2012年广东高考数学试题(理数)
[整理]2012年广东省高考理科数学试题含答案
![[整理]2012年广东省高考理科数学试题含答案](https://img.taocdn.com/s3/m/509f1adc6294dd88d0d26b86.png)
2012年普通高等学校招生全国统一考试(广东卷)A一 、选择题:本大题共8小题,每小题5分,满分40分1.设i 为虚数单位,则复数56i i-= A . 65i + B .65i -C .65i -+D .65i -- 2.设集合U={1,2,3,4,5,6}, M={1,2,4 } 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量BA =(2,3),CA =(4,7),则BC =A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+ B.y = C .y=12x⎛⎫ ⎪⎝⎭D .1y x x =+ 5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为A .12B .11C .3D .1- 6.某几何体的三视图如图1所示,它的体积为A .12πB .45πC .57πD .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是A . 49B . 13C . 29D . 198.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b = A .12 B .1 C . 32 D . 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分.(一)必做题(9-13题)9.不等式21x x +-≤的解集为_____.10. 261()x x+的展开式中3x 的系数为______.(用数字作答)11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a = ____.12.曲线33y x x =-+在点(1,3)处的切线方程为 .13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为 .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为)x t ty =⎧⎪⎨=⎪⎩为参数和()x y θθθ⎧=⎪⎨=⎪⎩为参数,则曲线C 1与C 2的交点坐标为_______. 15.(几何证明选讲选做题)如图3,圆O 的半径为1,A 、B 、C 是圆周上的三点,满足∠ABC=30°,过点A 做圆O 的切线与OC 的延长线交于点P ,则PA=_____________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) 已知函数()2cos()(0,)6f x x x R πωω=+>∈其中的最小正周期为10π(1)求ω的值;(2)设56516,0,,(5),(5)235617f f παβαπβπ⎡⎤∈+=--=⎢⎥⎣⎦,求cos()αβ+的值.17. (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点 E 在线段PC 上,PC ⊥平面BDE .(1) 证明:BD ⊥平面PAC ;(2) 若PA=1,AD=2,求二面角B-PC-A 的正切值;19. (本小题满分14分)设数列{}n a 的前n 项和为S n ,满足11221,,n n n S a n N +*+=-+∈且123,5,a a a +成等差数列.(1) 求a 1的值;(2) 求数列{}n a 的通项公式.(3) 证明:对一切正整数n ,有1211132n a a a +++<.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b +=>>的离心率e =且椭圆C 上的点到Q (0,2)的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由.21.(本小题满分14分)设a <1,集合{}{}20,23(1)60A x R x B x R x a x a =∈>=∈-++>,D A B =(1)求集合D (用区间表示)(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.2012广东高考数学(理科)参考答案选择题答案:1-8: DCAAB CDC填空题答案: 9. 1,2⎛⎤-∞- ⎥⎝⎦ 10. 2011. 21n -12. 21y x =+ 13. 814. ()1,115. 解答题16.(1)15ω= (2)代入得62cos 25πα⎛⎫+=- ⎪⎝⎭3sin 5α⇒= 162cos 17β=8c o s 17β⇒= ∵ ,0,2παβ⎡⎤∈⎢⎥⎣⎦∴ 415cos ,sin 517αβ== ∴ ()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=- 17.(1)由300.006100.01100.054101x ⨯+⨯+⨯+=得0.018x =(2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2()292126011C P C ξ=== ()11932129122C C P C ξ===()232121222C P C ξ=== ∴ 69110121122222E ξ=⨯+⨯+⨯= 18.