电负性
电负性

• 对角线规则: 某些主族元素与其右下方的主族元素的有 些性质是相似的。 试从电负性的角度分析对角线规则。 Li Be B C
Na
Mg
Al
Si
• 1.锂和镁在空气里燃烧,不生成过氧化物, 只生成正常的氧化物(白色,不易溶于水)。 • 2.铍和铝的氢氧化物都呈两性。 • 3.硼和硅的含氧酸盐都能形成玻璃,且互溶。 硼酸和硅酸都难溶于水。
3.电负性大小的标准
分别以氟、锂的电负性为标准。
F: 4.0 Li: 1.0
• 请同学们仔细阅读电负性数值的表格,并 分析电负性的周期性递变。说出同周期、 同主族元素电负性的递变规律。
4、电负性的递变规律:
电负性最大
。
电负性逐渐 增 大 电 负 性 有
减 小
的 电负性最小 趋 势
原因?
原因解释
第一章 原子结构
第2节 原子结构与元素性质 (第三课时)电负性、对角线规则
三、电负性
1、电负性的概念:
键合电子:原子通过化学键形成物质,我 们把原子里用于形成化学键的电子称为键合电 子 电负性是用来描述不同元素的原子对键合 电子的 能力大小的一个量。
• 2.电负性的意义 • 电负性数值的大小衡量元素在化合物里吸引电 子的大小。元素的电负性越大,表示该原子对 键合电子的吸引能力越大,生成阴离子的倾向 越大。反之,吸引能力越小,生成阳离子的倾 向越大。
(3)判断化合物中各元素化合价的正负
• 电负性数值小的元素在化合物里吸引电子 的能力弱,元素的化合价为正值;电负性 数值大的元素在化合物里吸引电子的能力 强,元素的化合价为负值; NaH SO2 ICl
什么是电负性

什么是电负性
电负性
原子分为两类,一类具有吸引电子称为阴离子的倾向;另一类具有放出电子成为阳离子的倾向。
将原子吸引电子成为阴离子的强弱程度用数值来表示,这就是电负性。
电负性越大的原子,越容易吸引电子,带负电荷。
电负性的强弱顺序
各元素的电负性数值如下面的元素周期表所示。
越靠近元素周期表右上方的元素,越容易成为负离子。
按照下表所示,与有机化学相关的离子,其吸引电子能力的强弱顺序如下:
Na < Li < H < C < N= Cl < O < F
也就是说,碳元素吸引电子的能力非常弱,且除去锂(Li)和钠(Na)等金属原子外,比碳的能力还弱的,就仅剩下氢元素了。
元素周期律元素的电负性

规律一
一般认为: 电负性 大 于 1.8的元素 为非金属元素; 电负性 小 于 1.8的元素 为金属元素; 电负性 等 于 1.8 的元素为 类金属元素。
规律二
一般认为: 如果两个成键元素间的电负性差值 大于1.7,他们之间通常形成 离 子 键 如果两个成键元素间的电负性差值 小于1.7,他们之间通常形成 共 价 键
鲍林研究电负性 的手搞
元素电负性
2、电负性的递变规律:
电负性最大
。
电负性逐渐 增 大 电 负 性 有
减 小
的 电负性最小 趋 势
原因?
