七年级数学上册-第二章有理数知识点复习-华东师大版
初中数学华东师大七年级上册(2023年新编)第2章 有理数有理数

第二章 有理数第1课时 1.正数和负数一、知识回顾1.学生回顾我们小学所学习过的数有哪些.(按照先后顺序)简介数的发展过程.2.导入1:今天这时候这里的温度是零上30摄氏度,南极此时的温度是零下20摄氏度.用什么数字来表示这两个温度呢?如果用300,表示这里的温度,南极的温度用200吗?导入2:今天某人卖菜收入30元,买酱油支出5元,用什么数字来表示这两个数呢?导入3:某老板今天卖出两件东西,一件盈利40元,一件亏损10元,又用什么数字来表示这两个数呢? (若有同学预习过,请他讲用什么数,顺势追问道表示什么意义的量,得出用正负数表示相反意义的量)二、生成过手:分析导入,引出负数,强调正负数表示相反意义的量.1.举例说明:用正负数表示生活中的实例(涵盖东西走,上升下降,盈利亏损,收入支出,)同时举例中必须有先有负数再表示正数,有第一个表示后,一个数表示什么含义的例习题,如-3米表示下降3米,则-8米表示什么意思,+6米表示什么意思,0米表示什么意思.抽答:直到每个同学都掌握为止,特别说明0.2.设问:下降-3米表示什么意思,怎样双重表示.即-(-3)=+3(有点绕,必须说明慢一点,让学生懂才行,不能够跳过)练习:双重表示:上升+3米,上升-5米,下降+8米类型,注意摆放位置,至少8个式子,相同类型的2个摆放一列,最好两个两负,两个两正,两个一负一正,两个一正一负,前四个一列,后四个一列,便于学生观察和归纳.结论说明:1.数有两个符号加括号,2.同一个数有两个符号的简化法则:同号得正,异号得负.3.巩固训练:简化符号训练,(后两个到3个符号,引导学生从内到外化简,举例练习,过手为止). 提出表示数的正负性的正负号称为数的性质符号三、数的分类1.练习:把下列数填在相应的横线上••-----30.31619910000100975333.3097001.0;;;;;;;;; 正数有 ;负数有 ;不是正数也不是负数的有 ; 正整数有 ;负整数有整数有 ;学生独立完成,抽学生说结果并组织辩论,2个学生后问怎样做才不重不漏,直到学生分清楚每一个概念,并说明以后的有限小数和无限循环小数都划分到分数类,可以介绍有限小数和无限循环小数化分数的方法.2.数据:•••---6,5,4,3,2,1中,第9位是 ,第100位是3.长方形的长比宽多3厘米,周长为26厘米,求长方形的宽是多少.巩固强调,长方形周长的实质是长+宽等于周长的一半,教师讲解设一个,安排学生练习设另一个,主要观察所列方程是否有一样的情况,即有没有学生设和列中的x 表示不同的量,特别强调的是设定x 后,x 就只能表示所设的量,不能表示其他的量.四、作业书上11页234作书上(其中1到5题如果有时间可以放一个作为例习题,在练习2个,学生过手后不用做)1.某人直线行走,前进了5m 记为+5m ,再前进−5m ,则总共走了______m ,这时距出发地______m2.某一时间,南极温度为−50ºC ,北极温度为−26ºC ,则这时北极比南极高______ºC3.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.①用正数或负数记录下午1时和下午5时的水位;②下午5时的水位比中午12时高多少?4.粮食每袋标准重量是50公斤,现测得甲.乙.丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲.乙.丙三袋粮食的超重数和不足数.5.同学聚会约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?6.把下列数字填在相应的横线上;;;;;;;;;•----7.225.39999900002.031263 正整数有 ,负整数有 ,整数有正数有 ,负数有7.解方程(1)4)14(22)2(4-+=-+x x (2))3(316)4(21++=+x x8.列方程解应用题某盐巴仓库运走20%后还剩下400吨食盐,原来仓库中有多少食盐.思考题:在小学所学的数的计算中,两个数之和为0,这两个数满足什么条件?若是乘积为0,又是满足什么条件呢?。
