高中数学必修4两角和与差的三角函数
高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

(3)sin
1π2-
3cos
π 12.
解
方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β
=
.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
高中数学 第3章 三角恒等变换 3.1 两角和与差的三角函数知识导航 苏教版必修4(2021年整理)

高中数学第3章三角恒等变换3.1 两角和与差的三角函数知识导航苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第3章三角恒等变换3.1 两角和与差的三角函数知识导航苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第3章三角恒等变换3.1 两角和与差的三角函数知识导航苏教版必修4的全部内容。
3.1 两角和与差的三角函数知识梳理一、两角和与差的正弦、余弦和正切公式11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用—β代替β、2 ±β代替β、α=β等换元法可以推导出其它公式。
二、关于asinx+bcosx 形式的化简教材上仅以一个例题的方式给出了这种变形,要求我们对此类变形要熟练地化成Asin(ωx+φ)或Acoss (ωx+φ)的形式,理解此种变形的方法与依据。
它的实质是逆用了两角和与差的正余弦公式将数值看成了特殊角的三角函数值得来的。
在三角函数的化简、求周期、最值、单调区间等方面起着重要的作用.知识导学要学好本节内容,可先复习已学过的其它知识,充分利用单位圆,分析其中有关几何元素(角的终边及其夹角)的关系,为向量方法的运用做好准备。
有意识的地联想向量知识:向量的数量积是解决距离与夹角问题的工具,在两角差的余弦公式的推导中应如何能够体现它的作用?探索过程的安排,应当先把握整体,然后逐步追求细节,在补充完善细节的过程中,需要运用分类讨论思想,突破两角差的余弦公式的推导这一难点后,其他所有公式都可以通过自己的独立探索而得出.疑难突破1。
对于两角和与差的公式的异同要进行对比与分析,应如何便于理解记忆和应用? 剖析:(1)明确角、函数名和排列顺序以及公式中每一项的符号;(2)要牢记公式,并能熟练地进行左右互相转化;(3)和、差角公式可以看成是诱导公式的推广,诱导公式可以看成和、差角公式的特例。
北师大版必修4高中数学第三章两角和与差的三角函数课件

想一想:公式有何特点?你如何记忆?
应用
1:已知四个单角函数值求差角的余弦。 例1,利用差角余弦公式求cos15°的值.
分析:怎样把15°表示成两个特殊角的差?
解: cos15 cos(45 30)
cos 45 cos 30 sin 45 sin 30
2 3 2 1 2 2 2 2 6 4 2
cos(α-β)=cosαcosβ+sinαsinβ
探究2 对任意α,β,如何证明它的正确性? 议一议:
结合向量的数量积的定义和向量的工具性,
看能否用向量的知识进行证明?
问题3:
①结合图形,思考应选用哪几个向量? y
A
OA=(cosα,sinα), OB=(cosβ,sinβ)
αβ
O
B
x
②怎样用向量(α-β)=cosαcosβ+sinαsinβ
当α-β为任意角时,由诱导公式,总可以找到一个 角∈[0,2),使cos=cos(α -β)
①若∈[0,], 则OA· OB=cos=cos(α -β) ②若∈(,2),则2-∈(0,) 则OA· OB=cos(2-)=cos(α -β)
例 3: 1.求cos57°cos12° +sin57° sin12°的值
2.求cosxcos(x+45 ° ) +sinx sin(x+45° )的值 3.求cosxcos(x+y)+sinxsin(x+y)的值
应用4
3 4 已知 sin sin , sin sin ,求 cos( )的值 5 5
求 cos( )的值. 1 11 (4) 已知cos , cos , 且, 0, 7 14 2
(苏教版必修4)两角和与差的三角函数总复习

两角和与差的三角函数总复习一、公式的正用、逆用、变形用1.求值:2sin()2sin()cos()333x x x πππ++--- 2.△ABC 中,若2cos sin sin B A C =,则△ABC 的形状是 3.△ABC 中,(1)已知412cos ,cos ,cos 513A B C ===则 (2)已知412sin ,sin ,cos 513A B C ===则 (3)已知412sin ,cos ,cos 513A B C ===则 (4)已知45sin ,cos ,cos 513A B C ===则4.1tan 151tan 15-︒=+︒5.tan 72tan 4272tan 423︒-︒-︒︒=6.在△ABC 中,若tan tan tan 0A B C ++<,则△ABC 的形状是 7.(1tan 1)(1tan 2)(1tan 44)(1tan 45)+︒+︒⋅⋅⋅+︒+︒=二、辅助角公式sin cos )a x b x x ϕ+=+1.已知sin 1m αα-=-,求m 的取值范围三、在求值、求角时,配角思想的应用1.设12cos(),sin(),,0,cos 2923222βαππαβαβαπβ+-=--=<<<<且求的值2.