解释
• 1、同周期从左至右元素的电负性逐渐增大 • 原因:同周期从左至右,电子层数相同,核电荷数 增大,原子半径递减,有效核电荷递增,对外层电 子的吸引能力逐渐增强,因而电负性值增加 • 2、同一主族中,从上到下,元素的电负性逐渐减小 • 原因:同主族元素从上到下,虽然核电荷数也增多, 但电子层数增多引起原子半径增大比较明显,原子 和对外层电子的吸引能力逐渐减弱,元素的电负性 值递减
规律三 电负性小的元素在化合物中吸 引电子的能力 弱 ,元素的化合 价为 正 值;
电负性大的元素在化合物中吸 引电子的能力 强 ,元素的化合 价为 负 值。
课堂练习: 1、一般认为:如果两个成键元素的电负性相差大 于1.7,它们通常形成离子键;如果两个成键元素 的电负性相差小于1.7,它们通常形成共价键。查 阅下列元素的电负性数值,判断:①NaF ②AlCl3 ③NO ④MgO ⑤BeCl2 ⑥CO2 共价化合物( ②③⑤⑥ ) 离子化合物( ①④ )
8. A、B、C、D四种元素,已知A元素是自然界 中含量最多的元素;B元素为金属元素,已知 它的原子核外K、L层上电子数之和等于M、N层 电子数之和;C元素是第3周期第一电离能最小 的元素,D元素在第3周期中电负性最大。 (1)试推断A、B、C、D四种元素的名称和符号。 氧(O)钙( Ca)钠( Na)氯(Cl)
电负性规律总结

电负性规律总结1. 什么是电负性?电负性是描述一个原子或离子在共有电子对中吸引电子的能力的量度。
在化学中,电负性常用于描述共价键中的电子云的偏移程度。
通常,电负性较高的元素会吸引共享电子对,而电负性较低的元素则会被吸引,形成极性键。
2. 电负性的测定方法目前,最常用的电负性测定方法是根据保罗电负性表进行。
保罗电负性表是由美国化学家林德利·保罗(Linus Pauling)在1932年提出的一种量化电负性的方法。
保罗将氢的电负性定为2.1,并将其他元素的电负性与氢进行比较,得出了一张电负性表。
保罗电负性表中,元素的电负性数值越高,表示元素吸引共享电子对的能力越强。
例如,氧的电负性为 3.44,而钠的电负性仅为0.93。
电负性数值的差异越大,键越极性。
3. 电负性规律3.1 周期表中的电负性根据周期表的排列,我们可以观察到电负性在周期表中的一些规律。
在同一周期中,随着原子核电荷数的增加,元素的电负性呈现上升趋势。
这是由于原子核的电荷数增加,电子云被更有效地吸引,从而增加了元素的电负性。
同一族元素的电负性也具有一定的规律。
一般来说,元素原子序数越大,电负性越低。
这是因为原子半径增加,电子离原子核的距离增加,电子云与核之间的吸引减弱,从而降低了元素的电负性。
3.2 化合物中的电负性在化合物中,元素的电负性差异决定了键的极性。
当两个元素的电负性相差较大时,形成的键称为离子键。
离子键是由电子从一个原子转移到另一个原子形成的,并且通常存在于金属和非金属元素之间。
当两个元素的电负性差异较小时,形成的键称为共价键。
共价键是由共享电子对形成的,并且通常存在于非金属之间。
共价键还可以分为极性共价键和非极性共价键。
当两个元素的电负性相等时,形成的共价键为非极性共价键;当两个元素的电负性差异较大时,形成的共价键为极性共价键。
3.3 电负性与化学反应的影响电负性差异对化学反应的性质和速率有重要影响。
极性键中,电负性较大的原子会部分亦或完全掌握着共享电子对。
电负性的规律

电负性的规律
1.随着原子序号的递增,元素的电负性呈现周期性变化。
2.同一周期,从左到右元素电负性递增,同一主族,自上而下元素电负性递减。
对副族而言,同族元素的电负性也大体呈现这种变化趋势。
因此,电负性大的元素集中在元素周期表的右上角,电负性小的元素集中在左下角。
