最新北师大版九年级数学上册期末考试试题
北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列函数中不是反比例函数的是()A .3y x=B .13y x -=C .1xy =D .3x y =-2.下列立体图形中,主视图是圆的是()A .B .C .D .3.如图,在菱形ABCD 中,60B ∠=︒,4AB =,则正方形ACEF 的面积为()A .8B .12C .16D .204.用如图所示的两个转盘(分别进行四等分和三等分)设计一个“配紫色”的游戏,其中一个转出红色,另一个转出蓝色即可配成紫色,分别转动两个转盘(指针指向区域分界线时,忽略不计),那么可配成紫色的概率为()A .712B .12C .512D .135.如图,在平面直角坐标系中,OAB 与OCD 位似,点O 是它们的位似中心,已知()4,2A -,()2,1C -,则OAB 与OCD 的面积之比为()A .1:1B .2:1C .3:1D .4:16.若双曲线ay x=在第二、四象限,那么关于x 的方程2210ax x ++=的根的情况为()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .无实根7.如图,四边形OABC 是平行四边形,对角线OB 在y 轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x=和2ky x =的一支上,过点A ,点C 分别作x 轴的垂线,垂足分别为M 和N ,有以下结论:①ON OM =;②12k AM CN k =;③阴影部分面积是()121k k 2+;④若四边形OABC 是菱形,则图中曲线关于y 轴对称.其中正确的结论是()A .①④B .②③C .①②④D .①③④8.如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GHHE的值是()A .12B .23C.2D9.如图,已知△A′B′C′与△ABC 是位似图形,点O 是位似中心,若A′是OA 的中点,则△A′B'C′与△ABC 的面积比是()A .1:4B .1:2C .2:1D .4:110.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BECE的值为()A .512B .725C .718D .524二、填空题11.如果四条线段a ,b ,c ,d 是成比例线段,且4a =,12b =,8c =,那么d 为______.12.已知1x =是一元二次方程220x ax +-=的一个根,则此方程的另一个根为______.13.如图,在ABC 中,∥DE BC ,若:3:2AD DB =,6cm AE =,则EC 的长为______cm .14.已知近视眼镜的度数D (度)与镜片焦距f (米)成反比例关系,且400度近视眼镜镜片的焦距为0.25米.小慧原来戴400度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为0.4米的眼镜了,则小慧所戴眼镜的度数降低了___度.15.如图,函数()0y kx k =-≠的图象与2y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,连接BC ,则BOC 的面积为______.16.如图,这是一个几何体的三视图,根据图中所标的数据,这个几何体的体积为______.17.如图,在正方形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且()2,0B ,以AB 为边构造菱形ABEF (点E 在x 轴正半轴上),将菱形ABEF 与正方形ABCD 组成的图形绕点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点2022F 的坐标为______.18.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题19.关于x 的一元二次方程2240x x k --=有两个不相等的实数根.(1)求k 的取值范围;(2)若1k =,请用配方法求该方程的根.20.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且//DE AC ,//AE BD ,连接OE .求证:OE AD ⊥.21.如图,正比例函数与反比例函数的图象交于A、B两点,点A的坐标为(1,2).(1)求反比例函数的解析式;(2)根据图像直接写出使正比例函数的值大于反比例函数的值的x取值范围.22.如图:一次函数的图象与反比例函数kyx=的图象交于()2,6A-和点()4,B n.(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.23.如图,BD、CE是ABC的两条高,M、N分别是BC、DE的中点.(1)求证:ADE ABC △△∽.(2)试说明MN 与DE 的关系.24.如图,在ABC 中,2BC AB =,AD 是BC 边上的中线,O 是AD 的中点,过点A 作AE BC ∥,交BO 的延长线于点E ,BE 交AC 于点F ,连接DE 交AC 于点G .(1)判断四边形ABDE 的形状,并说明理由;(2)若34AB =:3:5OA OB =,求四边形ABDE 的面积;(3)连接DF ,求证:2DF FG FC =⋅.25.如图,点E 是矩形ABCD 的边BA 延长线上一点,连接ED ,EC ,EC 交AD 于点G ,作CF ∥ED 交AB 于点F ,DC =DE .(1)求证:四边形CDEF 是菱形;(2)若BC =3,CD =5,求AG 的长.26.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.27.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)求ABBC的值.参考答案1.D2.D3.C4.A5.D6.A 7.C 8.B 9.A 10.C 11.2412.2x =-13.414.15015.116.18π17.(2,-18.60.19.(1)2k >-(2)1x =2x =20.证明://,//A C D E E D A B ,∴四边形AODE 是平行四边形,四边形ABCD 是矩形,1122OA OD AC BD ∴===,∴平行四边形AODE 是菱形,OE AD ∴⊥.21.(1)2y x=;(2)10x -<<或1x >.【详解】解:(1)设反比例函数表达式为k y x=,∵正比例函数与反比例函数的图象交于A 、B 两点,∴将A 的坐标(1,2)代入k y x =得:21k=,解得:k=2,∴2y x=;(2)设正比例函数表达式为y=ax ,将A 的坐标(1,2)代入y=ax 得:2=a ,∴y=2x ,联立正比例函数表达式和反比例函数表达式,得:22y x y x⎧=⎪⎨⎪=⎩,整理得:222x =,解得:1211x x ==-,,∴B 点横坐标为-1,将x=-1代入y=2x 得:y=-2.∴B(-1,-2),由图像可得,正比例函数的值大于反比例函数的值的x 取值范围是10x -<<或1x >.22.(1)()4,3B -;(2)2x <-或04x <<.【详解】解:(1)将点()2,6A -代入ky x=得:2612k =-⨯=-,则反比例函数的解析式为12y x=-,将点()4,B n 代入12y x=-得:1234n =-=-,则点B 的坐标为()4,3B -;(2) 一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,2x ∴<-或04x <<.23.(1)见解析(2)MN 垂直平分DE ,理由见解析【分析】(1)根据三角形高、相似三角形的性质,通过证明ABD ACE ∽△△,得AB ACAD AE=,再根据相似三角形的性质分析,即可完成证明;(2)根据直角三角形斜边中线的性质,得12EM BC =,12DM BC =,再根据等腰三角形三线合一的性质分析,即可得到答案.(1)∵BD 、CE 是ABC 的两条高,∴90ADB AEC ∠=∠=︒,∵A A ∠=∠,∴ABD ACE ∽△△,∴AB ADAC AE=,∴AB ACAD AE=,∵A A ∠=∠,∴ADE ABC △△∽;(2)如图,连接DM ,EM∵BD 、CE 是ABC 的两条高,∴90CDB BEC ==︒∠∠∵M 是BC 的中点,,∴12EM BC =,12DM BC =,∴EM DM =,∵N 是DE 的中点,∴MN 垂直平分DE .24.(1)四边形ABDE 是菱形,理由见解析(2)30(3)见解析【分析】(1)先判定△AOE ≌△DOB (ASA ),得出AE =BD ,根据AE ∥BD ,即可得出四边形ABDE 是平行四边形,再根据BD =BA ,即可得到平行四边形ABDE 是菱形;(2)根据四边形ABDE是菱形,AB =OA:OB =3:5,运用勾股定理求得AD =6,BE =10,即可得出菱形ABDE 的面积;(3)根据菱形的性质得出∠GDF =∠DCF ,再根据∠GFD =∠DFC ,即可判定△DFG ∽△CFD ,进而得到GFDFDF CF =,得证.(1)解:(1)四边形ABDE 是菱形.理由:∵AE BC ∥,∴EAO BDO ∠=∠,∵O 是AD 的中点,∴AO DO =,在AOE △和DOB 中,EAO BDOAO DO AOE DOB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AOE DOB △△≌,∴AE BD =,又∵AE BD ∥,∴四边形ABDE 是平行四边形,∵AD 是BC 边上的中线,∴2BC BD =,又∵2BC AB =,∴BD BA =,∴平行四边形ABDE 是菱形.(2)解:∵四边形ABDE 是菱形,∴AD BE ⊥,12AO AD =,12BO BE =,设3OA k =,5OB k =,在Rt AOB △中,由勾股定理得222AO OB AB +=,∴()()22235k k +=,整理得2292534k k +=,解得1k =,∴3OA =,5OB =,∴6AD =,10BE =,∴菱形ABDE 的面积1106302=⨯⨯=.(3)证明:∵四边形ABDE 是菱形,∴BE 垂直平分AD ,EA ED =,FA FD =,∴EAO EDO ∠=∠,FAO FDO ∠=∠,∴EAF EDF ∠=∠,∵AE BC ∥,∴EAF DCF ∠=∠,∴GDF DCF ∠=∠,又∵GFD DFC ∠=∠,∴DFG CFD △△∽,∴GFDFDF CF =,∴2DF FG FC =⋅.25.(1)解:证明:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,∵CF ∥ED ,∴四边形CDEF 是平行四边形,∵DC=DE .∴四边形CDEF 是菱形;(2)如图,连接GF ,∵四边形CDEF 是菱形,∴CF=CD=5,∵BC=3,∴BF=4==,∴AF=AB-BF=5-4=1,在△CDG 和△CFG 中,CD CF DCG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩,∴△CDG ≌△CFG (SAS ),∴FG=GD ,∴FG=GD=AD-AG=3-AG ,在Rt △FGA 中,根据勾股定理,得FG 2=AF 2+AG 2,∴(3-AG )2=12+AG 2,解得AG=43.26.(1)见解析(2)【分析】(1)证△ABE ≌△CBE (SAS ),即可得出结论;(2)连接AC 交BD 于H ,先由菱形的性质可得AH ⊥BD ,BH =DH ,AH =CH ,求出BH 、EH 的长,由勾股定理求出AH 的长,再由勾股定理求出AB 的长,即可得出结果.【详解】(1)∵四边形ABCD 是菱形,∴∠ABE =∠CBE ,AB =CB ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE ,∴AE =CE ,∵AE =DE ,∴CE =DE ;(2)如图,连接AC 交BD 于H ,∵四边形ABCD 是菱形,∴AH ⊥BD ,BH =DH ,AH =CH ,∵CE =DE =AE =1,∴BD =BE+DE =2+1=3,∴BH =12BD =32,EH =BE ﹣BH =2﹣32=12,在Rt △AHE 中,由勾股定理得:AH在Rt △AHB 中,由勾股定理得:AB=27.(1)y =2x;(2)1【分析】(1)将点A 坐标代入两个解析式可求a 的值,k 的值,即可求解;(2)连接OA ,OB ,先求得B 、C 的坐标,然后求得S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,则可求得S △AOB =32,根据同高三角形面积的比等于底边的比即可求得结论.【详解】解:(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数k y x =,∴k =1×2=2,∴反比例函数的表达式为y =2x;(2)如图,连接OA ,OB ,由一次函数y =﹣x+3可知C 的坐标为(3,0),解23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,∴33322AOB AOC BOC S S S =-=-= ,∴AOB BOC S S ∆∆=1,∴AB BC =1.。
北师大版九年级上册数学期末考试试卷带答案

北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。
北师大版九年级上册数学期末测试卷(完美版)