已知2tan ,tan 40x αβ++=是方程的两根,且,(,)22ππαβ∈-,求αβ+3.已知tan()2tan αββ+=,求证:3sin sin(2)ααβ=+4.已知sin(2)5sin αββ+=,求证:2tan()3tan αβα+=5.sin 15cos 5sin 20cos 15cos 5cos 20︒︒-︒=︒︒-︒6.sin 85=︒四、已知tan sin(),sin(),tan =m n ααβαββ+=-=则已知cos(),cos(),tan tan =m n αβαβαβ+=-=则1. 已知23tan sin(),sin(),34tan ααβαββ+=-==则 2. 已知23cos(),cos(),tan tan 34αβαβαβ+=-==则五、已知sin sin ,cos cos ,cos()m n αβαβαβ+=+=-=则已知sin sin ,cos cos ,cos()m n αβαβαβ-=-=-=则已知sin sin ,cos cos ,cos()m n αβαβαβ+=-=+=则已知sin sin ,cos cos ,cos()m n αβαβαβ-=+=+=则1.已知11sin sin ,cos cos ,cos()23αβαβαβ+=-=+=则 2.已知11cos cos ,sin sin ,cos()23αβαβαβ+=-=+=则 (说明)另一种典型变形:移项后再平方如:22sin sin sin sin 112(sin cos )cos cos cos cos m m m n m n n n αβαβββαβαβ-==+⎧⎧⇒⇒=++++⎨⎨-==+⎩⎩22)sin()m n βϕβϕ⇒+++⇒+=-特别地,当00m n ==或时,则可以分别求出sin ,sin ,cos ,cos αβαβ,sin 2sin 0,cos 2cos 2.(1)cos ,cos()αβαβαβααβ-=+=+1.锐角满足:求的值;αβ(2)求2+的值. 六、sin 1cos 1sin cos tan 1cos sin 1sin cos ααααααααα-+-===+++ 1.83sin ,,tan 1722πααπα=-<<=已知则2.43cos ,2,tan 522παααπ=<<=已知则3.1sin cos tan 1,21sin cos ααααα+-=-=++已知则。
必修四数学 第3讲教师版 两角和与差的三角函数公式

课题:两角和与差的三角函数公式个性化教学辅导教案第3讲两角和与差的三角函数公式1.两角和与差的正弦、余弦和正切公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α∓β)=cos_αcos_β±sin αsin_β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin_αcos__α.(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β).(2)cos2α=1+cos 2α2,sin2α=1-cos 2α2.(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),=a 2+b 2sin(α+φ) ⎝ ⎛⎭⎪⎫其中tan φ=b a=a 2+b 2·cos(α-φ) ⎝ ⎛⎭⎪⎫其中tan φ=a b .三个变化1.变角:通过对角的拆分尽可能化为同角、特殊角、已知角的和与差,其手法通常是“配凑”.2.变名:通过变换尽可能减少函数种类,降低次数,减少项数,其手法通常有“切化弦”“升幂与降幂”等. 3.变式:根据式子的结构特征进行变形,使其更简化、更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”“逆用变形用公式”“通分与约分”“分解与组合”“配方与平方”等.1.(必修4 P 127练习T 2改编)已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α为( ) A.210B .-210C.7210 D .-7210解析:选A.∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45,∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.(必修4 P 130例4(1)改编)化简cos 18°cos 42°-cos 72°·sin 42°的值为( ) A.32B .12C .-12D .-32解析:选B.法一:原式=cos 18°cos 42°-sin 18°·sin 42° =cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42° =sin(72°-42°)=sin 30°=12.3.(必修4 P 135练习T 2改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( )A.725B .-725C.1625D .-1625解析:选A.由sin(α-k π)=35(k ∈Z )得sin α=±35.∴cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫±352=1-1825=725.故选A.4.