1电负性大小比较规律
1.随着原子序号的递增,元素的电负性呈现周期性变化。
2.同一周期,从左到右元素电负性递增,同一主族,自上而下元素电负性递减。
对副族而言,同族元素的电负性也大体呈现这种变化趋势。
因此,电负性大的元素集中在元素周期表的右上角,电负性小的元素集中在左下角。
3.电负性越大的非金属元素越活跃,电负性越小的金属元素越活泼。
氟的电负性最大(
4.0),是最容易参与反应的非金属;电负性最小的元素(0.79)铯是最活泼的金属。
4.过渡元素的电负性值无明显规律。
2常见元素电负性大小(鲍林标度)
非金属系:氟>氧>氯>氮>溴>碘>硫>碳
金属系:铝>铍>镁>钙>锂>钠>钾。
电负性变化规律

电负性变化规律我们知道,电负性是物质原子或离子所带的正电荷数与负电荷数的比值。
它是物质本身固有的特性,在周围环境中几乎不会发生变化。
但由于人类对电的性质还缺乏深入的了解,因此对它的认识经历了一个由浅入深、从表及里、逐步完善的漫长过程。
直到19世纪末期,电荷在导体内的运动,人们才初步发现了它的“逆”运动规律。
据科学家统计,迄今为止,共有200多种元素具有电负性。
因此,绝大部分元素都呈中性,只有少数元素例外。
所谓“电负性”是指这些元素的原子核对于核外电子吸引能力的大小。
由于原子核对电子的吸引能力随电子层数的增加而减弱,因此电负性总是由较外层电子数目的增加而增加。
最早发现这一规律的是法拉第。
他注意到在磁场作用下,钢针偏转的现象。
由此推断这一现象也可能存在于导体内。
为了证实这一假设,他将铜针放在通电的螺线管中,观察到铜针转动得更快。
通过进一步研究他发现这一现象的机理:在导体内产生强磁场后,由于它对空间电荷的作用相当于洛仑兹力,因此使电荷在导体内产生沿螺线管长度方向的移动,从而造成铜针转动。
当时,法拉第认为这一效应只存在于导体内部,其应用前景十分渺茫。
3。
自感现象:自感是导体自身电流发生变化而引起的导体本身电位变化。
根据这一现象建立了自感系数的定义:电流自身变化量与电流变化量之比。
可见,在这两种现象中,都涉及到电荷的位移,并且都表示电荷在导体内部的移动。
那么,这两种现象究竟是怎样产生的呢?原来,在导体内部,由于受到电荷的束缚,因此要产生电流必须克服束缚电荷的阻力做功,这就需要有能量损耗。
能量的这种损耗,主要来源于电子的热运动。
当导体内的电子与导体分子发生碰撞时,便会产生大量的热,这些热量被导体内部的非电子气体所吸收,使导体的电阻增大,从而降低了电子的平均能量,这样,电子在通过导体时碰撞机会减少,因此运动速度减慢。
如果导体中没有电流通过,热量全部被导体内的分子和原子吸收,电子与导体的碰撞机会也将很少,因此电子的平均能量将保持不变,电子在导体内的运动也就将是自由落体运动,其动能不会发生变化,电流也就无从谈起。
化学高考电负性知识点总结

化学高考电负性知识点总结化学高考电负性知识点总结电负性是用来描述元素对共价键中电子的吸引能力的一个物理量。
它能够帮助我们理解分子的性质以及化学反应的方向性。
在高考化学中,电负性是一个重要的知识点,本文将对电负性进行详细的总结和解析。
一、电负性的概念和含义1. 电负性的定义:电负性是一个量化描述元素吸引共价键中电子能力的物理量。
常用的电负性量表是由林德尔(Pauling)提出的,该量表将最电负元素(氟)的电负性定义为4.0,然后按照一定规则对其他元素进行排序。
2. 电负性的含义:电负性的大小反映了元素获取电子的能力,即元素对共价键中电子的吸引能力。
电负性大的元素倾向于获得电子,形成阴离子;电负性小的元素倾向于失去电子,形成阳离子。
二、电负性的趋势和规律1. 周期表中的电负性:沿着周期表向右和向上,电负性逐渐增加。