北师大版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2B.m<﹣2C.m>2D.m<22、如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD 于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD =AC•BC;③OE:AC= :6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个3、以下A、B、C、D四个三角形中,与左图中的三角形相似的是()A. B. C. D.4、将方程x2-6x+1=0配方后,原方程变形()A.(x-3) 2=8B.(x-3) 2=-8C.(x-3) 2=9D.(x-3) 2=-95、用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(B.C.D.6、如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A. B. C. D.7、如下图,双曲线经过平行四边形ABCO的对角线的交点D,已知边OC在y轴上,且于点C,则平行四边形OABC的面积是()A. B. C.3 D.68、在已知反比例函数(k为常数)的图象上有三点,,,若,则a的取值范围是()A. B. C. 或 D.9、某反比例函数的图象经过点(-1,6),则此函数图象也经过点 ( )A. B. C. D.10、用公式法解一元二次方程,正确的应是()A.x=B.x=C.x=D.x=11、如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:① ;② ;③ ;④ .其中正确的个数有()A.1个B.2个C.3个D.4个12、如图,一次函数y=kx﹣1的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,BC垂直x轴于点C.若△ABC的面积为1,则k的值是()A.1B.2C.3D.413、如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③C.①②④D.②③④14、阜宁到南京之间的距离约为240千米,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于()A.一根火柴的长度B.一根筷子的长度C.一支铅笔的长度D.一支钢笔的长度15、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3, y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共10题,共计30分)16、反比例函数的图象经过点P(﹣1,2),则此反比例函数的解析式为________17、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.18、已知点A1(-1,y1),A2(-3,y2)都在反比例函数y= (k>0)的图像上,则y1与y2的大小关系为________.19、如图,△AOB,AB∥x轴,OB=2,点B在反比例函数y=上,将△AOB 绕点B逆时针旋转,当点O的对应点O′落在x轴的正半轴上时,AB的对应边A′B恰好经过点O,则k的值为________.20、如图,以的斜边为边,向外作正方形,设正方形的对角线与的交点为O,连接,若,,则的值是________.21、若一个反比例函数的图象经过点和,则这个反比例函数的表达式为________.22、如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为________.23、一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有________个.24、已知关于x的方程的一个根为,则方程的另一个根为________。
北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列方程,是一元二次方程的是()A .2 310x x +-=B .2 51y x -=C . 210x +=D .21 1x x +=2.下面几何体的主视图是()A .B .C .D .3.若△ABC ∽△DEF ,且△ABC 与△DEF 的面积比是94,则△ABC 与△DEF 的对应高的比为()A .23B .8116C .94D .324.若正方形的对角线长为2,则这个正方形的面积为()A .2B .4CD .5.如图,点A 为反比例函数k y x=的图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,已知△ABO 的面积为3,则k 值为()A .-3B .3C .-6D .66.如图,线段AB 两个端点的坐标分别为(2,2)(2.5,0.8)A B 、,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为()A .(3,1.6)B .(4,3.2)C .(4,4)D .(6,1.6)7.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60508.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,正方形ABCD 中,E 为BC 中点,连接AE ,DF AE ⊥于点F ,连接CF ,FG CF ⊥交AD 于点G ,下列结论:①CF CD =;②G 为AD 中点;③~DCF AGF ∆∆;④23AF EF =,其中结论正确的个数有()A .1个B .2个C .3个D .4个10.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒二、填空题11.方程x2=x的解为___.12.若关于x的一元二次方程ax2+4x﹣2=0有实数根,则a的取值范围为___.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有__颗.14.已知矩形ABCD,当满足条件______时,它成为正方形(填一个你认为正确的条件即可).15.反比例函数kyx=的图象经过点(1,﹣2),则k的值为_____.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.17.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH=_____.三、解答题18.解方程:2x2﹣4x﹣1=0.19.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.20.如图,小明站在路灯B下的A处,向前走5米到D处,发现自己在地面上的影子DC 是2米.若小明的身高DE是1.8米,则路灯B离地面的高度AB是多少米?21.如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长及∠AOB的度数;(2)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.22.有一块长60m,宽50m的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中黑色部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为am)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为xm,则a=(用含x的代数式表示);(2)若塑胶运动场地总的占地面积为2430m2,则通道的宽度为多少?23.已知,如图,正比例函数y=ax的图象与反比例函数图象交于A点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x 轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.24.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,与直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l的函数解析式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP 沿着y轴方向平移,使得点P落在直线AB上的P'处,求点P′到直线CD的距离;(3)若点E 为直线CD 上的一点,则在平面直角坐标系中是否存在点F ,使以点A ,D ,E ,F 为顶点的四边形为菱形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.25.如图,一次函数y=x+b 和反比例函数y=xk (k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.26.如图,在矩形ABCD 的边AB 上取一点E ,连接CE 并延长和DA 的延长线交于点G ,过点E 作CG 的垂线与CD 的延长线交于点H ,与DG 交于点F ,连接GH .(1)当tan 2BEC ∠=且4BC =时,求CH 的长;(2)求证:DF FG HF EF ⋅=⋅;(3)连接DE ,求证:CDE CGH ∠=∠.参考答案1.A 【分析】根据一元二次方程的概念(只含有一个未知数,并且未知数项的最高次数是二次的整式方程叫做一元二次方程),逐一判断.【详解】A.2310x x +-=,符合一元二次方程的定义,故本选项正确;B.251y x -=,方程含有两个未知数,故本选项错误;C.210x +=,未知数项的最高次数是一次,故本选项错误;D.211x x+=,不是整式方程,故本选项错误.故答案选A.【点睛】本题重点考查了满足一元二次方程的条件:(1)该方程为整式方程.(2)该方程有且只含有一个未知数.(3)该方程中未知数的最高次数是2.2.B 【分析】主视图是从物体正面看所得到的的图形.【详解】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B .【点睛】本题考查了三视图,主视图是从物体的正面看得到的视图,解答时学生易将三种试图混淆而错误地选其它选项.3.D 【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应高的比等于相似比解答即可.【详解】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的面积比是94,∴△ABC 与△DEF 的相似比为32,∴△ABC 与△DEF 对应高的比为32,故选:D .【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.A 【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解.【详解】如图所示:∵四边形ABCD 是正方形,∴AO=BO=12AC=1cm ,∠AOB=90°,由勾股定理得,2,S 正=2)2=2cm2.故选A .【点睛】考查正方形的性质,解题关键是根据对角线平分、相等、垂直且平分每一组对角进行分析.5.C 【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy =﹣6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0.又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S △AOB 12=⨯|AB|×|OB|12=⨯y×|x|=3,∴﹣xy =6,∴k =﹣6.故选:C .【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.6.C 【分析】根据位似中心的定义可得:2:1OC OA =,由此即可得出答案.【详解】解:由题意得::2:1OC OA =,则端点C 的坐标为(22,22)C ⨯⨯,即为(4,4)C ,故选:C .【点睛】本题考查了位似图形的性质,理解定义是解题关键.7.D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.D 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为-2,∵由函数图象可知,当-2<x <0或x >2时函数y 1=k 1x 的图象在22k y x=的上方,∴当y 1>y 2时,x 的取值范围是-2<x <0或x >2.故选:D .9.D 【分析】如图(见解析),过点C 作CM DF ⊥于点M ,先根据三角形全等的判定定理证出ADF DCM ≅ ,根据全等三角形的性质可得AF DM =,再利用正切三角函数可得1tan 1tan 42BE AB ∠=∠==,从而可得AF FM DM ==,然后根据线段垂直平分线的判定与性质即可判断①;先根据等腰三角形的性质可得25∠=∠,从而可得17∠=∠,再根据等腰三角形的判定可得DG FG =,然后根据角的和差可得36∠=∠,最后根据等腰三角形的判定可得AG FG =,由此即可判断②;先根据上面过程可知3256=∠∠∠=∠=,再根据相似三角形的判定即可判断③;设(0)AF x x =>,从而可得2DF x =,先利用勾股定理可得5,2AD AB BC AE x ====,再根据线段的和差可得32EF x =,由此即可判断④.