(1)∵ PA ABCD ⊥平面∴ PA BD ⊥∵ PC BDE ⊥平面∴ PC BD ⊥∴ BD PAC ⊥平面(2)设AC 与BD 交点为O ,连OE∵ PC BDE ⊥平面∴ PC OE ⊥又∵ BO PAC ⊥平面∴ PC BO ⊥∴ PC BOE ⊥平面∴ PC BE ⊥∴ BEO ∠为二面角B PC A --的平面角∵ BD PAC ⊥平面∴ BD AC ⊥∴ ABCD 四边形为正方形∴BO =在PAC ∆中,133OE PA OE OC AC =⇒=⇒= ∴ tan 3BO BEO OE∠== ∴ 二面角B PC A --的平面角的正切值为3 19.(1)在11221n n n S a ++=-+中令1n =得:212221S a =-+令2n =得:323221S a =-+解得:2123a a =+,31613a a =+又()21325a a a +=+解得11a =(2)由11221n n n S a ++=-+212221n n n S a +++=-+得12132n n n a a +++=+又121,5a a ==也满足12132a a =+所以132n n n a a n N *+=+∈对成立∴ ()11+232n n n n a a ++=+∴ 23n n n a +=∴ 32n n n a =-(3)(法一)∵()()123211323233232...23n n n n n n n n a -----=-=-+⨯+⨯++≥∴ 1113n n a -≤ ∴21123111311111113...1 (1333213)n n n a a a a -⎛⎫⎛⎫⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭+++≤++++=<- (法二)∵1111322322n n n n n n a a ++++=->⨯-=∴ 11112n na a +<⋅ 当2n ≥时,321112a a <⋅ 431112a a <⋅541112a a <⋅ ………11112n n a a -<⋅ 累乘得: 221112n n a a -⎛⎫<⋅ ⎪⎝⎭ ∴212311*********...1...5252552n n a a a a -⎛⎫+++≤++⨯++⨯<< ⎪⎝⎭20.(1)由e =得223a b =,椭圆方程为22233x y b += 椭圆上的点到点Q 的距离d ==)b y b =-≤≤当①1b -≤-即1b ≥,max 3d ==得1b =当②1b ->-即1b<,max 3d ==得1b =(舍)∴ 1b =∴ 椭圆方程为2213x y += (2)11sin sin 22AOB S OA OB AOB AOB ∆=⋅∠=∠ 当90AOB ∠=,AOB S ∆取最大值12, 点O 到直线l距离2d == ∴222m n +=又∵2213m n += 解得:2231,22m n ==所以点M的坐标为,22222222⎛⎫⎛⎫⎛⎛---- ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭或或或AOB ∆的面积为1221.(1)记()()()223161h x x a x a a =-++<()()()291483139a a a a ∆=+-=--① 当0∆<,即113a <<,()0,D =+∞ ② 当103a <≤,33330,44a a D ⎛⎛⎫+++=⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭③ 当0a ≤,D ⎫=+∞⎪⎪⎝⎭(2)由()()266160=1f x x a x a x a '=-++=得,得① 当113a <<,()D f x a 在内有一个极大值点,有一个极小值点1 ② 当103a <≤,∵()()12316=310h a a a =-++-≤ ()()222316=30h a a a a a a a =-++->∴ 1,D a D ∉∈∴ ()D f x a 在内有一个极大值点③ 当0a ≤,则a D ∉又∵()()12316=310h a a a =-++-<∴ ()D f x 在内有无极值点理科数学试卷评析——汪治平1.2.整体分析:试卷难度偏易,题型较正统,解答题考查了常见六大板块:三角函数、概率统计、立体几何、数列、解析几何、函数与导数。
2012年高考理科数学广东卷

()
A. y ln(x 2)
B. y x 1
C. y (1)x 2
D. y x 1 x
y≤2
5.
已知变量
x
,
y
满足约束条件
y 的最大值为
x y≤1
()
A.12
B.11
C.3
D. 1
6. 某几何体的三视图如图 1 所示,它的体积为
16.(本小题满分 12 分)
已知函数 f (x) 2cos(x π) (其中 0 , x R )的最小正周期为10π . 6
(Ⅰ)求 的值;
(Ⅱ)设 [0, π] , f (5 5 π) 6 , f (5 5 π) 16 ,求 cos( ) 的值.
绝密★启用前 在
2012 年普通高等学校招生全国统一考试(广东卷)
数学(理科)
此 本试卷共 6 页,21 小题,满分 150 分.考试用时 120 分钟.