华师版七年级上第二章有理数知识要点

第二章有理数1、正数和负数学问点1 具有相反意义的量相反意义的量包含两层意思:一是“相反意义〞,即意义相反,类似语文中的反义词;二是“量〞,具有肯定的数量。
方法点拨:要找准具有相反意义的量,先要找出语句中是否含有一对具有相反意义的词。
学问点2 正数和负数具有相反意义的量中,我们把其中一种意义的量规定为正,用小学学过的数表示;把及它意义相反的量规定为负,用小学学过的数〔零除外〕在前面加一个“-〞号来表示。
理解正数及负数时应留意:1、正数可以表示为“+〞,也可以省略“+〞。
2、“0〞既不是正数,也不是负数。
3、用字母或式子表示的数推断其正、负时要特殊当心。
如-m不肯定表示负数,―a―b不肯定表示负数:当m为负数时,-m表示正数;当a、b均为负数时,―a―b表示正数。
4、按数的大小来探讨,正数大于0,负数小于0,0是正数及负数的分界限。
方法点拨:断定一个数是正数还是负数时,不要简洁地认为带正号的数是正数,带负号的数是负数。
假设+a表示一个有理数,在断定+a是正数还是负数时,首先要弄清a本身表示的数是何种性质;当a是正数时,+a表示正数;当a是0时,a表示0;当a是负数时,+a表示负数。
学问点3 正分数及负分数留意:〔1〕正确理解小数及分数的关系:并不是全部的小数都能化为分数,小数分为有限小数、无限循环小数及无限不循环小数,其中只有有限小数及无限循环小数能化为分数;〔2〕到目前为止,我们所学过的数〔除 外〕都是有理数;〔3〕“0〞既不是正数,也不是负数,但“0〞是整数;〔4〕数的范围扩大为有理数后,奇数和偶数的外延也由自然数扩大为整数,能被2整除的整数是偶数,如:―4,―2,0,2,4,6,8,…;不能被2整除的整数是奇数,如―3,―1,1,3,5,…。
因此,整数也可以分为奇数和偶数两类。
学问点4 有理数的分类1、 按定义〔或性质〕分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2、 按正负性〔或大小〕分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 留意:〔1〕要想分类结果不重不漏,必需对两种分类做到心中有数,整数及分数对应,正数及负数对应,零既不是正数也不是负数,它是整数也是有理数。
临漳县第五中学七年级数学上册第2章有理数单元复习课件新版华东师大版2

和∠3有公共顶点 O , 并且它们的两边分别互为反
向延长线 , 这样的两个角叫做对顶角.
在右图中还有其 他角能构成对顶角吗 ?
C
2 3
1 4O
A
B D
探究
在以下图中 , ∠1 和∠3 的大小有什么 关系?你能说明具有这种关系的道理吗?
B
C
2 3
1 4O
D
A
B
因为∠1+∠2 = 180°
∠3+∠2 = 180°
2.运算顺序
1〕有括号 , 先算括号里面的 ; 2〕先算乘方 , 再算乘除 ,
最后算加减 ; 3〕対只含乘除 , 或只含加减的
运算 , 应从左往右运算。
3.有理数的运算律
1)加法交换律
a+b=b+a
2)加法结合律 (a+b)+c=a+(b+c)
3)乘法交换律
ab=ba
4)乘法结合律 (ab)c=a(bc) 5)分 配 律 a(b+c)=ab+ac
2.如下图 , 直线 AB 和 CD 相交于点O , OE
是一条射线. 〔1〕∠AOC 的邻补角是_∠__A_O_D__,__∠__B_OC__; E C
〔2〕∠AOD 的对顶角是__∠_B_O_C__; A
O
B
〔3〕∠BOD 的对顶角是__∠__A_O_C__. D
七年级数学下册第10章相交线平行线与 平移10.1相交线第1课时对顶角及其性 质课件新版沪科版