【详解】解:如图,过点C 作CM DF ⊥于点M ,四边形ABCD 是正方形,,90AB BC CD AD B BAD ADC ∴===∠=∠=∠=︒,2190∴∠+∠=︒,DF AE ⊥ ,90,1390AFD DMC ∴∠=∠=︒∠+∠=︒,32∴∠=∠,在ADF 和DCM △中,9032AFD DMC AD DC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADF DCM AAS ∴≅ ,AF DM ∴=,点E 是BC 的中点,1122BE BC AB ∴==,349031∠+∠=︒=∠+∠ ,41∴∠=∠,1tan 1tan 42BE AB ∴∠=∠==,12AFDF ∴=,即2DF AF =,DF DM FM AF FM =+=+ ,2AF AF FM ∴=+,即AF FM =,DM FM ∴=,又CM DF ⊥ ,CF CD ∴=,结论①正确;25∴∠=∠,FG CF ⊥ ,90CFG ADC ∴∠=︒=∠,17∴∠=∠,DG FG ∴=,又139076∠+∠=︒=∠+∠ ,36∴∠=∠,AG FG ∴=,AG DG ∴=,即G 为AD 中点,结论②正确;由上已得:32536,2,∠=∠∠∠∠=∠=,56∴∠=∠,在DCF 和AGF 中,2356∠=∠⎧⎨∠=∠⎩,DCF AGF ∴ ,结论③正确;设(0)AF x x =>,则2DF x =,BC AB AD ∴====,122BE BC ∴==,52AE x ∴==,32EF AE AF x ∴=-=,3223AF x EF x ∴==,结论④正确;综上,结论正确的个数有4个,故选:D .10.B 【分析】连接BF ,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF ,根据等边对等角可得∠FBA=∠FAB ,再根据菱形的邻角互补求出∠ABC ,然后求出∠CBF ,最后根据菱形的对称性可得∠CDF=∠CBF .【详解】解:如图,连接BF ,在菱形ABCD 中,∠BAC=12∠BAD=12×100°=50°,∵EF 是AB 的垂直平分线,∴AF=BF ,∴∠FBA=∠FAB=50°,∵菱形ABCD 的对边AD ∥BC ,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B .11.0x =或1x =【分析】利用因式分解法解方程即可;【详解】2x x =,20x x -=,()10x x -=,0x =或1x =;故答案是:0x =或1x =.12.2a ≥-且0a ≠##a≠0且a≥-2【分析】根据题意可知0∆≥,代入求解即可.【详解】解:一元二次方程ax 2+4x ﹣2=0,,4,2a a b c ===-,∵关于x 的一元二次方程ax 2+4x ﹣2=0有实数根,∴0∆≥且0a ≠,即244(2)0a -⨯-≥,0a ≠解得:2a ≥-且0a ≠故答案为:2a ≥-且0a ≠.13.14【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,60.36n=+,解得n=14.经检验n=14是原方程的解故估计盒子中黑珠子大约有14个.故答案为:14.14.AB=BC【详解】解:∵四边形ABCD是矩形,∴(1)当AB=BC时,矩形ABCD是正方形;(2)当AC⊥BD时,矩形ABCD是正方形.故答案为:AB=CD(或AC⊥BD).15.﹣2.【分析】将点(1,﹣2)代入kyx=,即可求解.【详解】∵反比例函数kyx=的图象经过点(1,﹣2),∴k21-=,解得k=﹣2.故答案为-2.16.16924【分析】过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.【详解】解:过点F作FG⊥AD,垂足为G,连接AA′.在Rt△EFG中,5=,∵轴对称的性质可知AA′⊥EF,∴∠EAH+∠AEH=90∘,∵FG⊥AD,∴∠GEF+∠EFG=90∘,∴∠DAA′=∠GFE,在△GEF 和△DA′A 中,90EGF D FG AD DAA GFE ∠=∠=︒⎧⎪=⎨⎪∠'=∠⎩,∴△GEF ≌△DA′A ,∴DA′=EG=5,设AE=x,由翻折的性质可知EA′=x ,则DE=12−x ,在Rt △EDA′中,由勾股定理得:A′E 2=DE 2+A′D 2,即x 2=(12−x)2+52,解得:x=16924,故答案为16924,【点睛】本题主要考查正方形、轴对称、全等三角形的性质及勾股定理等相关知识.利用辅助线构全等形、利用勾股定理建立方程是解题的关键.17.4.8【分析】根据菱形的性质得到AC ⊥BD ,求出OA ,OB ,由勾股定理求出AB ,再利用菱形的面积公式得到12AC•BD=AB•DH ,由此求出答案.【详解】解:在菱形ABCD 中,AC ⊥BD ,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt △AOB 中,==5,∵DH ⊥AB ,∴菱形ABCD 的面积=12AC•BD=AB•DH ,即12×6×8=5DH ,解得DH=4.8.故答案为:4.8.【点睛】此题考查了菱形的性质,勾股定理,熟记菱形的性质并熟练应用解决问题是解题的关键.18.【分析】用配方法解一元二次方程即可.【详解】解:∵2x2﹣4x ﹣1=0,∴2x2﹣4x=1,则x2﹣2x=12,∴x2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣,∴.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.19.证明见解析.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【详解】∵在△ABC 中,AB=AC ,BD=CD ,∴AD ⊥BC .又∵CE ⊥AB ,∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴△ABD ∽△CBE .【点睛】本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.20.路灯B 离地面的高度 6.3AB =米【分析】根据ED ∥AB ,得出△ECD ∽△BCA ,进而得出比例式求出即可.【详解】解:由题图知,2DC =米, 1.8=ED 米,5AD =米,∴527=+=+=AC AD DC (米).∵ED AB ∥,∴ECD BCA ∽△△.∴ED DC AB AC =,即1.827AB =.∴路灯B 离地面的高度 1.87 6.32AB ⨯==(米).【点睛】此题主要考查了相似三角形的应用,得出△ECD ∽△EBA 是解决问题的关键.21.(1)4AC =,60AOB ∠=︒;(2)菱形OBEC 的面积是【分析】(1)根据AB 的长结合“在直角三角形中,30°所对的直角边等于斜边的一半”可得出AC 的长度,根据矩形的对角线互相平分可得出OBC 为等腰三角形,从而利用外角的知识可得出∠AOB 的度数;(2)先求出△OBC 和的面积,从而可求出菱形OBEC 的面积.(1)解:在矩形ABCD 中,90ABC ∠=︒,在Rt ABC 中,30ACB ∠=︒.∴24AC AB ==.∴2AO OB ==.又∵2AB =,∴AOB 是等边三角形.∴60AOB ∠=︒.(2)解:在Rt ABC 中,由勾股定理,得BC ==.∴122ABC S =⨯⨯= .∴12BOC ABC S S ==△△.∴菱形OBEC 的面积是【点睛】本题考查矩形的性质、菱形的性质及勾股定理的知识,熟练掌握矩形的性质、菱形的性质及勾股定理是解题的关键.22.(1)6032x-(2)通道的宽度为2m .【分析】(1)结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,可得方程等式,化简即可得;(2)结合图形,利用大面积减去黑色部分的面积可得方向,求解即可得.(1)解:结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,∴2360a x +=,6032x a -=,故答案为:6032x -;(2)解:根据题意得:(502)(603)2430---⋅=x x x a ,∵6032x a -=,∴603(502)(603)24302x x x x ----⋅=,解得122,38x x ==(不合题意,舍去).∴通道的宽度为2m .【点睛】题目主要考查列代数式及一元二次方程的应用,理解题意,找准面积之间的关系是解题关键.23.(1)6y x =,23y x =;(2)03x <<;(3)理由见解析【分析】(1)把A 点坐标分别代入两函数解析式可求得a 和k 的值,可求得两函数的解析式;(2)由反比例函数的图象在正比例函数图象的下方可求得对应的x 的取值范围;(3)用M 点的坐标可表示矩形OCDB 的面积和△OBM 的面积,从而可表示出四边形OADM 的面积,可得到方程,可求得M 点的坐标,从而可证明结论.【详解】解:(1)∵将()3,2A 分别代入k y x =,y ax =中,得23k =,32a =,∴6k =,23a =,∴反比例函数的表达式为:6y x =,正比例函数的表达式为23y x =.(2)∵()3,2A 观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值;(3)BM DM=理由:∵//MN x 轴,//AC y 轴,∴四边形OCDB 是平行四边形,∵x 轴y ⊥轴,∴OCDB 是矩形.∵M 和A 都在双曲线6y x=上,∴6BM OB ⨯=,6OC AC ⨯=,∴132OMB OAC S S k ==⨯= ,又∵6OADM S =四边形,∴33612OMB OAC OBDC OADM S S S S =++=++= 矩形四边形,即12OC OB ⋅=,∵3OC =,∴4OB =,即4n =∴632m n ==,∴32MB =,33322MD =-=,∴MB MD =.【点睛】本题为反比例函数的综合应用,涉及知识点有待定系数法、函数与不等式、矩形及三角形的面积和数形结合思想等.在(2)中注意数形结合的应用,在(3)中用M 的坐标表示出四边形OADM 的面积是解题的关键.24.(1)直线l 的函数解析式为43233y x =-+(2)点P '到直线CD 的距离为2(3)存在点1(8F +或2(8F --或3(6,14)F -或4(33,25)F ,使以点A ,D ,E ,F 为顶点的四边形为菱形.【分析】(1)用待定系数法即可求解;(2)由△PBD 的面积求出点P 的坐标,进而求出点P'(5,4),构建△P'DN 用解直角三角形的方法即可求解;(3)分AD 是菱形的边、AD 是菱形的对角线两种情况,利用图像平移和中点公式,分别求解即可.(1)解:∵14,(6,0)=-AC C ,点A 在点C 右侧,∴(8,0)A .∵直线l 与直线CD 相交于点(2,8)D ,∴80,28,k b k b +=⎧⎨+=⎩解得4,332.3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线l 的函数解析式为43233y x =-+.(2)解:如图1,过点P 作PN y ⊥轴于点N ,作'∥PP y 轴,交AB 于点P ',过点P '作'⊥P M CD 于点M ,过点D 作DE y ⊥轴于点E ,设CD 与y 轴交于点F,0设直线CD 的解析式为y mx n =+,∵(6,0),(2,8)-C D ,∴60,28,m n m n -+=⎧⎨+=⎩解得 1.6.m n =⎧⎨=⎩∴直线CD 的解析式为6y x =+.(0,6)F ∴∴6OC OF ==.∴OCF OFC∠=∠∵OC OF ⊥,∴45OCF OFC ∠=∠=︒∵直线l 的解析式为43233y x =-+,∴320,3B ⎛⎫⎪⎝⎭.∴323OB =.∴3214633=-=-=BF OB OF .设(,6)+P a a ,∵7=-= PBD PBF DBF S S S ,∴11722⋅-⋅=BF PN BF DE ,即114(2)723⨯-=a ,解得5a =.∴(5,11)P .∵将线段BP 沿着y 轴方向平移,使得点P 落在直线AB 上的P '处,∴4325433-⨯+=.∴(5,4)'P .∴1147='-=PP .∵45PCA OCF ∠=∠=︒,PP AC '⊥∴45'︒∠=MPP .∵'⊥P M CD ,∴45PP M P PM ''∠=∠=︒∴PMP ' 是等腰直角三角形.∴==''P M ,即点P '到直线CD 的距离为2.(3)解:①如图2,当AD 、AF 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADEF 是菱形,∴,10==∥DE AF AD AF .∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =+.∵(8,0)A ,∴80b +=,解得8b =-.∴直线AF 的解析式为8y x =-.设(,8)-F c c ,∴10===AF AD ,解得8=±c∴12(8(8+--F F .当AD 、AE 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADFE 是菱形,∴,10∥DF AE AD AE ==.∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =-+.∵(8,0)A ,∴-80b +=,解得8b =.∴直线AF 的解析式为8y x =-+.设(,8)F d d -+,∴10DF AD ===,解得6d =-或8d =(舍去),∴3(6,14),F -.②如图3,当AD 为对角线时,则,=∥DF AF AF DE .由①得直线AF 的解析式为8y x =-.设(,8)-F t t ,∵(2,8),(8,0)D A ,2222(2)(88)(8)(8)t t t t -+--=-+-解得33t =.∴4(33,25)F .综上所述,存在点1(852,52)F +或2(852,52)F --或3(6,14)F -或4(33,25)F 使以点A ,D ,E ,F 为顶点的四边形为菱形.【点睛】本题考查的是二次函数综合运用,涉及到二次函数的性质、平行四边形的性质、图形的平移、面积的计算等,分类求解解题的关键.25.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.26.(1)10CH =;(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE 的长,再证明∠=∠BEC ECH ,在Rt △CHE 中解三角形可求得EH 的长,最后利用勾股定理求CH 的长;(2)证明∽∆∆GFE HFD ,进而得出结果;(3)由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,进而sin sin ∠=∠EGF FHD ,即=CD CE CG CH ,再结合∠=∠ECD DCE ,可得出∽∆∆CDE CGH ,进一步得出结果.【详解】(1)解:∵矩形ABCD ,EH CG ⊥,∴90∠=︒=∠=∠BCD CEH B .而90BEC BCE ∠+∠=︒,90∠+∠=︒BCE ECH ,∴∠=∠BEC ECH ,又∵4BC =,tan 2BEC ∠=,∴2BE =,易得CE ==∴tan 2∠==EH ECH CE ,∴EH =∴10CH ==.(2)证明:∵矩形ABCD ,EH CG ⊥,∴∠=∠CEH HDG ,而∠=∠GFE DFH ,∴∽∆∆GFE HFD ,∴=DF FH EF FG,∴⋅=⋅DF FG EF FH ;(3)证明:由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,∴sin sin ∠=∠EGF FHD ,即=CD CE CG CH,而∠=∠ECD DCE ,∴∽∆∆CDE CGH ,∴CDE CGH ∠=∠.【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与性质.。