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、
座位号填写在答题卡上.用 2B 铅笔将试卷类型填涂在答题卡相应位置上.将条
(二)选做题(14—15 题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)在平面直角坐标系 xOy 中,曲线 C1 和 C2 的参数方程分别为
2012年高考数学广东卷含参考答案(理科)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科A 卷)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数56ii-= A .65i +B .65i -C .65i -+D .65i --2.设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ðA .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量(2,3)BA = ,(4,7)CA = ,则BC =A .(2,4)--B .(3,4)C .(6,10)D .(6,10)--4.下列函数中,在区间(0,)+∞上为增函数的是A . ln(2)y x =+B y =C . 1()2xy =D . 1y x x=+5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-16.某几何体的三视图如图1所示,它的体积为 A .12π B .45π C .57π D .81π7.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是 A .49 B .13 C .29 D .198.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ .若平面向量,a b 满足0a b ≥> ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ 和βα 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B .1 C .32 D .52二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式|2|||1x x +-≤的解集为___________. 10.261()x x+的展开式中3x 的系数为__________.(用数字作答) 11.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =________. 12.曲线33y x x =-+在点(1,3)处的切线方程为__________.13.执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为_______.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系中xoy 中,曲线1C 和曲线2C 的 参数方程分别为⎩⎨⎧==ty t x (t 为参数)和⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数),则曲线1C 和曲线2C 的交点坐标为 .15.(几何证明选讲选做题)如图3,圆O 的半径为1,A ,B ,C 是圆上三点,且满足︒=∠30ABC ,过点A 做圆O 的切线与OC 的延长线交与点P ,则PA= .图3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)6cos(2)(πω+=x x f (其中R x ∈>,0ω)的最小正周期为π10.(1) 求ω的值;(2) 设,56)355(,2,0,-=+⎥⎦⎤⎢⎣⎡∈παπβαf 1716)655(=-πβf ,求)cos(βα+的值. 17.(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是: [40,50), [50,60), [60,70), [70,80), [80,90), [90,100], (1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面PAC ;(2)若1PA =,2AD =,求二面角B PC A --的正切值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足11221n n n S a ++=-+,*n N ∈,且123,5,a a a +成等差数列. (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211132n a a a ++⋅⋅⋅+<.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1) 求椭圆C 的方程(2) 在椭圆C 上,是否存在点(,)M m n ,使得直线:1l mx ny +=与圆22:1O x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.)21.(本小题满分14分)设1a <,集合2{0},{23(1)60}A x R x B x R x a x a =∈>=∈-++>,D A B = . (1) 求集合D (用区间表示);(2) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.2012年普通高等学校招生全国统一考试(广东卷)理科数学A 卷参考答案一、选择题:1. D2. C3. A4. A5. B6. C7. D8. C 二、填空题:9.12x x ⎧⎫≤-⎨⎬⎩⎭ 10. 20 11. 2n-1 12. y=2x+1 13. 814. (1,1) 15.三、解答题:16. 解:(1)由f(x)得: 其最小正周期(2)由(1)得:同理由:又17. 解:(1)由图得:(2)由图得:由题知:21105T w w ππ==⇒=15w ∴=0,w >又1()2cos()56f x x π=+515(5)2cos 53536f παπαπ⎡⎤⎛⎫∴+=++ ⎪⎢⎥⎝⎭⎣⎦62cos 25πα⎛⎫=+=-⎪⎝⎭3sin 5α⇒=5168(5)cos 61717f βπβ-==得:,0,παβ⎡⎤∈⎢⎥4cos 5α∴==15sin 17β=cos()cos cos sin sin αβαβαβ∴+=-483151351751785=⨯-⨯=-()0.0060.0060.010.0540.006101x +++++⨯=0.018x ⇒=()()8090100.18901000.006100.06P X x P X ≤<==≤<=⨯=[)8090∴⨯在,的学生人数为:0.1850=9[)90100⨯在,的学生人数为:0.0650=30,1,2ξ=()()()2122993322212121212910,1,2222222C C C C P P P C C C ξξξ=========18. 解: (1)证明:(2)由(1)得:在矩形ABCD 中,如图所示建立直角坐标系,由(1)知,所以,二面角B-PC-A 的正切值为:3。
2012年广东高考理科数学卷(试题和答案)

(二)选做题(14、15 题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在平面直角坐标系中 xoy 中,曲线 C1 和曲线 C 2 的 参数方程分别为 ⎨ 为 .