(3)(-0.5)+314 +2.75+(-512 ); 解:原式=[(-12 )+(-512 )]+(314 +234 ) =-6+6 =0 (4)7+(-6.9)+(-3.1)+(-8.7). 解 : 原式=【(-6.9)+(-3.1)]+【(-8.7)+7] =-10+(-1.7) =-11.7
华东师大版七年级上册数学各章考点总结

华东师大版七年级上册数学各章考点总结第一章:有理数1. 有理数的概念及表示方法:- 有理数是整数和分数的统称,可以用分数线有限的十进制数或整数形式表示。
- 有理数可以是正数、负数或是零。
2. 有理数的比较和大小关系:- 有理数比较时,可以根据大小关系进行比较运算。
- 正数比负数大,负数比正数小。
- 绝对值较大的有理数较大。
3. 有理数的加法和减法:- 有理数的加法满足“结合律”和“交换律”,即改变加法顺序结果不变。
- 有理数的减法可以看作加法的逆运算,减去一个数等于加上相反数。
4. 有理数的乘法和除法:- 有理数的乘法满足“结合律”和“交换律”,即改变乘法顺序结果不变。
- 有理数的除法可以看作乘法的逆运算,除以一个数等于乘以倒数。
第二章:开方与整式1. 开方的概念和符号:- 开方是指求一个数的平方根。
- 开方符号为√,表示数学上的平方根。
2. 平方根的性质:- 非负数的平方根都是实数。
- 负数的平方根是虚数。
3. 完全平方数和近似平方根:- 完全平方数是指某个数的平方根是整数的数。
- 用近似法求平方根可以得到一个近似平方根的数值。
第三章:平方与立方1. 平方的概念及运算性质:- 平方是指将一个数自乘一次。
- 平方的结果通常是一个非负数。
2. 立方的概念及运算性质:- 立方是指将一个数自乘两次。
- 立方和正负号有关,正数的立方是正数,负数的立方是负数。
3. 平方根和立方根的关系:- 平方根是指求一个数的平方的逆运算。
- 立方根是指求一个数的立方的逆运算。
第四章:数据和统计1. 统计调查和数据整理:- 统计调查是指通过收集数据来了解和研究某个对象或现象。
- 数据整理是指对统计调查所获得的数据进行整理和分类。
2. 统计图和图表的表示:- 统计图主要包括柱形图、折线图、饼图等形式,用来直观地表示数据。
3. 数据的中心趋势:- 代表性数是用来描述数据的中心趋势的。
- 代表性数主要包括平均数、中位数和众数等。
华东师大版初中数学知识内容概况总复习 知识点

华东师大版初中数学知识内容概况总复习知识点华东师大版初中数学知识内容概况总复习-知识点华东师范大学版初中数学知识内容综述知识点(1)数与代数1、有理数(1)正数和负数(2)数轴(3)反数(4)绝对值(5)有理数的大小比较(6)有理数的运算(加、减、乘、除、幂及其混合运算)(7)近似数和有效数(8)零指数幂及负整指数幂;科学计数法阅读材料:(1)光年和纳米;(2) 10003和310002、数的开方(1)平方根和立方根(2)平方根公式(3)实数和数轴3、整式及其运算(1)列代数表达式阅读材料:有趣的“3x+1问题”(2)整数:单项式,多项式(3)整式的加减:① 类似项目;② 合并类似项目;③ 删除和添加括号;④ 整数的加减法阅读材料:(1)用分离系数法进行整式的加减运算;(2)供应站的最佳位置在哪里?(4)整数乘法:①幂的运算:同底数幂的乘法、幂的乘方、积的乘方;②整数乘法:单项式乘以单项式、单项式乘以多项式、多项式乘以多项式;③ 乘法公式:平方差公式、完全平方公式(5)因式分解:提公因式法、公式法阅读材料:(1)贾仙三角;(2)你会读书吗?主题研究:面积与代数恒等式(6)整式的除法:同底数幂的除法、单项式除以单项式一4、分式(1)分数的概念(2)分数的基本性质(3)分式的运算:分式的乘除法、分式的加减法5.方程式(1)一元一次方程:①一元一次方程的概念;②一元一次方程的解法;③ 可以简化为一元线性方程的分数阶方程阅读材料:(1)丢番图的墓志铭;(2)2=3?(2)二元基本方程:① 二元基本方程的概念;② 二元一阶方程的求解阅读材料:同笼中的鸡和兔(3)一元二次方程:①一元二次方程的概念;②一元二次方程的解法;③ 一元二次方程根的判别式;一元二次方程的根与系数的关系(4)实践与探索(应用)6.