制器80C51经过处理判断水位高度进行相应的处理,并控制数码管显示现在水位高度。
系统工作流程图如图2-2。
图2-2 储水罐液位系统工作流程图2.3系统模型此系统是一个典型的一阶系统。
储水罐相当于一个流体容器,由物质守恒可以得到:in out Q = Q + Q (2.1)式中 inQ ——表示流入储水罐的水量;Q —— 表示储水罐中保留的水量;out Q ——表示流出储水罐的水量。
假设A 是储水罐的横截面积,h'为储水罐中水位的高度则(2.1)可写成:in out Q = A+ Q dhdt (2.2)出水流量取决于储水罐的流量系数,储水罐的液位高度,储水罐的出水口面积,和重力常数。
即:out dQ = C (2.3)式中 Cd ——表示储水罐出口的流量系数; a ——表示储水罐的出水口面积;g ——表示重力常数(9.8m/s2)。
结合(2.2),(2.3)我们能得到in d Q = AC dhdt + (2.4)假设in Q 是个常数则出水流量将达到一个稳态值out 0Q Q =,水位高度也将能达到一个恒定值。
0d Q = C (2.5)我们假设in Q 有个小的扰动值,我们能得到:in in 0Q Q Q δ=- (2.6)同时液位高度也将会有小的扰动:0h h h δ=- (2.7)将(2.6)、(2.7)带入(2.4)我们可以得到:d in 0AC Q Q d hdt δδ+=+ (2.8)应用泰勒级数将(2.8)线性化,泰勒级数:220002()()()().....1!2!x x x x x x x x dfd ff x f x dxdx==--=+++ (2.9)取泰勒级数第一级得到:00()()()x x dff x f x x x dx=-≈- (2.10)或者()x x df f x xdxδδ=≈(2.11)将(2.8)用(2.11)线性化后得到:A2in Q d h h Q dt h δδδ+= (2.12)对(2.12)进行拉普拉斯变换,我们可以得到:00()1()2in h s Q s As Q h =+ (2.13)带入数据可得:()1()0.1in h s Q s s =+ (2.14)电机的电气方程:()aaa a a e di L u i r C t dt=--Ω (2.15)电机的机械方程:()L d t JT T dtΩ=- (2.16)式中 e C ——表示电机电势系数; a r ——表示电枢电阻; a u ——表示电枢电压; a i ——表示电枢电流;a L ——表示电枢电感;J ——表示折算到轴上的转动惯量; T ——表示电动机电磁转矩; L T ——表示负载转矩;将(2.15)、(2.16)式进行拉式变换可以得到转速和输入电压的传递函数:21()()()1ec m l m s C H s U s T T s T s Ω==++ (2.17) 电机经验公式:30N N ae NU I R C n π-= 2375m e mGD R T C C =30m e C C π=al aL T R =得出该电机的传递函数为:230.139()0.0001630.01731H s s s =++由上式我们可以得到此液位系统的框图如图2-3图2-3 储水罐液位系统框图3.硬件选择3.1 液体压力传感器选择本设计中储水罐的高度液位高度最高为2M,根据P ghρ=液,可算出在此设计中最大压强为19.6Kpa。
可选择压力传感器量程为0—20Kpa,最终选用了PT500-500液体压力传感器,PT500-500采用高精度高稳定性电阻应变计做为变送器的感压芯片,选进的贴片工艺,配套带有零点、满量程补偿,温度补偿的高精度和高稳定性放大集成电路。
主要技术要求如表3-1所示。
表3-1 PT500-500液体压力传感器技术参数技术参数参数值被测介质气体、液体及蒸气量程-100KPa-20Kpa~60 Mpa~150 Mpa间任意可选输出0~20mA(二线制)综合精度±0.1%FS(量程60MPa以上)、±0.25%FS、±0.5%FS供电12~36V DC绝缘电阻≥1000 MΩ/100VDC负载电阻最大800Ω介质温度-20~85℃、-20~150℃、-20~200℃、-20~300℃(可选)环境温度-20~85℃相对湿度0~95% RH过载能力150%FS响应时间≤10mS电气连接不锈钢防水密封端子、四芯航空接插件、赫丝曼接头等此液体压力传感器完全可以满足控制的要求,选择此传感器主要因为:供电要求12~36V DC,电压范围广,输出0~20mA标准电信号,方便A/D采集。
3.2水泵选择此设计中应用了TPH2T6K离心式单相交流水泵,其技术参数如表3-2。
此水泵采用单相交流电,易于控制,流量503m/H=0.833m/min,在两分钟内可以达到要求。
表3-2 TPH2T6K离心式单相交流水泵技术参数技术参数参数值工作电压220V工作频率50HZ流量50m3/H扬程55m进出口径25cm马达转速2900RPM3.3微控制器的选择此设计采用ATMEL80C51作为控制芯片。
它是在MCS-48系列的基础上发展的高性能的8位单片机。
所出的系列产品有8051、8031、8751。
其代表就是8051。
其他系列的单片机都以它为核心,所以本设计采用的核心芯片是8051单片机。
CPU是它的核心设备,从功能上看,CPU包括两个部分:运算器和控制器,它执行对输入信号的分析和处理。
每片80C51包括:一个8位的微型处理器CPU;128B的片内数据存储器RAM;4KB片内程序存储器ROM;四个8位并行的I/O接口P0-P3,每个接口既可以输入,也可以输出;两个定时器/记数器;五个中断源的中断控制系统;一个全双工UART的串行I/O口;片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接。
最高允许振荡频率是12MHZ。
以上各个部分通过内部总线相连接。
整个系统电控部分以ATMEL公司的8051为核心芯片,控制信号采集、处理、输出三个过程。
这种芯片内置4KROM,因为系统要求控制线较多,如果采用8031外置EPROM程序控制结构,则造成控制线不够,而8051却可以利用P0、P2口作控制总线,大大简化了硬件结构,并可以直接控制LED数据显示,方便现场调试和维护,使整个系统的通用性和智能化得到了很大的提高。
现在介绍下在此设计中用到的引脚,引脚图如图3-1所示。
单片机的40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。
3.3.1 80C51电源VCC - 芯片电源,接+5V;VSS - 接地端;3.3.2 80C51时钟XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。
3.3.3 80C51 控制线●ALE/PROG:地址锁存允许/片内EPROM编程脉冲ALE功能:用来锁存P0口送出的低8位地址PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。
●PSEN:外ROM读选通信号。
●RST/VPD:复位/备用电源。
RST(Reset)功能:复位信号输入端。
VPD功能:在Vcc掉电情况下,接备用电源。
●EA/Vpp:内外ROM选择/片内EPROM编程电源。
EA功能:内外ROM选择端。
Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。
3.3.4 80C51 I/O接口●P0口(39脚~32脚):P0.0~P0.7统称为P0口。
当不接外部存储器与不扩展I/O接口时,它可作为准双向8位输入/输出接口。
当接有外部程序存储器或扩展I/O口时,P0口为地址/数据分时复用口。