⎧x = t ⎩y = t
( t 为参数)和 ⎨
⎧ ⎪ x = 2 cosθ ( θ 为参数) ,则曲线 C1 和曲线 C 2 的交点坐标 ⎪ ⎩ y = 2 sin θ
β=
α ⋅β .若平面向量 a , b 满足 a ≥ b > 0 , a 与 b 的夹 β
⎧n ⎫ ⎟ ,且 a b 和 b a 都在集合 ⎨ | n ∈ Z ⎬ 中,则 a b = 4⎠ ⎩2 ⎭
B. 1 C.
1 2
3 2
D.
5 2
第 1 页 共 4 页
二、填空题:本大题共 7 小题.考生 作答 6 小题.每小题 5 分,满分 30 分. (一)必做题(9~13 题) 9.不等式 | x + 2 | − | x |≤ 1 的解集为___________. 10. ( x + ) 的展开式中 x 3 的系数为__________. (用数字作答)
8. 选 C. 【提示】 a b =
a b
⋅ cos θ =
b n1 n nn ⋅ cos θ = 2 , 两 式 相 乘 , 得 cos 2 θ = 1 2 , ,b a= 2 2 4 a
nn 1 1 nn 1 3 ∵ < cos 2 θ < 1 ,∴ < 1 2 < 1 ,由于 n ∈ Z ,故 1 2 = × . 2 2 4 4 2 2
2012 年普通高等学校招生全国统一考试(广东卷)
数学(理科 A 卷)
本试卷共 4 页,21 小题,满分 150 分.考试用时 120 分钟. 一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.设 i 为虚数单位,则复数 A. 6 + 5i
2mxt-2012年广东高考理科数学试题与答案(解析版)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-=( )()A 65i + ()B 65i - ()C i -6+5()D i -6-5【解析】选D 依题意:256(56)65i i ii i i --==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( )()A U ()B {1,3,5} ()C {,,}356 ()D {,,}246【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==u u u r u u u r;则BC =u u u r ( )()A (2,4)-- ()B (2,4) ()C (,)610()D (,)-6-10【解析】选A(2,4)BC BA CA =-=--u u u r u u u r u u u r 4. 下列函数中,在区间(0,)+∞上为增函数的是( )()A ln(2)y x =+ ()B y = ()C ()x y 1=2 ()D y x x1=+【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,y =(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )()A 12 ()B 11 ()C 3 ()D -1【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( ) ()A 12π ()B 45π ()C π57 ()D π81 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为2222135353573V πππ=⨯⨯+⨯⨯-=7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为0的概率是( )()A 49 ()B 13 ()C 29()D 19【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=8. .对任意两个非零的平面向量α和β,定义αβαβββ=g o g ;若平面向量,a b r r 满足0a b ≥>r r ,a r 与b r 的夹角(0,)4πθ∈,且,a b b a r r r r o o 都在集合}2nn Z ⎧∈⎨⎩中,则a b =r r o ( )()A 12()B 1 ()C 32()D 52【解析】选C21cos 0,cos 0()()cos (,1)2a b a b b a a b b a baθθθ=>=>⇒⨯=∈r r r r r r r r r r o o o o r r,a b b a r r r r o o 都在集合}2n n Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=r r r r r r o o o(一)必做题(9-13题)9. 不等式21x x +-≤的解集为_____【解析】解集为_____1(,]2-∞-原不等式⇔2(2)1x x x ≤-⎧⎨-++≤⎩或2021x x x -<≤⎧⎨++≤⎩或021x x x >⎧⎨+-≤⎩,解得12x ≤-,10. 261()x x+的展开式中3x 的系数为______。
【数学】2012年高考真题广东卷(理)解析版

2012年普通高等学校招生全国统一考试(广东卷)B数学(理科)解析【试卷总评】试题紧扣2012年《考试大纲》,题目新颖,难度适中。