(必修4 P 138A 组T 19(4)改编)11-tan 15°-11+tan 15°=________.解析:原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33. 答案:335.(必修4 P 137A 组T 10改编)tan α,tan β是方程6x 2-5x +1=0的两个实数根.α,β均为锐角,则α+β=________. 解析:由题意知tan α+tan β=56,tan αtan β=16,∴tan(α+β )=tan α+tan β1-tan αtan β=561-16=1.∵α,β∈⎝⎛⎭⎫0,π2.∴α+β∈(0,π),∴α+β=π4. 答案:π4两角和与差公式的应用(2015·高考四川卷)sin 15°+sin 75°的值是________. [解析] 法一:sin 15°+sin 75°=sin 15°+cos 15° =2(22sin 15°+22cos 15°) =2(sin 15°cos 45°+cos 15°sin 45°) =2sin 60°=2×32=62. 法二:sin 15°+sin 75° =sin(45°-30°)+sin(45°+30°) =2sin 45°cos 30°=2×22×32=62. [答案]62用两角和与差的三角函数公式直接求三角函数值时,只需在α±β中知道α,β的三角函数值,用公式展开后直接代入求值即可.两角和与差的正弦、余弦、正切公式 扫一扫 进入 精品微课1.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( ) A .7 B .17C .-17D .-7解析:选B.因α∈⎝⎛⎭⎫π,32π,且cos α=-45, 所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17.2.已知α∈⎝⎛⎭⎫0,π2,tan α=12,则sin ⎝⎛⎭⎫2α+π3=________. 解析:tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43. ∵α∈⎝⎛⎭⎫0,π2,2α∈(0,π),tan 2α=43>0, ∴2α∈⎝⎛⎭⎫0,π2,∴sin 2α=45,cos 2α=35, ∴sin ⎝⎛⎭⎫2α+π3=sin 2α·cos π3+cos 2α·sin π3=45×12+35×32=4+3310. 答案:4+3310两角和与差公式的逆向应用(2015·高考全国卷Ⅰ)sin 20°cos 10°-cos 160°·sin 10°=( ) A .-32B .32C .-12D .12[解析] sin 20°cos 10°-cos 160°sin 10° =sin 20°cos 10°+cos 20°sin 10° =sin(20°+10°)=sin 30°=12,故选D.[答案] D两角和与差的三角函数的公式的逆向应用,注意两点:①角的统一;②三角函数名称的对应.1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22B .22C .32D .1解析:选B.原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 2.cos 15°+sin 15°cos 15°-sin 15°的值为( )A.33B . 3C .-33D .- 3解析:选B.原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.3.sin(65°-x )cos(x -20°)+cos(65°-x )cos(110°-x )的值为( ) A.2 B .22 C .12D .32解析:选 B.原式=sin(65°-x )cos(x -20°)+cos(65°-x )·cos[90°-(x -20°)]=sin(65°-x )·cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)]=sin 45°=22.利用两角和与差公式求角度设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2[解析] 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α. ∵α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2, ∴α-β∈⎝⎛⎭⎫-π2,π2,π2-α∈⎝⎛⎭⎫0,π2, ∴由sin(α-β)=sin ⎝⎛⎭⎫π2-α,得α-β=π2-α, ∴2α-β=π2.[答案] B利用两角和与差的三角函数公式求角度,需要注意:①根据基本关系和公式求出需要求的角的三角函数值;②确定所求角的范围,求出对应的角度.1.已知α,β均为锐角,(1+tan α)(1+tan β)=2,则α+β为( ) A.π6B .π4C .π3D .3π4解析:选B.由(1+tan α)(1+tan β)=2得 tan α+tan β=1-tan αtan β,∴tan(α+β)=tan α+tan β1-tan αtan β=1-tan αtan β1-tan αtan β=1.∵0<α,β<π2,∴0<α+β<π,∴α+β=π4.2.设α,β均为锐角,且cos(α+β)=sin(α-β),则α的值为( ) A.π6B .π3C .π4D .5π12解析:选C.