原因:原子半径的缩小和核电荷的增加使得电子与原子核之间的吸引力增强,电子云向外层扩散的难度加大,电子云的密度增加,电负性增强。
2. 主族元素之间的电负性:随着电荷数的增大,同一个周期中的元素电负性逐渐增大。
3. 电负性的数值差异:根据电负性表,同一化合价的元素之间的电负性差值为0.4-0.5时为共价键,差值大于1.7时为离子键,差值介于0.4-1.7之间的化合物具有明显的共价和离子性混合。
三、电负性与化学性质的关系1. 共价键的极性:电负性差异大的元素之间形成极性共价键,电负性差异小的元素之间形成非极性共价键。
2. 分子极性:分子的极性主要由分子中各原子的电负性差异所决定。
当一个分子中极性键的极性相互抵消时,整个分子为非极性分子;当一个分子中极性键的极性不能完全抵消时,整个分子为极性分子。
四、电负性和化学反应的方向性1. 电负性差异和反应活性:电负性差异大的元素,如金属和非金属之间形成的化合物一般更加稳定,反应活性较低。
而电负性差异小的元素,如非金属之间形成的化合物,由于电负性接近,容易发生化学反应。
电负性

电负性本页解释何谓电负性、周期表中元素电负性的变化规律及原因;元素电负性差异对成键造成的影响、极性键和极性分子的意义。
如果你对有机化学背景下的电负性感兴趣,你可以在页面底部找相关链接。
什么是电负性定义电负性是原子对成键电子吸引倾向的量化(相对标度);元素的电负性愈大,吸引成键电子对的倾向就愈强。
鲍林标度(Pauling scale)是使用最广泛的电负性标度。
其标度值的范围从电负性最强的元素氟(F)——标度值为3.98,到电负性最弱的元素钫(Fr)——标度值为0.7。
两个电负性相同的原子成键会发生什么?如下图,原子A和原子B之间存在一个成键。
当然除了这个成键以外,每个原子可以同时与更多的原子之间存在着成键——不过这与我们所要讨论的问题无关。
如果原子的电负性相同,那么它们对成键电子对的吸引能力也相同。
因而电子出现在两个原子附近的概率相等,电子在平均意义上会出现在两个原子间的正中。
此类成键,A 和B通常为同一种原子,例如H2分子或Cl2分子。
注意: 上边的示意图表示的是电子在平均意义上的位置。
电子实际上存在于分子轨域当中,并且其位置在不断的变换。
此类成键被看作是"纯粹" 的共价键——电子均匀的为两个原子所共享。
如果B的电负性稍强于A呢?B对电子对的吸引能力会比A稍强一些。
这意味着在成键的B端电子密度会更高一些,因此略微带负电。
同时,A 端(有点缺乏电子)略微带正电。
图中,"" (读做"delta") 的意思为"略微的","+" 表示"略微带正电"。
什么是极性键?我们用极性键一词形容成键两端电荷不均匀分布的共价键——换一句话说就是成键的一端略微带正电荷而另一端略微带负电荷。
大多数共价键为此类成键。
HCl中的氢—氯成键以及水分子中的氢—氧成键皆为典型的极性键。
如果B的电负性远远超过了A呢?电子对会被吸引到成键的B端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电负性
本页解释何谓电负性、周期表中元素电负性的变化规律及原因;元素电负性差异对成键造成的影响、极性键和极性分子的意义。
如果你对有机化学背景下的电负性感兴趣,你可以在页面底部找相关链接。
什么是电负性
定义
电负性是原子对成键电子吸引倾向的量化(相对标度);元素的电负性愈大,吸引成键电子对的倾向就愈强。
鲍林标度(Pauling scale)是使用最广泛的电负性标度。
其标度值的范围从电负性最强的元素氟(F)——标度值为3.98,到电负性最弱的元素钫(Fr)——标度值为0.7。
两个电负性相同的原子成键会发生什么?