北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列长度的各组线段中,能构成比例的是()A .2,5,6,8B .3,6,9,18C .1,2,3,4D .3,6,7,92.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象都经过点A (2,﹣1),若y 1>y 2,则x 的取值范围是()A .﹣1<x <0B .x >2C .﹣2<x <0或x >2D .x <﹣2或0<x <23.关于反比例函数y =﹣3x,下列说法错误的是()A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点4.如图,在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,DE 是ABC 的中位线,若6DE =,则BF =()A .6B .4C .3D .55.已知1x =是关于x 的方程22(1)10k x k x -+-=的根,则常数k 的值为()A .0B .1C .0或1D .0或-18.6.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是A .14k <B .14k >C .14k <且0k ≠D .14k >且0k ≠7.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了10%,则2月份的产值是()A .(1﹣10%)x 万元B .(1﹣10%x )万元C .(x ﹣10%)万元D .(1+10%)x 万元8.下列说法正确的是()A .对角线互相垂直的四边形是菱形B .矩形的对角线互相垂直C .一组对边平行的四边形是平行四边形D .四边相等的四边形是菱形9.如图,在正方形OABC 中,OA =6,点E 、F 分别在边BC ,BA 上,OE =,若∠EOF=45°,则点F 的纵坐标为()A .2B .53C D 1-10.如图,在△ABC 中,DE ∥BC ,AD =9,DB =3,CE =2,则AC 的长为()A .6B .7C .8D .9二、填空题11.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30 角时,AE 的长为__________厘米.12.已知y 与2x+1成反比例,且当x=1时,y=2,那么当x=﹣2时,y=______.13.在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n=__.14.如图,在平面直角坐标系中,边长为4的等边△OAB 的OA 边在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过AB 边的中点C ,且与OB 边交于点D ,则点D 的坐标为_____.15.如图,已知在ABC 中,90ACB ∠=︒,2AC =,4BC =.D 为ABC 所在平面内的一个动点,且满足90BDC ∠=︒,E 为线段AD 的中点,连结CE ,则线段CE 长的最大值为______.16.如图,矩形ABOC 的面积为3,反比例函数y =k x的图象过点A ,则k =_____.17.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.三、解答题18.解方程(1)3x 2+8x +4=0(配方法)(2)2310x x --=(公式法)(3)4x (2x +1)=3(2x +1)(4)3x 2-x -2=019.设一元二次方程260x x k -+=的两根分别为1x 、2x .(1)若12x =,求2x 的值;(2)若5k =,且1x 、2x 分别是Rt ABC ∆的两条直角边的长,试求Rt ABC ∆的面积.20.如图,在平行四边形ABCD 中,ABD ∠的平分线BE 交AD 于点E ,CDB ∠的平分线DF 交BC 于点F .求证:四边形DEBF 是平行四边形.21.如图,E 是矩形ABCD 的边BC 延长线上的一点,连接AE ,交CD 于F ,把ABE ∆沿CB 向左平移,使点E 与点C 重合,ADF CBG ∆≅∆吗?请说明理由.22.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF =BE .(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若∠AED =90°,AB =4,BE =2,求四边形AEFD 的面积.23.如图,A 是反比例函数k y x=()0k <图象上的一点,过点A 作AB x ⊥轴于点B ,连0A ,AOB 的面积为2,点A 的坐标为()1,m -.(1)求反比例函数的解析式.(2)若一次函数3y ax =+的图象经过点A ,交双曲线的另一支于点()4,C n ,交y 轴于点D ,若y 轴上存在点P ,使PAC △的面积为5,求点P 的坐标.24.在抗击“新冠病毒”期间,某路口利用探测仪对过往的物体进行检查,探测仪A 测得某物体的仰角∠BAD =35°,俯角∠DAC =45°,探测仪到货物表面的距离AD =3米,求货物高BC 的长.(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,结果精确到0.1)25.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PE =PB ,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系.(2)①如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由.②图2,试用等式来表示PB 、BC 、CE 之间的数量关系,并证明.参考答案1.B【解析】分析:分别计算各组数中最大与最小数的积和另外两数的积,然后根据比例线段的定义进行判断.详解:∵3×18=6×9,∴3,6,9,18成比例.故选B .点睛:本题考查了比例线段:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.2.D【解析】如图,∵点A 坐标(2,﹣1),又∵正比例函数y 1=k 1x 和反比例函数y 2=2k x都是关于原点对称,∴它们的交点A 、B 关于原点对称,∴点B坐标(﹣2,1),∴由图象可知,y1>y2时,x<﹣2,或0<x<2,故选D.3.B【解析】【分析】反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【点睛】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.A【分析】由DE是ABC的中位线,可得AC=12,在Rt ABC中,点F为AC中点,可得BF=6即可.【详解】解:∵DE是ABC的中位线,∴AC=2DE=2×6=12,∵在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,∴BF =1112622AC =⨯=,故选择A .【点睛】本题考查三角形中位线与三角形中线性质,掌握三角形中位线与三角形中线性质是解题关键.5.C【详解】试题分析:①当1k =时,方程22(1)10k x k x -+-=为一元一次方程,解为1x =;②1k ≠时,方程22(1)10k x k x -+-=为一元二次方程,把1x =代入方程22(1)10k x k x -+-=可得:2110k k -+-=,即20k k -=0,可得(1)0k k -=,即k=0或1(舍去);故选C .考点:一元二次方程的解.6.C【分析】根据一元二次方程kx 2-x+1=0有两个不相等的实数根,知△=b 2-4ac >0,然后据此列出关于k 的方程,解方程即可.【详解】解:∵kx 2-x+1=0有两个不相等的实数根,∴△=1-4k >0,且k≠0,解得,k <14且k≠0;故答案是:k <14且k≠0.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.解题时,注意一元二次方程的“二次项系数不为0”这一条件.7.A【分析】1、本题属于列代数式的题目,解答此类题目首先要弄清楚语句中各个量之间的关系;2、细查题意,由2月份比1月份减少了10%先表示出2月份的产值为(1-10%)x 万元.【详解】由2月份比1月份减少了10%得2月份的产值是(1-10%)x 万元.故答案选A.【点睛】本题考查了列代数式,解题的关键是弄清楚题目中各个量之间的关系.8.D【详解】选项A ,菱形的对角线互相垂直,当对角线互相垂直的四边形不一定是菱形;选项B ,矩形的对角线相等但不一定垂直;选项C ,一组对边平行且相等的四边形是平行四边形;选项D ,四边相等的四边形是菱形.故选D.9.A【分析】延长BA 到点M ,使AM =CE ,连接OM ,由题意易得△OCE ≌△OAM ,则有OE =OM ,∠COE =∠AOM ,然后可得∠EOF =∠MOF ,进而可得△EOF ≌△MOF ,则有FM =EF ,根据勾股定理可得CE =3,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,最后根据勾股定理建立方程求解即可.【详解】解:延长BA 到点M ,使AM =CE ,连接OM ,如图所示:∵四边形OABC 是正方形,OA =6,∴6,90OA OC AB BC OCE OAM OAF B COA ====∠=∠=∠=∠=∠=︒,∴△OCE ≌△OAM ,∴OE =OM ,∠COE =∠AOM ,∵∠EOF =45°,∴45COE AOF ∠+∠=︒,∴45AOM AOF ∠+∠=︒,∴∠EOF =∠MOF ,∵OF =OF ,OE =OM ,∴△EOF ≌△MOF (SAS ),∴EF FM AF AM AF CE ==+=+,∵OE =∴在Rt △OEC 中,3CE ==,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,∴在Rt △EBF 中,222BE BF EF +=,∴()()222363x x +-=+,解得:2x =,∴点F 的纵坐标为2;故选A .【点睛】本题主要考查正方形的性质、勾股定理及图形与坐标,熟练掌握正方形的性质、勾股定理及图形与坐标是解题的关键.10.C【分析】利用平行线分线段成比例定理得到=AD AE DB EC ,利用比例性质求出AE ,然后计算AE +EC 即可.【详解】解:∵DE ∥BC ,∴=AD AE DB EC ,即9=32AE ,∴AE =6,∴AC =AE +EC =6+2=8.故选:C .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.3或8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∵AB=4cm ,∠A=90°,∴AE=AB·tan30°=3cm ;当∠AEB=30°时,则∠ABE=60°,∵AB=4cm ,∠A=90°,∴AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 603x EF ==︒,∵AF=AE+EF=ABtan30°=3,∴x +,∴8x =-∴8AE =-cm .故答案为:3或8-【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.12.-2【解析】试题分析:设反比例函数的解析式为:y=2r1,根据题意可得y=62r1,当x=-2时,y=-2.考点:待定系数法求反比例函数解析式.【详解】试题分析:随机从口袋中摸出一个恰好是黄球的概率为13,说明黄球的数目是口袋中所有球的数目的13,则可列方程:1623n n =++,解得:n=4.考点:概率的定义.14.3)【分析】由等边三角形的性质可求出B (2,,然后由中点坐标公式求出C (3,从而可求出反比例函数解析式,再求出直线OB 的解析式,然后与反比例函数解析式联立可求出点D 的坐标.【详解】∵△AOB 是等边三角形,边长为4,∴B (2,,∵BC =CA ,∴C (3),把点C 坐标代入k y x=上,得到k∵直线OB 的解析式为y,由y y x ⎧=⎪⎨=⎪⎩,解得3x y ⎧=⎪⎨=⎪⎩或3x y ⎧=⎪⎨=-⎪⎩∴D3),3).【点睛】本题考查了等边三角形的性质,待定系数法求函数关系式,反比例函数与一次函数的交点,求出反比例函数与直线OB 的解析式是解答本题的关键.15.1+取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM ,根据三角形斜边上的中线性质得出122OD BC ==,再根据三角形中位线性质得出112EM OD ==,然后根据勾股定理及角形斜边上的中线性质得出12CM OA ==最后根据两点之间线段最短即可得出答案.