由cos(α+β)=sin(α-β),得cos αcos β-sin αsin β=sin αcos β-cos αsin β, 即cos α(cos β+sin β)=sin α(cos β+sin β), 因为β为锐角,所以cos β+sin β≠0,所以cos α=sin α, 所以tan α=1.∴α=π4,故选C.3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B .π3C .π4D .π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. ∴β=π4.故选C.二倍角公式及其应用(2015·高考广东卷)已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4 =2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.利用二倍角公式求三角函数值时,应注意:①cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α的选择应用; ②高次化简求值时,用cos 2α=1+cos 2α2,sin 2α=1-cos2α2降次; ③注意用恒等式(sin α±cos α)2=1±sin 2α等价转化.1.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16B .13C .12D .23=45×22+35×22=7210. 答案:7210一、选择题1.(必修4 P 69A 组T 8(3)改编)已知tan α=3,则(sin α-cos α)2等于( )A.35B .25C .75D .85解析:选B.∵tan α=3,∴(sin α-cos α)2=1-2sin αcos α=1-2sin α cos αsin 2α+cos 2α=1-2tan αtan 2 α+1=1-610=25. 2.(必修4 P 146A 组T 8(3)改编)化简sin 3αsin α-2cos 2α等于( ) A .sin αB .cos αC .1D .0 解析:选C.sin 3αsin α-2cos 2α =sin 2αcos α+cos 2αsin αsin α-2cos 2α =2cos 2α+cos 2α-2cos 2α=2cos 2α-(2cos 2α-1)=1.3.(必修4 P 143A 组T 2(2)改编)已知sin(α+β)=12,sin(α-β)=13,若tan α=m tan β,则m 的值为( ) A .3B .4C .5D .6解析:选C.由sin(α+β)=12,sin(α-β)=13, ∴sin αcos β=512,cos αsin β=112, ∴tan α=5tan β,∴m =5,故选C.二、填空题4.(必修4 P 137A 组T 5改编)已知sin(30°+α)=35,60°<α<150°,则cos(2α+150°)=________. 解析:设30°+α=t ,∴90°<t <180°,∵sin t =35, ∴cos t =-45, ∴cos(2α+150°)=cos[2(t -30°)+150°]=cos(2t +90°)=-sin 2t =-2sin t cos t =2425. 答案:2425三、解答题5.(必修4 P 125~126内文改编)用向量法证明cos(α-β)=cos αcos β+sin αsin β.证明:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B .则OA →=(cos α,sin α),OB →=(cos β,sin β).由向量数量积的坐标表示,有OA →·OB →=(cos α,sin α)·(cos β,sin β)=cos αcos β+sin αsin β.设OA →与OB →的夹角为θ,则OA →·OB →=|OA →|·|OB →|cos θ=cos θ=cos αcos β+sin αsin β.另一方面,由图(1)可知,α=2k π+β+θ;由图(2)可知,α=2k π+β-θ.于是α-β=2k π±θ,k ∈Z .所以cos(α-β)=cos θ.则cos(α-β)=cos αcos β+sin αsin β.一、选择题1.计算1-2sin 222.5°的结果等于( )。
两角和与差的正弦、余弦、正切公式 课件-高一下学期数学人教A版必修4

OA ⋅ OB=|OA||OB| cos<a,b>=cosα⋅cosβ+sinα⋅sinβ
即:cos(α−β)=cosα⋅cosβ+sinα⋅sinβ
LOGO
(2)cos(α+β)= cos(α-(-β))
=cosα⋅cos(-β)+sinα⋅sin(-β)
又因为cos(-β)=cosβ,sin(-β)=-sinβ
A B
3
3
1
,则
3
1
,则tanacot
3
-
3
4
β=
3. 1
4. 5
5.A
,则tana=
C
tan( a+β )=
D
3
4
LOGO
6.已知cosa=
3
- ,且0<a<π,则sina=
5
1
3
7.已知tan( a+β )= ,,tan β=-2,则tana的值为()
1
7
A
B
1
7
C 7
A
B
1
4
C
3
4
7. C
D -7
求证:tan(A+B)=
1−tanA+tanB
证明:tan(A+B)
将B换成-B会得到什么?