如下图,原子A和原子B之间存在一个成键。
当然除了这个成键以外,每个原子可以同时与更多的原子之间存在着成键——不过这与我们所要讨论的问题无关。
如果原子的电负性相同,那么它们对成键电子对的吸引能力也相同。
因而电子出现在两个原子附近的概率相等,电子在平均意义上会出现在两个原子间的正中。
此类成键,A 和B通常为同一种原子,例如H2分子或Cl2分子。
注意: 上边的示意图表示的是电子在平均意义上的位置。
电子实际上存在于分子轨域当中,并且其位置在不断的变换。
此类成键被看作是"纯粹" 的共价键——电子均匀的为两个原子所共享。
如果B的电负性稍强于A呢?
B对电子对的吸引能力会比A稍强一些。
这意味着在成键的B端电子密度会更高一些,因此略微带负电。
同时,A 端(有点缺乏电子)略微带正电。
图中,"" (读做"delta") 的意思为"略微的","+" 表示"略微带正电"。
什么是极性键?
我们用极性键一词形容成键两端电荷不均匀分布的共价键——换一句话说就是成键的一端略微带正电荷而另一端略微带负电荷。
大多数共价键为此类成键。
HCl中的氢—氯成键以及水分子中的氢—氧成键皆为典型的极性键。
如果B的电负性远远超过了A呢?
电子对会被吸引到成键的B端。
A失去了它对成键电子对的控制权,而B完全控制住了这两个电子。
就这样,离子形成了。
成键的"范围谱"
所有这一切暗示了在共价键和离子键之间并没有明显的分界线。
在纯粹的共价键中,电子在平均意义上位于两个原子之间的中点。
在极性键中,电子的位置略微的移向了成键的某一端。
在其被算做是离子键之前,电子还可以移动多远? 这个问题没有真正的答案。
一般认为氯化钠是典型的离子型固体。
但即便如此,钠
也未曾完全失去对它电子的控制。
不管怎么说,由于氯化钠的特性,我们趋向于把它看作是纯粹的离子。
注意: 不用过于在意极性键与离子键之间的精确分界点。
在A'level中,有关共价键和离子键的举例会尽量避免它们间的"灰色区域"——这些例子要么是明显的共价键,要么就是明显的离子键。
不过,你仍然需要知道"灰色区域"的存在。
另一方面,碘化锂却被看成是拥有一些共价特性的离子化合物。
碘化锂的成键电子对并没有完全移动到成键的碘端。
碘化锂可以溶解于有机溶剂中(比如乙醇)——而不似离子化合物通常所表现的那样。
总结
∙两个电负性相同的原子成键,会产生纯净的非极性共价键。
∙两个电负性差异较小的原子成键,会产生极性共价键。
∙两个电负性差异大的原子成键,会产生离子键。
极性键和极性分子
HCl的分子结构很简单,如果它唯一的成键是极性的,那么整个分子也将是极性的。
但如果我们遇到的是结构更为复杂的分子,情况会怎样呢?