【详解】解:取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM在Rt △CDB 中,O 为斜边BC 的中点122OD BC ∴==在△AOD 中,AE =DE ,AM =OM 112EM OD ∴==在Rt △ACO 中,AC =OC =2AO ∴==∴12CM OA ==在△CME 中,1CE CM EM ≤+即CE 1.1.【点睛】本题考查了直角三角形斜边上的中线性质、三角形中位线性质、勾股定理、两点之间线段最短等知识点,熟练掌握性质定理和添加合适的辅助线是解题的关键.16.-3【分析】根据比例系数k 的几何含义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC 的面积为3,∴|k|=3.∴k=±3.又∵点A 在第二象限,∴k<0,∴k=−3.故答案为−3.【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.17.2m ≠【分析】根据一元二次方程的定义ax 2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.18.(1)x 1=23-,x 2=2-;(2)x 1=32+,x 2=32;(3)x 1=34,x 2=12-;(4)x 1=1,x 2=23-【分析】(1)将方程常数项移到右边,未知项移到方程左边,方程两边同时除以3将二次项系数化为1,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;(2)化成一般形式后用公式法解比较方便;(3)把右边的项移到左边,用提公因式的方法因式分解解方程;(4)化成一般形式后用公式法解比较方便;【详解】解:(1)23840x x ++=,∴2384x x +=-,∴28433x x +=-,∴28164163939x x ++=-+,∴24439x ⎛⎫+= ⎪⎝⎭,∴4233x +=±,解得:x 1=23-,x 2=2-;(2)2310x x --=,则a =1,b =-3,c =-1,∵b 2-4ac =9+4=13>0,∴x解得:x 1,x 2(3)()()421321x x x +=+,∴()()4213210x x x +-+=,∴()()04321x x -+=,∴4x -3=0或2x +1=0,解得:x 1=34,x 2=12-;(4)2320x x --=,则a =3,b =-1,c =-2,∵b 2-4ac =1+24=25>0,∴x ,解得:x 1=1,x 2=23-.【点睛】此题考查了解一元二次方程-配方法、公式法及因式分解法,利用因式分解法解方程时,首先将方程右边化为0,左边的多项式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.19.解:(1)24x =(2)2.5.【分析】(1)利用根与系数的关系12b x x a +=-求解;(2)解一元二次方程,然后利用三角形面积公式进行计算求解.【详解】解:∵一元二次方程260x x k -+=的两根分别为1x 、2x ∴12b x x a +=-,即226x +=∴24x =;(2)当5k =时,2650x x -+=解得:121,5x x ==∵1x 、2x 分别是Rt ABC ∆的两条直角边的长∴115 2.52Rt ABC S ∆=⨯⨯=【点睛】本题考查一元二次方程根与系数的关系及解一元二次方程,掌握公式和解方程的一般步骤正确计算是本题的解题关键.20.详见解析【分析】根据平行四边形性质得出AB=CD ,∠A=∠C .求出∠ABD=∠CDB .推出∠ABE=∠CDF ,根据ASA 推出△ABE ≌△CDF 即可证得DE=BF ;再又DE ∥BF 可得.【详解】证明:在□ABCD 中,AB=CD ,∠A=∠C,AD=BC .∵AB ∥CD ,∴∠ABD=∠CDB .∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE=12∠ABD ,∠CDF=12∠CDB .∴∠ABE=∠CDF .∵在△ABE 和△CDF 中,A C AB DC ABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△CDF (ASA ).∴AE=CF∴AD-AE=BC-CF,即DE=BF又AD ∥BC∴四边形DEBF 是平行四边形【点睛】本题考查了平行线的性质,平行四边形的性质和判定,全等三角形的性质和判定,角平分线定义等知识点的应用,熟练运用平行四边形的判定和性质是关键.21.见解析【解析】【分析】根据平移的性质得到∠GCB=∠DAF ,然后利用ASA 证得两三角形全等即可.【详解】解:△ADF ≌△CBG ;理由:∵把△ABE 沿CB 向左平移,使点E 与点C 重合,∴∠GCB=∠E ,∵四边形ABCD 是矩形,∴∠E=∠DAF ,∴∠GCB=∠DAF ,在△ADF 与△CBG 中,90D GBC GCB DAF BC AD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CBG (ASA ).【点睛】本题考查了矩形的性质及全等三角形的判定等知识,解题的关键是了解矩形的性质与平移的性质,难度不大.22.(1)见解析;(2)40【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD 是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD =2=10,∵AB =4,∴四边形AEFD 的面积=AB ×AD =4×10=40.【点睛】本题考查了矩形的性质,平行四边形的性质与判定,相似三角形的性质与判定,掌握以上知识点是解题的关键.23.(1)4y x=-;(2)点P 的坐标为()0,1或()0,5.【分析】(1)根据反比例函数系数的几何意义,利用△AOB 的面积即可求出m 值,然后把点A 的坐标代入反比例函数解析式,计算即可得到k 的值.(2)先一次函数的解析式,再求出点C 坐标为(4,−1),设P 点坐标为(0,c ),根据题意有:113134522c c ⨯-⨯+⨯-⨯=,解方程即可求得.【详解】解:(1)依题意得1122m ⨯⨯=,∴4m =,∴()1,4A -,把点()1,4A -代入k y x=得41k =-,∴4k =-,∴反比例函数解析式为4y x =-;(2)∵()1,4A -,代入一次函数3y ax =+,得4=-a +3,解得a =-1∴3y x =-+令x =0,y =3,∴D (0,3)将点()4,C n 代入4y x=-,得:1n =-,则点C 坐标为()41-,,设点P 坐标为()0,c ,∴PD =3c -PAC △的面积为5,∴113134522c c ⨯-⨯+⨯-⨯=,解得:1c =或5c =,则点P 的坐标为()0,1或()0,5.【点睛】本题考查了反比例函数和一次函数图象的交点问题,反比例函数系数的几何意义,反比例函数图象上点的坐标特征,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,三角形的面积是12|k |.24.这件货物高约5.1米.【分析】根据解直角三角形的解法得出BD ,CD 的长即可.【详解】解:∵tan ∠BAD =BD AD ,tan ∠CAD =CD AD ,∴BD =AD tan ∠BAD =3×tan35°≈2.1,CD =AD tan ∠CAD =3×1=3,∴BC =BD +CD =2.1+3=5.1(米)答:这件货物高约5.1米.【点睛】本题主要考查了解直角三角形的应用,关键是根据题意作出辅助线,构造直角三角形.25.(1)PD =PE 且PD ⊥PE ,理由见详解;(2)①(1)中猜想成立,理由见详解;②2222BC CE PB +=,证明见详解.【分析】(1)根据点P 在线段AO 上,利用三角形的全等判定可以得出问题;(2)①利用三角形全等得出BP =PD ,由PB =PE 可得PE =PD ,要证PE ⊥PD 可从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可求解;②连接DE ,由①知PE =PD ,PE ⊥PD ,由勾股定理可得22222DE PD PE PE =+=,由四边形ABCD 是正方形可得BC =DC ,∠BCD =∠DCE =90°,根据222DC CE DE +=知22222BC CE DE PE +==,然后结合PE =PB 可求解.【详解】解:(1)PD=PE且PD⊥PE,理由如下:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°,∵PC=PC,∴△BCP≌△DCP(SAS),∴PB=PD,∠PBC=∠PDC,∵PE=PB,∴PD=PE,∠PBC=∠PEB,∴∠PDC=∠PEB,∴∠PDC+∠PEC=180°,由四边形PECD内角和为360°,∴∠DPE+∠DCE=180°,∵∠DCE=90°,∴∠DPE=90°,∴PD=PE且PD⊥PE;(2)①(1)中结论仍成立,理由如下:∵四边形ABCD是正方形,∴BA=DA,∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,∵PE=PB,∴PD=PE,a、当点E与点C重合时,点P恰好在AC中点处,此时PE⊥PD;b、当点E在BC的延长线上时,如图所示:∵△BAP ≌△DAP ,∴∠ABP =∠ADP ,∴∠CDP =∠CBP ,∵BP =PE ,∴∠CBP =∠PEC ,∴∠PDC =∠PEC ,∵∠1=∠2,∴∠DPE =∠DCE =90°,∴PE ⊥PD ,综上所述:PD =PE 且PD ⊥PE 仍成立;②数量关系:2222BC CE PB +=,证明如下:如图2,连接DE ,由①可得PD =PE 且PD ⊥PE ,∴22222DE PD PE PE =+=,∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =∠DCE =90°,∴在Rt △DCE 中,222DC CE DE +=,∴22222BC CE DE PE +==,∵PE =PB ,∴2222BC CE PB +=.【点睛】本题主要考查正方形的性质、勾股定理及全等三角形的性质与判定,熟练掌握正方形的性质、勾股定理及全等三角形的性质与判定是解题的关键.。
北师大版九年级上册数学期末考试试卷附答案

北师大版九年级上册数学期末考试试题一、单选题1.如图,由5个完全相同的小正方体组合成一个立体图形,它的主视图是()A.B.C.D.2.顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形B.矩形C.正方形D.三角形3.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣2x=0B.x2+4x=﹣4C.2x2﹣4x+3=0D.3x2=5x﹣2AC=,4.如图,树AB在路灯O的照射下形成投影AC,已知树的高度3mAB=,树影4mAP=,则路灯高PO的长是()树AB与路灯O的水平距离6mA.2m B.4.5m C.7.5m D.12m5.如图,点D,E是△ABC中AB边上的点,△CDE是等边三角形,且△ACB=120°,则下列结论中正确的是()A.CD2=AD•BE B.BC2=BE•BDC.AC2=AD•AE D.AC•BC=AE•BD6.将抛物线y =x 2+1向左平移2个单位长度,再向上平移3个单位长度,则平移后抛物线的顶点坐标为( )A .(﹣2,3)B .(﹣2,﹣4)C .(﹣2,4)D .(2,﹣3)7.如图,在△ABC 中,BC =12cm ,高AD =6cm ,正方形EFGH 的四个顶点均在△ABC 的边上,则正方形EFGH 的边长为( )cm .A .2B .2.5C .3D .48.如图,点P ,点Q 都在反比例函数y =k x的图象上,过点P 分别作x 轴、y 轴的垂线,两条垂线与两坐标轴围成的矩形面积为S 1,过点Q 作x 轴的垂线,交x 轴于点A ,△OAQ 的面积为S 2,若S 1+S 2=3,则k 的值为( )A .2B .1C .﹣1D .﹣29.某商场在销售一种日用品时发现,如果以单价20元销售,则每周可售出100件,若销售单价每提高0.5元,则每周销售量会相应减少2件.如果该商场这种日用品每周的销售额达到2024元.若设这种日用品的销售单价为x 元,则根据题意所列方程正确的是( )A .(20+x )(100﹣2x )=2024B .(20+x )(100﹣20.5x )=2024 C .x[100﹣2(x ﹣20)]=2024D .x (100﹣200.5x -×2)=2024 10.如图,点,A B 分别在反比例函数()()10,0a y x y x x x =>=<的图象上.若OA OB ⊥,2OB OA =,则a 的值为( )A.2-B.4-C.4 D.2二、填空题11.方程x2=3x的根是_____.12.甲公司前年缴税100万元,今年缴税121万元,则该公司缴税的年平均增长率____ 13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有红球个数是__________.14.如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF.若AF=5,BF=3,则AC的长为_____.15.如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则AHAB的值是_____.16.如图,正方形ABCD的边长为4,E是AB的中点,点G在CD上,连接AG.将ABE△和CEG 分别沿直线AE 和EG 折叠,点B 和点C 同时落在点AG 上的点F 处,则AG 的长是______.17.如图,点A 为直线y x =-上一点,过A 作OA 的垂线交双曲线(0)k y x x=<于点B ,若2216OA AB -=,则k 的值为______.三、解答题18.