tan(-a)=-tana
sin A+B
=
cos A+B
sin A cos B+cos A sin B
=
cos A cos B−sin AB
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)得:
11.在三角形ABC中,已知cosA=
高中三角函数公式(共10篇)

高中三角函数公式(共10篇)高中三角函数公式(一): 高中数学必修4三角函数公式大全诱导公式sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z)课改后COT SEC CSC不做要求的sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanαsin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanαsin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式:sin(2α)=2sinα·cosα=2tan(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]高中三角函数公式(二): 数学三角函数的公式把高中数学所有数学三角函数公式列出来高中数学必修1和必修4的公式总结最佳答案乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h高中三角函数公式(三): 高中阶段比较重要的三角函数公式有哪些最好能一一列举下来【高中三角函数公式】倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱...高中三角函数公式(四): 求高中数学三角函数公式推导所有的三角函数公式的推导全部过程诱导公式:sin(2kπ+α)=sinα .cos(2kπ+α)=cosα.tan(2kπ+α)=tanα .sin(π+α)=-sinα .cos(π+α)=-cosα .tan(π+α)=tanα.sin(-α)=-sinα .cos(-α)=cosα .tan(-α)=-tanα.sin(π-α)=sinα .cos(π-α)=-cosα.tan(π-α)=-tanα.sin(2π-α)=-sinα .cos(2π-α)=cosα .tan(2π-α)=-tanα .sin(π/2+α)=cosα .cos(π/2+α)=-sinα.sin(π/2-α)=cosα .cos(π/2-α)=sinα .sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα .sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα 基本关系:sin^2(A)+cos^2(A)=1.tanA=sinA/cosA三角恒等变换公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) sin2A=2sinAcosA cos2A=cos^2(A)-sin^2(A)tan2A=(2tanA)/(1-tan^2(A))弦定理:若a、b、c为任意三角形ABC三边,A、B、C为三个角,则:a/sinA=b/sinB=c/sinC余弦定理:如上所设,则a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosC【高中三角函数公式】高中三角函数公式(五): 高中常用的三角函数公式有哪些在什么地方应用如题1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) =cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = -...高中三角函数公式(六): 高中三角函数公式表已知直角三角形三边长度求另外两角角度高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.”)诱导公式(口诀:奇变偶不变,符号看象限.)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=ta nαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2高中三角函数公式(七): 2023年江苏省高中数学公式特别是三角函数公式三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系.而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y.深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点.角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A"OD.A(cosα,sinα),B(cosβ,sinβ),A"(cos(α-β),sin(α-β))OA"=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) [1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)Sin2A=2SinA CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα高中三角函数公式(八): 高中三角函数的公式在非直角三角形ABC中设∠A邻边a,对边b,斜边c,那么sin∠A=cos∠A=tan∠A=(用含a、b、c的代数式表示)由于csc、sec、cot在直角三角形中分别为以上三种三角函数的倒数,在非直角三角形中是否仍然适用老师跟我讲过三角函数不在直角三角形中也是有的.如果答案是网上大段大段的Ctrl+C和Ctrl+V搞来的何必回答我的问题很清楚.前后答案最多100字.当然适用,三角函数抽象出来它就是一种不依赖于几何图形的函数.当然在高中会以圆为依托来深入研究它.事实上,如果你感兴趣,可以自己查询‘正弦定理‘、’余弦定理‘以及’正切定理‘.相信这个会给你提供你想要的,它就是在任意三角形中的.高中三角函数公式(九): 高中三角函数公式记忆RT老师说有N个公式一百多个呢咋记呢最好有口诀啥的追分ing...其实不用记忆那么多的啊!我就是有多年高三经验的老师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和与差的三角函数
【知识要点回顾】
1. 两角和与差的正弦、余弦、正切
cos(βα+)= ; sin(βα+)= ; tan(βα+) cos(βα-)= ; sin(βα-)= ; tan(βα-)
2. 二倍角的正弦、余弦、正切 sin2α= ;
cos2α= = = ; tan2α= . 3. 公式的推导与联系.