本卷注重对基础知识和数学思想方法的全面考查,同时又强调考查学生的基本能力。
选择题与填空题主要体现了基础知识与数学思想方法的考查;第16、17、18、19、20、21题分别从三角函数、概率统计、立体几何、数列、解析几何、函数与导数等重点知识进行了基础知识、数学思想方法及基本能力的考查;第14题和第15题考查选修中的坐标系与参数方程、几何证明选讲.试卷整体体现坚持注重基础知识,全面考查了理解能力、推理能力、分析解决问题的能力.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i为虚数单位,则复数56i i-=A 6+5iB 6-5iC -6+5iD -6-5i2 设集合U={1,2,3,4,5,6},M={1,2,4 }则UC M= A .U B {1,3,5} C {3,5,6}D {2,4,6}3 若向量BA=(2,3),CA=(4,7),则BC=A (-2,-4)B (3,4)C (6,10D (-6,-10)4.下列函数中,在区间(0,+∞)上为增函数的是A.y=ln(x+2)C.y=(12)x D.y=x+1x5.已知变量x,y满足约束条件241yx yx y≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A.12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. 49B.13C.29D.19【答案】D8. 对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
2012年广东高考试题(理数)

2012年普通高等学校招生全国统一考试(广东卷)数学(理科)【整理】佛山市三水区华侨中学 骆方祥(lbylfx @sina )本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i 为虚数单位,则复数56ii-=( ) 【解析】选D 依题意:256(56)65i i ii i i--==--,故选D . 2.设集合{1,2,3,4,5,6},{1,2,4}U M ==;则U C M =( ) 【解析】选C U C M ={,,}3563. 若向量(2,3),(4,7)BA CA ==;则BC =( )【解析】选A (2,4)BC BA CA =-=--4. 下列函数中,在区间(0,)+∞上为增函数的是( )【解析】选A ln(2)y x =+区间(0,)+∞上为增函数,1y x =-+区间(0,)+∞上为减函数 ()xy 1=2区间(0,)+∞上为减函数,y x x1=+区间(1,)+∞上为增函数 5. 已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )【解析】选B 约束条件对应ABC ∆边际及内的区域:53(2,2),(3,2),(,)22A B C则3[8,11]z x y =+∈6. 某几何体的三视图如图1所示,它的体积为( ) 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为2222135353573V πππ=⨯⨯+⨯⨯-= 7. 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) 【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459= 8. .对任意两个非零的平面向量α和β,定义αβαβββ=;若平面向量,a b 满足0a b ≥>, a 与b 的夹角(0,)4πθ∈,且,a b b a 都在集合}2nn Z ⎧∈⎨⎩中,则a b =( )【解析】选C,a b b a 都在集合}2nn Z ⎧∈⎨⎩中得:*12123()()(,)42n n a b b a n n N a b ⨯=∈⇒=二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2012广东高考数学试题及答案

2012广东高考数学试题及答案2012年广东高考数学试题及答案一、选择题(本题共10小题,每小题5分,共50分)1. 下列哪个选项是无理数?A. √2B. 0.33333...C. 1/3D. 22/7答案:A2. 若函数f(x) = 3x^2 - 2x + 1,求f(-1)的值。
A. 4B. 6C. 8D. 10答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 直线y = 2x + 3与x轴的交点坐标是?A. (-1, 0)B. (0, 3)C. (1, 0)D. (3, 0)答案:A5. 已知三角形ABC中,角A = 60°,边a = 3,边b = 4,求边c的长度。
A. √7B. √13C. 5D. √21答案:B6. 已知等差数列{an}的首项a1 = 1,公差d = 2,求第10项a10。