解方程:2y 2+6y =y+3.19.计算:22tan60cos30sin 45︒︒-︒20.在一个不透明的盒子里有红球、黄球、绿球各一个,它们除了颜色外其余都相同,小颖从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图法,求小颖两次摸出的球颜色相同的概率.21.如图,△ABC中,点D是边AC的中点,过D作直线PQ△BC,△BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,△ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.22.如图,小丁家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间地面的D处,中午太阳光恰好能从窗户的最低点E射进房间地面的F处,AB△BD 于点B,CE△BD于点O,小丁测得OE=1m,CE=1.5m,OF=1.2m,OD=12m,求围墙AB的高为多少米.23.如图,在平面直角坐标系中,一次函数y=﹣x+1与反比例函数y=kx的图象在第四象限相交于点A(2,﹣1),一次函数的图象与x轴相交于点B.(1)求反比例函数的表达式及点B的坐标;(2)当一次函数值小于反比例函数值时,请直接写出x的取值范围是;(3)点C是第二象限内直线AB上的一个动点,过点C作CD△x轴,交反比例函数y=k x的图象于点D,若以O,B,C,D为顶点的四边形为平行四边形,请直接写出点C的坐标为.24.如图,小明父亲想用长为100m的栅栏,再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m,设矩形ABCD的边AB=xm,面积为Sm2.(1)请直接写出S与x之间的函数表达式为,并直接写出x的取值范围是;(2)求当x为多少m时,面积S为1050m2;(3)当AB,BC分别为多少米时,羊圈的面积最大?最大面积是多少?25.如图,反比例函数myx=图象上A、B两点的坐标分别为(3,4)A,()1,6B n--.(1)求反比例函数myx=和直线AB的解析式;(2)连结AO、BO,求AOB的面积.26.如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.27.已知正方形ABCD 的边长等于4,点E 为边AD 上一动点,连接CE ,以CE 为边长作正方形CEFG (点D 、F 在CE 所在直线的同侧),H 为CD 中点,连接FH .(1)如图1,当点E 为AD 中点时,连接BE ,BH ,求证:四边形BEFH 为菱形;(2)如图2,连接EH ,若1AE =,求EHF 的面积;(3)在点E 的运动过程中,求AF 的最小值.参考答案1.B2.B3.B4.C5.A6.C7.D8.D9.D10.B11.0或3【详解】解:x 2=3xx 2﹣3x =0即x (x ﹣3)=0△x =0或3故答案为:0或312.10%【详解】解:设该公司缴税的年平均增长率为x ,依题意得100(1+x )2 =121解方程得x 1=0.1=10%,x 2=﹣2.1(舍去)所以该公司缴税的年平均增长率为10%.故答案为:10%.13.6【详解】设袋中有x 个红球. 由题意可得:100%20%30x⨯=,解得:6x =,故答案为:6.14.【详解】解:△四边形ABCD 是矩形,△△B =90°,△AF =5,BF =3,△4AB ==,△将矩形ABCD 折叠,使点C 与点A 重合,折痕为EF .△CF =AF =5,△BC =BF+CF =8,△AC ==,故答案为:15【详解】解:设2AB a =,四边形ABCD 为正方形,2AD AB a ∴==,90BAD ∠=︒, E 点为AD 的中点,AE a ∴=,BE ∴,EF BE ∴==,1)AF EF AE a ∴=-=,四边形AFGH 为正方形,1)AH AF a ∴==,∴AH AB ==.16.5【详解】解:由折叠性质知,AF= AB= 4,CG = FG ,△AFE=△B=△C=△EFG=90°, △ A 、F 、G 三点共线,设CG=FG=x ,则DG=4-x ,AG = x+4,△△D= 90°,△AD 2+ DG 2= AG 2,△42+(4-x)2=(x +4)2, 解得x=1,△AG = x+4= 5,故答案为△5.17.8-【详解】解:延长AB 交x 轴于点C ,过点A 作AF x ⊥轴于点F ,过点B 作BE x ⊥轴于点E ,点A 为直线y x =-上的一点, 45AOC =∴∠︒,AB OA ⊥,AOC ∴和BCE 均为等腰直角三角形,AO AC ∴=,BC =,12AF OC =,)AB AC BC AF BE ∴=--. 2216OA AB -=,)22)]16AF BE ∴--=, 整理得,228AF BE BE ⋅-=,即()28BE AF BE ⋅-=, ()8BE OC CE ∴⋅-=, 8BE OE ∴⋅=,设B 点坐标为()x y ,, 8xy ∴-=,△8xy =-,8k ∴=-.故答案为:8-.18.y1=﹣3,y2=12【详解】解:△2y2+6y=y+3,△2y(y+3)﹣(y+3)=0,△(y+3)(2y﹣1)=0,△y+3=0或2y﹣1=0,解得y1=﹣3,y2=12.19.5 2【详解】解:原式=22=132-=5 220.1 3【分析】画树状图,共有9种等可能的结果,小颖两次摸出的球颜色相同的结果有3个,再由概率公式求解即可.【详解】解:画树状图如下:共有9种等可能的结果,小颖两次摸出的球颜色相同的结果有3个,∴小颖两次摸出的球颜色相同的概率为31 93 =.21.见解析【分析】先根据平行线的性质得到△DEC=△BCE,△DFC=△GCF,再由角平分线的定义得到=1 2BCE DCE BCA∠∠=∠,=1 2DCF GCF ACG∠∠=∠,则△DEC=△DCE,△DFC=△DCF,推出DE=DC,DF=DC,则DE=DF,再由AD=CD,即可证明四边形AECF是平行四边形,再由△ECF=△DCE+△DCF=11=9022BCA ACG+︒∠∠,即可得证.【详解】证明:△PQ△BC,△△DEC =△BCE ,△DFC =△GCF ,△CE 平分△BCA ,CF 平分△ACG , △=12BCE DCE BCA ∠∠=∠,=12DCF GCF ACG ∠∠=∠,△△DEC =△DCE ,△DFC =△DCF ,△DE =DC ,DF =DC ,△DE =DF ,△点D 是边AC 的中点,△AD =CD ,△四边形AECF 是平行四边形,△△BCA+△ACG =180°,△△ECF =△DCE+△DCF =11=9022BCA ACG +︒∠∠,△平行四边形AECF 是矩形.22.3m【分析】根据垂直的定义得到△FOE =90°,推出AB EO ∥,证明△ABD△△COD ,△ABF△△EOF ,再根据相似三角形的性质列方程组,再解方程组即可得到结论.【详解】解:△EO△BF ,△△FOE =90°,△AB△BF ,CO△BF ,△AB EO ∥,△△ABD△△COD ,△ABF△△EOF , △,,AB BD AB BFOC OD OE OF△OE =1m ,CE =1.5m ,OF =1.2m ,OD =12m ,△12 1.2, 2.5121 1.2ABBO AB BO 解得:AB =3.答:围墙AB 的高度是3m .23.(1)2y x-=,(1,0)B ;(2)10x -<<或2x >;(3)(1或(1 【分析】(1)将点A 坐标代入反比例函数关系式求出k ,把0y =代入一次函数关系式求得B 点横坐标,进而求得结果;(2)先求出直线和反比例函数另一个交点坐标,然后由图象得出结果;(3)因为//CD OB ,所以只需CD OB =,设点C 的纵坐标是a ,表示出C 、D 两点横坐标,列出方程求得结果.【详解】解:(1)k y x=过(2,1)A -, 2(1)2k xy ∴==⨯-=-,2y x-∴=, 由0y =得,10x -+=,1x ∴=,(1,0)B ∴;(2)由21x x-=-+得, 12x =,21x =-,∴当一次函数值小于反比例函数值时,10x -<<或2x >,故答案是:10x -<<或2x >;(3)设(1,)C a a -,2(D a-,)a , 2|1|CD a a ∴=-+, 当CD OB =时,2|1|1a a-+=,a ∴=1a =±C 在第二象限,a =1a =(1C ∴-或(1,故答案是:(1或(,1+.24.(1)22100S x x =-+,30≤x <50;(2)35m ;(3)当AB =30m ,BC =40m 时,面积S 有最大值为1200m 2【分析】(1)根据BC =(栅栏总长2)AB -,再利用矩形面积公式即可求出;(2)把1050S =代入(1)中函数解析式中,解方程,取在自变量范围内的值即可;(3)根据二次函数的性质以及自变量的取值范围求最值即可.【详解】解:(1)AB CD x ==m ,则(1002)BC x m =-,2(1002)2100S x x x x ∴=-=-+,0100240x <-,3050x ∴<,S ∴与x 之间的函数表达式为22100S x x =-+,自变量x 的取值范围是3050x <,故答案安为:22100S x x =-+,3050x <;(2)令1050S =,则221001050x x -+=,解得:115x =,235x =,3050x <,35x ∴=,∴当x 为35m 时,面积S 为21050m ;(3)222(50625625)2(25)1250S x x x =--+-=--+,20-<,∴当25x >时,S 随着x 的增大而减小,3050x <,∴当30x =时,S 有最大值为1200,∴当30AB m =,40BC m =时,面积S 有最大值为21200m .25.(1)12y x =;y=2x -2(2)5【分析】(1)把A(3,4)代入myx=,可得出m的值,进而得出B的坐标,然后把A、B的坐标代入y=kx+b,即可利用待定系数法求得函数的解析式;(2)求得D的坐标,然后利用三角形面积公式即可求得.(1)解:把A(3,4)代入myx=得:m=12,△反比例函数解析式为:12yx =,把B(n−1,−6)代入12yx=得:1261n∴-=-,解得:n=−1,△B(−2,−6),设直线AB的解析式为:y=kx+b,把A(3,4),B(−2,−6)代入得:4362k bk b ⎧⎨--⎩=+=+,解得:22kb⎧⎨-⎩==,△直线AB的解析式为:y=2x−2;(2)设直线AB与x轴于点D,则当y=0时,2x−2=0,△x=1,△D(1,0),△S△AOB=12×1×4+12×1×6=5,△△AOB 的面积为5.26.(1)证明见解析.【分析】(1)先证明四边形BCDE 是平行四边形,再证明一组邻边相等即可;(2)连接AC ,根据平行线的性质及等角对等边证明AB=1,AD=2,可知30ADB ∠=︒,再根据菱形的性质即可得出ACD △是含30的特殊三角形,最后根据勾股定理即可求AC 的长.(1)2AD BC =,E 为AD 的中点,DE BC ∴=,AD BC ∥,△四边形BCDE 是平行四边形,90ABD ∠=︒,AE DE =,BE DE ∴=,△四边形BCDE 是菱形.(2)解:连接AC .AD BC ∥,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠,1AB BC ∴==,22AD BC ∴==,30ADB ∴∠=︒,30DAC ∴∠=︒,四边形BCDE 是菱形∴260ADC ADB ∠=∠=︒,90ACD ∴∠=︒在Rt ACD △中,2AD =,1CD ∴=,∴AC =27.(1)见解析 (2)172EFH S = (3)AF的最小值是【分析】(1)先证Rt Rt (SAS)BHC CED ≌,推出BH CE =,CBH DCE ∠=∠,再结合正方形的性质得出EF BH =,//EF BH ,得出四边形BEFH 为平行四边形,再由()Rt Rt SAS ABE CBH ≌得出BE BH =,即可证明四边形BEFH 为菱形;(2)连接EH ,连接DF ,过点F 作FM AD ⊥,交AD 延长线于点M ,利用EFH EFD EDH DHF S S S S =++求解;(3)连接AF ,先证AE DM =,设AE x =,则DM x =,4DE FM x ==-,由勾股定理得AF ===,可知当0x =,即点E 与点A 重合时,AF 有最小值.(1)证明: 四边形ABCD 是正方形,BC CD AD ∴==,90BCD ADC ︒∠=∠=. 又E 为AD 中点,H 为CD 中点,CH DE ∴=,在BHC △与CED 中,BC CD BCH CDE CH DE =⎧⎪∠=∠⎨⎪=⎩,∴Rt Rt (SAS)BHC CED ≌.BH CE ∴=,CBH DCE ∠=∠.90DCE BCE ︒∠+∠=,90CBH BCE ︒∴∠+∠=,BH CE ∴⊥,在正方形CEFG 中,EF CE =,EF CE ⊥, EF BH ∴=,//EF BH ,∴四边形BEFH 为平行四边形.同理可证()Rt Rt SAS ABE CBH ≌,BE BH ∴=,∴四边形BEFH 为菱形;(2)解:如图,连接EH ,连接DF ,过点F 作FM AD ⊥,交AD 延长线于点M ,1AE =,3DE ∴=.90FEM CEM ︒∠+∠=,90CEM ECD ︒∠+∠=, FEM ECD ∴∠=∠,在EFM △与CED 中,90FEM ECDEDC EMF CE EF︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,(AAS)EFM CED ∴≌,4CD EM ∴==,3DE FM ==,1DM ∴=, 111173332212222EFH EFD EDH DHF S S S S ∴=++=⨯⨯+⨯⨯+⨯⨯=;(3)解:如图,连接AF ,由(2)可知,(AAS)EFM CED ≌, CD EM ∴=,DE FM =,CD AD EM ∴==,AE DM ∴=,设AE x =,则DM x =,4DE FM x ==-,在Rt AFM △中,由勾股定理,得AF = ∴当0x =,即点E 与点A 重合时,AF =.。