【例题讲解】
例1 :求下列三角函数的值:
(1) 若θ为锐角,53sin =θ,求)6cos(π
θ+的值;
(2) 若α为锐角,5
3
)6sin(=-πα,求 cosα的值。
例2:利用已知角和特殊角表示下列角:
(1)已知角α+β、α-β,则2α= ,2β= ;
(2)已知角βπ
πα+-4
3,4,则α+β= ; (3)△ABC 的三内角A 、B 、C 成等差数列,已知2
C
A -=α,则A= ,
C= 。
例3:(1)已知的范围,求βαβαπβπ
α-+<<<<,2
0;
(2)已知)4
sin(,232,53)4cos(παπαππ
α+<≤=+求
例4:已知α、β为锐角,的值。
求ββααcos ,3
1
)tan(,54cos -=-=
例5:
的值。
求且设)sin(,13
5
)43sin(,53)4cos(),4,0(),43,4(βαβππαπβππα+=+=-∈∈
例6:的值。
求已知)4
2cos(,232,53)4cos(παπαππ
α+<≤=+
例7:利用向量的方法证明两角和的余弦公式:
cos(α+β)=cosαcosβ-sinαsinβ
【考点针对训练】
一.选择题
1.已知tan (βα+)==+=-
)4
tan(,41)4tan(,5
2
π
απ
β则( ) A .1813 B .22
13 C .183 D .223
2.若
5tan 1tan 1=+-A A ,则)4
(cot A +π
的值为
.A 5- .B 55-
.C 5 .D 5
5
3.已知2cot =α,5
2
)tan(-
=-βα,则)2tan(αβ-的值为:( ) A.61 B.61- C.121 D.121- 4.︒⋅︒⋅︒75sin 30sin 15sin 值为
.A
43 .B 81 .C 8
3
.D 41
5. 12
cos 12
sin
2
2
π
π
-的值为( )
A. 21-
B. 21
C. 23-
D. 2
3
6.
︒
︒-︒︒
︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为( )
.A 32+ .
B 232+ .
C 32- .
D 2
3
2- 7. 若f(cosx)=cos2x ,则f(sin15°)的值等于 ( ) A .12
B .-1
2
C. 32
D .- 3
2
8.已知1352
sin
=
α
,13
122cos -=α,则角α所在的象限是:( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.已知3
sin(
)45x π
-=,则sin 2x = ( ) A .1925 B .1625 C .725 D .1425
10.8cos 228sin 12++-等于( ) A.2sin 4—4cos4 B.-2sin4-4cos4 C.-2sin4 D.4cos4-2sin4 11.已知锐角θ满足:x
x 21
2
sin
-=
θ
则tanθ等于( ) A. x B.
1
1-+x x C.
x
x 1
2- D. 12-x
12.若πα<<0,2
1
cos sin =
+αα,则α2cos 的值为( ) .
A 47 .
B 41- .
C 47± .
D 4
7
-
二.填空题
13.=+--+-)29sin()31sin()29cos()31cos(x x x x 14.已知15
sin 17
α=,(,)2παπ∈则cos()3πα-=
15.若3
sin(
)25
π
α+=
,则cos 2α=
16.计算:︒
︒
+︒25cos 20sin 20cos 的值是___________.
17.若α,β均为锐角,且sinα-sinβ=-12 ,cosα-cosβ=1
2 则tan(α-β)的值为:
___________。
三.解答题
18.已知sin a =)tan(),sin(),2
3,(,1312cos ),,2
(,5
3βαβαπ
πββππ
α--∈-
=∈求
19.化简:
︒︒
+
︒
+
︒
5
cos
2
)
10 tan
3
1(
10
cos
50
sin
2
20.如图,有一块以点O为圆心的半圆形空地,要在这块
空地上划出一个内接矩形ABCD辟为花园绿地,使其一边AD落在半圆的直径上,另两点B、C落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D 的位置,可以使矩形ABCD的面积最大?
21.已知C B A ,,坐标分别为)2
3,2(),sin ,(cos ),3,0(),0,3(π
πααα∈C B A
(1=,求角α的值;
(2)若1-=∙BC AC ,求α
α
αtan 12sin sin 22++的值。
22. 已知
11
,0,tan ,tan 237
π
αππβαβ<<-<<=-=- (1)求2αβ+的范围; (2)求tan(2)αβ+的值; (3)求2αβ+的值。