CCl4分子中的每一个成键都是极性的。
注意: 普通的线条代表跟屏幕或打印纸在同一平面的成键。
虚线代表位于屏幕或打印纸后方的成键。
锲形线条代表位于屏幕或打印纸前方(也就是面向你)的成键。
但将这个分子作为一个整体来看,它不是极性的——它不具有分别略微带负电和略微带正电的两端(或两侧)。
整个分子的外围是略微带负电的,但无论是从上边到下边,还是从左边到右边都找不到略微带正电的另一端。
相比之下,CHCl3却是极性分子。
位于分子顶侧的氢原子,其电负性较碳原子略低,因此将略微带正电。
如此,分子具有一个略微带正电的"顶侧"和一个略微带负电的"底侧",所以它是一个极性的分子。
很多时候,极性分子两极的正负电荷是不均等的。
周期表中元素电负性的变化规律
电负性最大的元素是氟。
如果你记住这一个事实,那么一切都会变的简单,因为周期表中元素的电负性总是朝着氟的方向不断增大。
注意: 下图忽略了惰性气体。
历史上很长一段时间以来,人们相信所有的惰性气体都不会成键——一个不成键的原子是不会拥有电负性数值的。
即便是现在,我们已经知道它们中的一些确实会成键,但教材上仍未提供它们电负性数值的资料。
周期内元素的电负性变化规律
同一周期内,元素的电负性会随着原子序数的增加而增大。
下图显示了元素钠到元素氯的电负性变化——你需要忽略周期中的氩元素,它不成键,因此也没有电负性。
族内元素的电负性变化规律
同一族内,元素的电负性会随着原子序数的增加而减小(氟是7族元素中原子序数最小的) 。
下图显示了1族和7族元素的电负性变化。
解释元素电负性变化的原因
原子核对成键电子的吸引能力取决于:
∙原子核的质子数量。
∙原子核与成键电子之间的距离。
∙原子的内层电子(构成屏蔽的电子)数量。
注意: 如果你不熟悉屏蔽这一概念,请在继续阅读之前,先查看电离能中的相关内容。
影响电离能变化的因素,同样也是影响电负性变化的因素。
使用浏览器上的"后退"按钮可方便的返回本页。
为什么周期内元素的电负性会随原子序数的增加而增大?
钠元素是第3周期的开端,氯元素是第3周期结尾(忽略惰性气体氩元素)。
我们假设氯化钠刚形成时是共价成键。
钠和氯的成键电子(外层电子)都位于第3能级。
成键电子对都被
1s、2s 和2p轨域的电子所屏蔽,不过氯原子核比钠原子核多出了6个质子。
这也就难怪成键电子对会被远远的拉向氯的那一端并形成了离子。
随着原子序数的增加,原子核所带的电荷也将增加,电荷数的增加会增强原子核对成键电子对的吸引能力。
因此,在同一周期内,元素的电负性会随原子序数的增加而增大。
为什么族内元素的电负性会随着原子序数的增加而减小?
我们将以氟化氢和氯化氢作为例子。
氟原子核与成键电子对之间仅由1s2电子屏蔽。
而氯原子核与成键电子对之间则由1s22s22p6的全部电子屏蔽。
这两个例子中,氟原子核和氯原子核所能让成键电子感受到的电荷皆为+7。
但氯的成键电子位于第三能级,而氟的成键电子却在第二能级。
成键电子离原子核越近,原子核吸引它的能力就越强。
族内元素的电负性会随着原子序数的增加而减小,是因为成键电子离原子核越来越远,原子核对它的吸引能力越来越弱。
正离子的极化能力
"极化能力"指的是什么?
我们讨论到这里,已经认识到可以把离子键当作高度"变形"的共价键来看待。
当然你也可以使用别的方式认识离子键。
固体氯化铝为共价化合物。
如果我们将其假想为离子化合物,它将含有Al3+ 和Cl-离子。
铝离子不但非常小,而且还拥有3个正电荷——所以它的"电荷密度"很高。
这对位于它附近的任何电子来说都有相当大的影响。
于是,铝附近的成键电子对向着铝的方向移动,其移动程度足以使成键重新变回共价键。
影响极化能力的因素
正离子位于负离子附近时可对其产生极化效应(使电子所在的轨域变形)。
极化能力取决于正离子的电荷密度。
极化能力会随正离子体积的减小以及电荷的增大而不断增强。
对于负离子来说,随着其体积的增大,它将越来越容易被极化。
举例来说,碘离子( I -)的外层电子位于第5能级——离原子核相对较远。
比起其它大多数拥有相同电荷的负离子(比如,离原子核近得多的氟离子(F-)),正离子对碘离子( I -)电子对的吸引更加显示出效果。
碘化铝是共价化合物,因为碘离子的电子对比较容易拖走(被极化)。
另一方面,氟化铝却是离子化合物,因为铝离子不能充分的极化体积较小的氟离子以形成共价键。