北师大版数学九年级上册期末考试试卷含答案

北师大版数学九年级上册期末考试试卷含答案一、选择题(共20小题,每小题4分,共80分)1.已知函数f(x) = 2x + 5,则f(-3)的值是多少?A. 1B. -1C. -3D. 112.根据平行四边形的性质,以下说法正确的是:A. 其对角线相等B. 其对边平行且相等C. 其内角和为360°D. 其对边相等且对角线垂直3.已知a:b = 3:4,b:c = 4:5,则a:c = ?A. 12:20B. 15:12C. 12:15D. 15:204.在指数运算中,对于任意正数a和b,以下哪个等式成立?A. a^b = b^aB. (a^b)^c = a^(b+c)C. (a+b)^c = a^c + b^cD.(a*b)^c = a^c * b^c5.已知直线AB经过点C(2, 3),斜率为1/2,则直线AB的方程为:A. y = 2x - 1B. y = 2x + 1C. y = -2x + 1D. y = -2x - 16.若正方体的棱长为a,则其表面积为:A. 4a^2B. 5a^2C. 6a^2D. 8a^27.已知a + b = 7,a - b = 1,则a的值为多少?A. 3B. 4C. 5D. 68.如图,以B为圆心,BC为半径的圆与直线DE相切于点F,则∠BFC的度数为:(图略)9.已知集合A = {1, 2, 3, 4},B = {3, 4},C = {2, 4},则A ∩ (B ∪ C)等于:A. {2}B. {3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}10.解方程x^2 - 5x + 6 = 0的解为:A. x = 3或x = 2B. x = 3或x = -2C. x = -3或x = 2D. x = -3或x = -211.一件商品原价为500元,现在进行8折打折后再打9折,折后的价格为多少元?A. 360B. 365C. 400D. 44512.已知平行四边形ABCD,对角线AC的长为6 cm,对角线BD的长为8 cm,则平行四边形ABCD的面积为:A. 12 cm^2B. 20 cm^2C. 24 cm^2D. 30 cm^213.若sinα = 1/2,且α为第二象限角,则cosα的值为:A. -√3/2B. -1/2C. 1/2D. √3/214.若一个角的补角是30°,则这个角的度数为多少?A. 30°B. 60°C. 120°D. 150°15.已知一个圆的半径为5 cm,则其周长为多少?A. 10 cmB. 15 cmC. 20 cmD. 25 cm16.已知函数y = 2x^2 + 3x - 1,求其对应的图象在x轴上的截距。
北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.若方程kx 2+2x +1=0有实数根,则k 的取值范围是()A .k >1B .k≤1C .k≤1且k≠0D .k <1且k≠02.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为()A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.在Rt △ABC 中,∠C =90°,若△ABC 的三边都缩小3倍,则sinA 的值()A .缩小3倍B .放大3倍C .不变D .无法确定4.将y=2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是()A .y=2x 2+2B .y=2(x+2)2C .y=(x -2)2D .y=2x 2-25.如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是()3,0,(,点C ,D 在坐标轴上,则菱形ABCD 的周长等于()A .B .C .D .6.在△ABC 中,DE ∥BC ,AE :EC =2:3,则S △ADE :S 四边形BCED 的值为()A .4:9B .4:21C .4:25D .4:57.如图,点A 是反比例函数y=(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2B.3C.4D.58.如图所示的几何体的俯视图是()A.B.C.D.9.已知反比例函数kyx=的图象经过点(﹣3,6),则k的值是()A.﹣18B.﹣2C.2D.1810.如图,△ABO∽△CDO,若BO=8,DO=4,CD=3,则AB的长是()A.2B.3C.4D.611.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为()A.12B.16C.20D.32 12.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3二、填空题13.已知矩形的对角线AC与BD相交于点O,若AO=2,那么BD=________.14.已知xy=23,则x yy-=___.15.如图,数轴上点A表示的数为a,化简:a=_____.16.如图,已知 ABC∽ AMN,点M是AC的中点,AB=6,AC=8,则AN=_____.17.某商店以30元的价格购进了一批服装,若按每件50元出售,一个月内可销售100件;当售价每提价1元时,其月销售量就减少5件.当利润达到1875元时,设售价提价x元,则可列方程为____________.18.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外都相同.搅匀后从中任意摸出一个球,记下颜色再把它放回盒子中.不断重复实验多次后,摸到黑球的频率逐渐稳定在0.2左右.则据此估计盒子中大约有白球___________个.三、解答题19.如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以()0,1C为圆心,1为半径的圆上一动点,连结PA、PB.则PAB∆面积的最小值是______.20.计算:1 01 (3)2cos30|1|2π-︒⎛⎫--+-+ ⎪⎝⎭.21.已知方程x2﹣3x+m=0的一个根是x1=1,求方程的另一个根x222.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=14 DC,求证:△ABE∽△DEF.23.如图,在△ABC中,AC=BC,AB=12,tan∠A=1 3.(1)尺规作图:以AC为直径作⊙O,与AB交于点D(不写作法,保留作图痕迹);(2)求⊙O的半径长度.24.面对突如其来的疫情,全国人民响应党和政府的号召,主动居家隔离.随之而来的,则是线上买菜需求激增.某小区为了解居民使用买菜APP的情况,通过制作无接触配送置物架,随机抽取了若干户居民进行调查(每户必选且只能选最常用的一个APP),现将调查结果绘制成如下两幅不完整的统计图:(A:美团优选,B:叮咚买菜,C:每日优鲜,D:盒马生鲜)(1)本次随机调查了户居民;(2)补全条形统计图的空缺部分;(3)某日下午,张阿姨想购买苹果和生菜,各APP的供货情况如下:美团优选(A)仅有苹果在售;叮咚买菜(B)仅有生菜在售;每日优鲜(C)仅有生菜在售;盒马鲜生(D)的苹果和生菜均已全部售完.求张阿姨随机选择两个不同的APP能买到苹果和生菜的概率.25.如图,在平面直角坐标系xOy中,一次函数y=kx+1与x轴、y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).(1)求一次函数和反比例函数的解析式;(2)过x轴正半轴上的点D(a,0)作平行于y轴的直线(a>0),分别与直线AB和双曲线y=mx交于点P、Q,且PQ=OD,求点D的坐标.26.如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,OC=3.动点P从点C 出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P、Q的运动时间为t秒(1)当t=2秒时,求tan∠QPA的值;(2)当线段PQ与线段AB相交于点M,且BM=2AM时,求t的值;(3)连结CQ,当点P,Q在运动过程中,记CQPV与矩形OABC重叠部分的面积为S,求S 与t 的函数关系式;(4)直接写出∠OAB 的角平分线经过CQP V 边上中点时的t 值.27.如图,D 、E 、F 分别是ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择一个条件填空(写序号),并加以证明.参考答案1.B【分析】分k =0和k≠0对应的一元一次方程和一元二次方程分类讨论即可求解.【详解】解:当k =0变成一元一次方程:2x +1=0,有实数根,符合题意;当k≠0时,为一元二次方程,此时判别式△=4-4k≥0,解得k≤1,综上,k 的取值范围为:k≤1,故选:B .2.D【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x轴对称的点的坐标为(3,-2),故选:D.3.C【分析】直接利用锐角的正弦的定义求解.【详解】解:∵∠C=90°,∴sin∠A=AA∠∠的对边的斜边,∵△ABC的三边都缩小3倍,∴∠A的对边与斜边的比不变,∴sinA的值不变,故选:C.4.B【详解】解:由“左加右减”的原则可知,将函数y=2x2的图象向左平移2个长度单位所得到的图象对应的函数关系式是:y=2(x+2)2.故选:B.5.A【分析】由勾股定理可求AB的长,由菱形的性质可求解.【详解】解:∵A,B两点的坐标分别是(3,0),(,∴OBOA=3,∴AB=∵四边形ABCD是菱形,∴AB=BC=CD=DA=∴菱形ABCD的周长等于=4×故选:A.6.B【分析】由已知条件得到AE:AC=2:5,根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到S△ADE:S△ABC=(AE:AB)2=4:25,即可得到结论.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴2ADE ABC S AE S AC ⎛⎫= ⎪⎝⎭,∵23AE EC =,∴25AE AC =,∴425ADE ABC S S = ,∴S △ADE :S 四边形BCED=4:21.故选B .【点睛】本题考查了相似三角形的判定及性质,比例的基本性质的运用,相似三角形的面积与相似比的关系,熟练掌握相似三角形的判定定理是解题的关键.7.D【详解】设A 的纵坐标是b ,则B 的纵坐标也是b .把y=b 代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S □ABCD =×b=5.故选D .8.A【分析】找到从上面观察所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:这个几何体的俯视图如图所示:,故选:A .9.A【分析】把(﹣3,6)代入,求解析式即可.【详解】解:把(﹣3,6)代入y =kx得,6=()3k -,解得,k=-18故选:A .10.D【分析】根据相似三角形的性质:相似三角形的对应边成比例,列出比例式,解出AB 的值即可.【详解】∵△ABO ∽△CDO ,BO =8,DO =4,CD =3,∴BO ABDO CD =,即843AB =,∴AB=6.故选:D .11.D【分析】由菱形OABC 的顶点C 的坐标为(3,4),可求得BC =OC =5,继而求得点B 的坐标,然后由待定系数法即可求得k 的值.【详解】解:∵点C 的坐标为(3,4),∴OC 5,∵四边形OABC 是菱形,∴BC =OC =5,BC ∥OA ,∴点B 的坐标为(8,4),∵反比例函数ky x=(x >0)的图象经过顶点B ,∴k =xy =8×4=32.故选:D .12.D【详解】解:x 2=3x ,230x x -=,-=(3)0x x ,∴120,3x x ==,故选:D .13.4【分析】根据矩形的对角线相等且互相平分,先算AC ,再算BD .【详解】∵四边形ABCD 是矩形∴1,2AO OC AC AC BD ===又∵2AO =∴4AC BD ==故答案为:414.13-【分析】由x y =23得23x y =,代入要求的式子进行计算即可.【详解】解:∵x y =23,∴23x y =,∴211333y y yx y y y y ---==-=,故答案为:13-15.2【详解】解:由数轴可得:0<a <2,则=a+(2﹣a )=2.故答案为:2.16.163【分析】根据相似三角形的性质,得AB ACAM AN=,代入数据得出AN 的长即可.【详解】解:∵△ABC ∽△AMN ,∴AB ACAM AN=,∵M 是AC 的中点,AB =6,AC =8,∴AM =MC =4,∴684AN=,解得AN =163,故答案为:163.17.5x 2-125=0【分析】根据“每月售出服装的利润=每件的利润×每周的销售量”可得1875=(50+x-30)(100-5x),然后整理即可解答.【详解】解:根据题意得出:1875=(50+x−30)(100-5x )整理得:5x 2-125=0故答案为:5x 2-125=0.18.16【分析】设盒子中大约有白球x 个,根据黑球有4个,利用黑球数量除以球的总数可得其频率为0.2,据此列方程解题即可.【详解】设盒子中大约有白球x 个,根据题意得:40.24x=+解得:16x =故答案为:16.19.112【分析】过C 作CM AB ⊥于M ,MC 的延长线交O 于N ,连接AC ,根据一次函数求出点A 、B 的坐标,然后利用等面积即可求出CM 的值,根据圆上距离直线AB 最近的点为CM 与O 的交点,从而求出PAB ∆面积的最小值.【详解】解:过C 作CM AB ⊥于M ,连接AC ,将x=0,代入334y x =-中,得y=-3,将y=0代入334y x =-中,得x=4∴点B 的坐标为(0,-3)点A 的坐标为(4,0)∴OA=4,OB=3,BC=1-(-3)=4根据勾股定理可得5=则由三角形面积公式得,1122AB CM OA BC ⨯⨯=⨯⨯,∴516CM ⨯=,∴165CM =,∴圆C 上点到直线334y x =-的最小距离是1611155-=,即点P 为CM 与O 的交点时∴PAB ∆面积的最小值是111115252⨯⨯=,故答案是:112.20.2【分析】按顺序分别进行零指数幂运算、代入特殊角的三角函数值、化简绝对值、进行负整数指数幂的运算,然后再按运算顺序进行计算即可.