A. 19B. 21C. 23D. 25答案:A7. 抛物线y^2 = 4x的焦点坐标是?A. (1, 0)B. (0, 2)C. (2, 0)D. (0, -2)答案:C8. 已知向量a = (3, 1),向量b = (2, -1),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:D9. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A10. 已知双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程为y =±(b/a)x,求a与b的关系。
A. a = bB. a > bC. a < bD. 无法确定答案:C二、填空题(本题共5小题,每小题5分,共25分)11. 求函数f(x) = x^3 - 3x^2 + 2的极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题:本大题共 7 小题,考生作答 6 小题,每小题 5 分,满分 30 分。
(一)必做题(9-13 题) 9. 不等式 x + 2 − x ≤ 1 的解集为_____
1 2 ⎧ x ≤ −2 ⎧− 2 < x ≤ 0 ⎧x > 0 1 原不等式 ⇔ ⎨ 或⎨ 或⎨ ,解得 x ≤ − , 2 ⎩−( x + 2) + x ≤ 1 ⎩ x + 2 + x ≤ 1 ⎩ x + 2 − x ≤ 1 1 10. ( x 2 + ) 6 的展开式中 x3 的系数为______。 (用数字作答) x 【解析】系数为______ 20 1 k − k 2(6 − k ) k 12 −3 k ( x 2 + )6 的展开式中第 k + 1 项为 Tk +1 = C6 x x = C6 x (k = 0,1, 2, … , 6) x 3 令 12 − 3k = 3 ⇔ k = 3 得: x3 的系数为 C6 = 20
5 1 = 45 9
8. .对任意两个非零的平面向量 α 和 β ,定义 α � β =
� � � � α iβ ;若平面向量 a, b 满足 a ≥ b > 0 , β iβ
)
� � � � � � � � π ⎧n a 与 b 的夹角 θ ∈ (0, ) ,且 a � b, b � a 都在集合 ⎨ n ∈ Z } 中,则 a � b = ( 4 ⎩2 ( A) 1 2 ( B) 1 (C ) 3 2 (D) 5 2
BP × BC 2 5 = PC 3 2 BO 在 Rt ∆BOF 中, BO = 2, OE = BF 2 − BO 2 = ⇒ tan ∠BFO = =3 3 OF 得:二面角 B − PC − A 的正切值为 3
在 ∆PBC 中, PB = 5, BC = 2, PC = 3 ⇒ ∠PBC = 90ο ⇒ BE = 19.(本小题满分 14 分) 设数列 {an } 的前 n 项和为 S n ,满足 2S n = an +1 − 2n +1 + 1( n ∈ N * ) ,且 a1 , a2 + 5, a3 成等差数列。 (1)求 a1 的值; (2)求数列 {an } 的通项公式。 (3)证明:对一切正整数 n ,有
【解析】解集为_____ ( −∞, − ]
2 11. 已知递增的等差数列 {an } 满足 a1 = 1, a3 = a2 − 4 ,则 an = _____
【解析】 an = _____ 2n − 1
2 a1 = 1, a3 = a2 − 4 ⇔ 1 + 2d = (1 + d ) 2 − 4 ⇔ d = 2 ⇔ an = 2n − 1
2
(二)选做题(14 - 15 题,考生只能从中选做一题) 14.(坐标系与参数方程选做题) 在平面直角坐标系 xOy 中,曲线 C1 和 C2 的参数方程分别为
⎧ ⎪x = t ⎧ x = 2 cos θ ,它们的交点坐标为_______. C1 : ⎨ (t 是参数) 和 C : ⎪ (θ 是参数) 2 ⎨ ⎪ ⎩y = t ⎪ ⎩ y = 2 sin θ 【解析】它们的交点坐标为_______ (1,1) C1 : y 2 = x( y > 0), C2 : x 2 + y 2 = 2 解得:交点坐标为 (1,1) 15.(几何证明选讲选做题)如图 3,圆 O 的半径为 1, A, B, C 是圆周上的三点,满足, ∠ABC = 30ο ,过点 A 做圆 O 的切线 与 OC 的延长线交于点 P ,则 PA = _____
【解析】选 C CU M = {3, 5, 6}
3. 若向量 BA = (2,3), CA = (4, 7) ;则 BC = (
)
( A) (−2, −4) ( B) (2, 4) ��� � ��� � ��� � 【解析】选 A BC = BA − CA = ( −2, −4)
4. 下列函数中,在区间 (0, +∞ ) 上为增函数的是(
( D ) 81π
【解析】选 C 几何体是圆柱与圆锥叠加而成 它的体积为 V = π × 3 × 5 + π × 3 × 5 − 3 = 57π
2 2
2
2
7. 从个位数与十位数之和为奇数的两位数中任取一个, 其个位数为 0 的概率是( )
( A)
4 9
( B)
1 3
(C )
2 9
(D)
1 9
【解析】选 D ①个位数为 1,3,5, 7,9 时,十位数为 2, 4, 6,8 ,个位数为 0, 2, 4, 6,8 时,十位数为 1,3,5, 7,9 ,共 45 个 ②个位数为 0 时,十位数为 1,3,5, 7,9 ,共 5 个别个位数为 0 的概率是