【详解】()1013π2cos3012-︒⎛⎫--++ ⎪⎝⎭=1212-+=2.21.22x =【详解】解:∵方程x 2﹣3x +m =0的一个根是x 1=1,另一个根x 2∴12331x x -+=-=22x ∴=22.见解析【分析】由正方形的性质得出∠A=∠D=90°,AB=AD=CD=BC ,证出AE DF AB DE=,即可得出结论.【详解】∵ABCD 为正方形,∴AD=AB=DC=BC ,∠A=∠D=90°,∵AE=ED ,∴12 AEAB=,∵DF=14 DC,∴12 DFDE=,∴AE DF AB DE=,又∠A=∠D=90°,∴△ABE∽△DEF.考点:相似三角形的判定.23.(1)见解析【分析】(1)分别以点A,C为圆心,大于12AC长为半径画弧交于两点,连接这两点交AC于点O,以O为圆心,OA为半径作圆交AB于点D;(2)连接CD,根据AC是⊙O的直径,可得∠ADC=90°,由tan∠A=13,可得CD=2,再运用勾股定理可得AC=(1)如图所示,⊙O即为所作的圆:(2)连接CD,如图,∵AC 是圆O 的直径∴90ADC ∠=︒,即CD AB⊥∵BC=AC ∴1112622AD AB ==⨯=∵tan ∠A =13∴13CD AD =∴123CD AD ==在Rt △ACD 中,222AD CD AC +=∴222262210AC AD CD =+=+=∴⊙O 的半径=110102⨯=24.(1)200(2)见解析(3)13【分析】(1)根据题意即可得本次随机调查的户数;(2)根据题意计算出选择A :天虹到家的户数即可补全条形统计图的空缺部分;(3)根据题意画出树状图,即可得张阿姨随机选择两个不同的APP 能买到苹果和生菜的概率.(1)根据题意,得30÷15%=200,所以,本次随机调查了200户居民;故答案为:200;(2)∵200-80-40-30=50,∴条形统计图的A:美团优选为50,如图为补全的条形统计图,(3)根据题意画出树状图,根据树状图可知:所有等可能的结果有12种,随机选择两个不同的APP能买到苹果和生菜的有4种,所以随机选择两个不同的APP能买到苹果和生菜的概率是41 123=.25.(1)y=x+1,2 yx =(2)20D(,)或1(4D-【分析】(1)把点A(-1,0)代入y=kx+1得k=1,从而求出直线AB的解析式y=x+1,把点C(1,n)代入y=x+1,求出n=2,即可求出m=2,从而可得反比例函数解析式;(2)分别表示出DO=a,21PQ aa=+-,根据PQ OD=列出方程求解即可.(1)把点A(-1,0)代入y=kx+1得:-k+1=0∴k=1,∴直线AB 的解析式为:y=x+1,∵点C(1,n)是直线AB 与反比例函数图象的交点,∴n=1+1=2∴122m =⨯=∴反比例函数的解析式为:2y x=(2)如图,∵D (a ,0)(a >0)∴Q(2,a a),P(a ,a+1)∴DO=a ,21PQ a a =+-,∵PQ =OD ,∴2|1|a a a =+-∴21a a a =+-,或2(1)a a a=-+-解得,2a =,或14a -=,或14a -=经检验,2a =或14a -=,或14a -=是原方程的解,但14a -=不符合题意,舍去;∴2a =或14a -=∴20D (,)或1(,0)4D -+26.(1)23;(2)3t s =;(3)()()()3022424432424t t S t t t tt <⎧≤≤⎪⎪⎪=--⎨≤>⎪⎪⎪⎩;(4)1s 或5s 或5.3s 【分析】(1)当t =2s 时,可知P 与点B 重合,在Rt △ABQ 中可求得tan ∠QPA 的值;(2)用t 可表示出BP 和AQ 的长,由△PBM ∽△QAM 可得到关于t 的方程,可求得t 的值;(3)当点Q 在线段OA 上时,S =S △CPQ ;当点Q 在线段OA 上,且点P 在线段CB 的延长线上时,由相似三角形的性质可用t 表示出AM 的长,由S =S 四边形BCQM =S 矩形OABC ﹣S △COQ ﹣S △AMQ ,可求得S 与t 的关系式;当点Q 在OA 的延长线上时,设CQ 交AB 于点M ,利用△AQM ∽△BCM 可用t 表示出AM ,从而可表示出BM ,S =S △CBM ,可求得答案.(4)先利用待定系数法求出直线AD 解析式,再由C (0,3),P (2t ,3),Q (t ,0)知CP 的中点坐标为(t ,3),CQ 中点坐标为(2t ,32),PQ 中点坐标为(32t ,32),继而分别代入计算可得.【详解】解:(1)当t =2s 时,则CP =2×2=4=BC ,即点P 与点B 重合,OQ =2,如图1,∴AQ =OA ﹣OQ =4﹣2=2,且AP =OC =3,∴tan ∠QPA =23AQ AP =;(2)当线段PQ 与线段AB 相交于点M ,则可知点Q 在线段OA 上,点P 在线段CB 的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴BP BMAQ AM=,且BM=2AM,∴244tt--=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(3)当0≤t≤2时,如图3,由题意可知CP=2t,∴S=S△PCQ =12×2t×3=3t;当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得244BP BM tAQ AM t-==-,∴BM=244tt--•AM,∴3﹣AM=244tt--•AM,解得AM=123t t-,∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣12×t×3﹣12×(4﹣t)×123t t-=24﹣24t﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴AM AQOC OQ=,即43AM tt-=,解得AM=312 tt-,∴BM=3﹣312tt-=12t,∴S=S△BCM =1122442t t⨯⨯=;综上可知()()()3022424324244t tS t tttt⎧⎪≤≤⎪⎪=--<≤⎨⎪⎪>⎪⎩(4)如图6,∵∠OAD =12∠OAB =45°,OA =4,∴D (0,4),设直线AD 解析式为y =kx+b ,代入,得:404k b b +=⎧⎨=⎩,解得14k b =-⎧⎨=⎩,∴直线AD 解析式为y =﹣x+4,由题意知C (0,3),P (2t ,3),Q (t ,0),∴CP 的中点坐标为(t ,3),CQ 中点坐标为(2t ,32),PQ 中点坐标为(32t ,32),若直线AD 经过CP 中点,则﹣t+4=3,解得t =1;若直线AD 经过CQ 中点,则﹣2t +4=32,解得t =5;若直线AD 经过PQ 中点,则﹣32t+4=32,解得t =53;综上,∠OAB 的角平分线经过△CQP 边上中点时的t 值为1或5或53.27.(1)见解析;(2)②或③,见解析【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形.(2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点∴//DE AC21又∵E 、F 是BC 、AC 的中点∴//EF AB ∵//DE AF ∴EF //AD ∴四边形ADEF 为平行四边形(2)证明:选②AE 平分BAC ∠∵AE 平分BAC ∠∴DAE FAE ∠=∠又∵平行四边形ADEF ∴//EF DA ∴=∠∠FAE AEF ∴AF EF =∴平行四边形ADEF 是菱形选③AB AC =∵//EF AB 且12EF AB=//DE AC 且12DE AC=又∵AB AC =∴EF DE =∴平行四边形ADEF 为菱形故答案为:②或③。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学上册
期末试题
一、选择题:(每题3分,共36分)
1.如图所示的工件的主视图是()
A.B.C.D.
2.已知点A (x1,y1),(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是()
A.y1>y2>0 B.y1>0>y2C.0>y1>y2D.y2>0>y1
3.下列线段中,能成比例的是()
A.3cm、6cm、8cm、9cm B.3cm、5cm、6cm、9cm
C.3cm、6cm、7cm、9cm D.3cm、6cm、9cm、18cm
4.下列说法不正确的是()
A.所有矩形都是相似的
B.若线段a=5cm,b=2cm,则a:b=5:2
C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cm D.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段
5.根据下面表格中的对应值:
x 3.24 3.25 3.26
ax2+bx+c﹣0.020.010.03
判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()
A.x<3.24B.3.24<x<3.25
C.3.25<x<3.26D.x>3.26
6.菱形,矩形,正方形都具有的性质是()
A.四条边相等,四个角相等
B.对角线相等
C.对角线互相垂直
D.对角线互相平分
7.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()
A.红球比白球多B.白球比红球多
C.红球,白球一样多D.无法估计
8.如图,在菱形ABCD中,对角线AC、BD相交于点O ,BD=8,tan∠ABD =,则线段AB的长为()
A.B.2C.5D.10
9.设a、b是两个整数,若定义一种运算“△”,a△b=a2+b2+ab,则方程(x+2)△x=1的实数根是()
A.x1=x2=1B.x1=0,x2=1C.x1=x2=﹣1D.x1=1,x2=﹣2 10.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()
A.6B.8C.10D.12
11.某县为做大旅游产业,在2015年投入资金3.2亿元,预计2017年投入资金6亿元,设旅游产业投资的年平均增长率为x,则可列方程为()
A.3.2+x=6B.3.2x=6
C.3.2(1+x)=6D.3.2(1+x)2=6
12.如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE 交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.
A.1B.2C.3D.4
二、填空题:(每题3分,满分12分)
13.顺次连接矩形各边中点所得四边形为形.
14.已知点A(x1,3),B(x2,6)都在反比例函数y=的图象上,则x1x2(填“<”或“>”或“=”)
15.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC =24cm,则这个展开图可折成的正方体的体积为cm3.16.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为;
三、解答题:(共52分)
17.(6分)解下列方程:
(1)x2﹣8x+1=0(配方法)(2)3x(x﹣1)=2﹣2x.
18.(6分)如图,在6×8的网格图中,每个小正方形边长均为1dm,点O和△ABC的顶点均为小正方形的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1:2;
(2)台风“山竹”过后,深圳一片狼藉,小明测量发现一棵被吹倾斜了的树影长为3米,与地面的夹角为45°,同时小明还发现大树树干和影子形成的三角形和△ABC相似(树干
对应BC 边),求原树高(结果保留根号)
19.(7分)阅读对话,解答问题:
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.
20.(8分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.
①求证:四边形CODP是菱形.
②若AD=6,AC=10,求四边形CODP的面积.
21.(8分)直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B (6,n),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
22.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.
购买件数销售价格
不超过30件单价40元
超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元
23.(9分)已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B 出发,沿BC向点C匀速运动,速度为lcm/s;同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动连接PQ,设运动时间为t(s)(0<t<2.5),解答下列问题:
(1)①BQ=,BP=;(用含t的代数式表示)
②设△PBQ的面积为y(cm2),试确定y与t的函数关系式;
(2)在运动过程中,是否存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一?如果存在,求出t的值;不存在,请说明理由;
(3)在运动过程中,是否存在某一时刻t,使△BPQ为等腰三角形?如果存在,求出t的值;不存在,请说明理由.。