P(ξ = 0) =
Hale Waihona Puke 18.(本小题满分 13 分) 如图所示,在四棱锥 P − ABCD 中,底面 ABCD 为矩形,
PA ⊥ 平面 ABCD ,点 E 在线段 PC 上, PC ⊥ 平面 BDE 。
(1) 证明: BD ⊥ 平面 PAC ; (2) 若 PA = 1, AD = 2 ,求二面角 B − PC − A 的正切值; 【解析】 (1) PC ⊥ 平面 BDE , BD ⊂ 面 BDE ⇒ BD ⊥ PC PA ⊥ 平面 ABCD , BD ⊂ 面 ABCD ⇒ BD ⊥ PA 又 PA ∩ PC = P ⇒ BD ⊥ 面 PAC (2) AC ∩ BD = O 由(1)得: BD ⊥ AC ⇒ AB = AD , PA = 1, AD = 2 ⇒ AB = 2 , PC ⊥ 平面 BDE ⇒ BF ⊥ PC , OF ⊥ PC ⇒ ∠BFO 是二面角 B − PC − A 的平面角
16. (本小题满分 12 分) 已知函数 f ( x ) = 2cos(ω x + (1)求 ω 的值;
π )(ω > 0, x ∈ R ) 的最小正周期为10π 6
π 5π 6 5π 16 ] , f (5α + ) = − , f (5 β − ) = ;求 cos(α + β ) 的值 2 3 5 6 17 2π 1 【解析】 (1) T = = 10π ⇔ ω = ω 5 5π 6 π 3 3 4 (2) f (5α + ) = − ⇔ cos(α + ) = − ⇔ sin α = , cos α = 3 5 2 5 5 5 5π 16 8 15 f (5β − ) = ⇔ cos β = ,sin β = 6 17 17 17 4 8 3 15 13 cos(α + β ) = cos α cos β − sin α sin β = × − × = − 5 17 5 17 85
【解析】 (1) 0.006 × 10 × 3 + 0.01× 10 + 0.054 × 10 + x × 10 = 1 ⇔ x = 0.018 (2) 成绩不低于 80 分的学生有 (0.018 + 0.006) × 10 × 50 = 12 人, 其中成绩在 90 分以上 (含 90 分) 的人数为 0.06 × 10 × 50 = 3 随机变量 ξ 可取 0,1, 2
【解析】选 C
� � � a � � a � b = � cos θ > 0, b � a = b
� b � � � � 1 � cos θ > 0 ⇒ ( a � b) × ( b � a) = cos 2 θ ∈ ( ,1) 2 a
� � � � � � � � nn � � 3 ⎧n a � b, b � a 都在集合 ⎨ n ∈ Z } 中得: (a � b) × (b � a) = 1 2 ( n1, n2 ∈ N * ) ⇒ a � b = 4 2 ⎩2
2012 年普通高等学校招生全国统一考试(广东卷) 数学(理科)
本试题共 4 页,21 小题,满分 150 分,考试用时 120 分钟。 注意事项: 1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写 在答题卡上。用 2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上 角“条形码粘贴处”. 2、 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。如需改动, 用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置 上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要 求做大的答案无效。 4、 作答选做题时,请先用 2B 铅笔填涂选做题的题号对应的信息点,再做答。漏涂、错涂、多涂的, 答案无效。 5、 考生必须保持答题卡得整洁。考试结束后,将试卷和答题卡一并交回。 参考公式:柱体的体积公式 V = Sh ,其中 S 为柱体的底面积, h 为柱体的高.
【解析】 PA = _____
3 ο 连接 OA ,得 ∠AOC = 2∠ABC = 60 ⇒ AC = 1, ∠PAC = ∠ABC = 30° ⇒ ∠APC = 30° ⇒ PC = 1 PA2 = PO 2 − OA2 = 3 ⇔ PA = 3
三、解答题:本大题共 6 小题,满分 80 分。解答需写出文字说明、证明过程和演算步骤。
一、选择题:本大题共 8 小题,每小题 5 分,满分 40 分,在每小题给出的四个选项中,只有一项是符
合题目要求的。 1. 设 i 为虚数单位,则复数
5 − 6i =( i
)
( A) 6 + 5i
【解析】选 D 依题意:
( B) 6 − 5i
(C ) −6 + 5i
( D ) −6 − 5i
5 − 6i (5 − 6i )i = = −6 − 5i ,故选 D . i i2 2.设集合 U = {1, 2,3, 4,5, 6}, M = {1, 2, 4} ;则 CU M = ( ) ( A) U ��� � ��� � ( B) {1,3,5} ��� � (C ) {3, 5, 6} ( D ) {2, 4, 6}