一元初等不等式(1)对不等式的理解(2)解一元初等不等式(3)一元一次不等式组及其解法(4)一元一次不等式的应用7.函数及其图像(1)变量和函数(2)一次函数的概念、图像及其性质(3)反比例函数的概念、图像及其性质(4)二次函数的概念、图像及其性质(5)实践与探索阅读材料:生活中的抛物线2华东师范大学版初中数学知识内容综述知识点(2)空间与图形1、图形的初步认识(1)生活中的立体图形阅读材料:欧拉公式(2)绘制三维图形:① 从三维图形到视图;② 从视图到立体图形(3)立体图形的表面展开图(4)图形阅读材料:七巧板(5)最基本的图形:点和线①点和线;②线段的长短比较(6)角度:① 角度比较与操作;② 特殊角度关系(7)相交线:①垂线;②相交线中的角(8)平行线:① 识别平行线;② 平行线的特性2、多边形(1)三角形(2)三角形内、外角及(3)瓷砖铺设(4)用正多边形拼地板阅读材料:多姿多彩的图案课题学习:图形的镶嵌3.图形的转换(1)平移:①图形的平移;②图形的特征(2)轮换:① 图形的旋转;② 旋转特性;③ 旋转对称图形;④ 中心对称图(3)轴对称性:① 生命中的轴对称;② 轴对称性知识;③ 等腰三角形阅读材料:(1)切割五角星;(2)对称拼图;(3) Timesanddates(4)有点像转换:① 图形的放大和缩小;② 画相似的图形4、命题与证明(1)定义、命题和定理(2)证明与认识35.图的同余(1)图的同余(2)全等三角形的识别及其性质(3)用直尺和量规绘制:① 画线段;② 画角;③ 画线段;④ 画一条角平分线6、图形的相似(1)相似图形及其特征(2)相似三角形:①相似三角形的识别;②相似三角形的特征(3)图形与坐标7.解三角形(1)测量(2)勾股定理(3)锐角三角函数(4)解直角三角形8、平行四边形(1)平行四边形:①平行四边形的概念;②平行四边形的识别;③平行四边形的特征(2)矩形:① 矩形的概念;② 矩形的识别;③ 矩形(3)菱形的特征:① 钻石的概念;② 钻石识别;③ 钻石的特性(4)正方形:①正方形的概念;②正方形的识别;③正方形的特征阅读材料:四边形的变身术课题学习:中点四边形9.圆形(1)圆的基本元素(2)圆的对称性(3)圆周角(4)与圆相关的位置关系:① 点与圆的位置关系;② 直线与圆的位置关系;③ 圆与圆的位置关系(5)圆中的有关计算问题:①弧长和扇形的面积;②圆锥的侧面积和全面积四华东师大版初中数学知识内容概况总复习知识点(3)《概率与统计》部分1.统计数字(1)数据的收集(2)数据表示:① 统计图表;②这样节省图的篇幅合适吗?阅读材料:赢在哪里?(3)统计的重要性:①人口普查和抽样调查;②从部分看全体(4)平均值、中值和模式(通过计算器计算平均值)(5)平均数、中位数和众数的使用(警惕平均数的误用)阅读材料:“均贫富”(6)数据分类和初步处理:① 选择合适的图表进行数据排序;② 范围、方差和标准差(7)简单的随机抽样:①简单随机抽样;②这样抽样合适吗?阅读材料:空气污染指数(8)用样本估计人口:① 抽样调查可靠吗?② 用样本估计人口(9)数据的分析与决策:①查询数据作决策;②全面分析媒体信息;③ 亲自调查决定;像这样打招呼;如何组织数据和阅读材料:关于评级的随机讨论5。
华东师大版初中七年级数学上册期末复习知识点总结

华东师大版初中七年级数学上册期末复习知识点总结七年级数学(上)期末复提纲——知识点总结第二章有理数1.正数和负数是数学中的基本概念。
正数包括所有大于零的数,负数包括所有小于零的数。
零既不是正数也不是负数。
2.整数包括正整数、零和负整数,分数包括正分数和负分数。
整数和分数统称为有理数。
3.数轴是一条直线,规定了原点、正方向和单位长度。
数轴可以用来表示有理数。
4.在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
5.互为相反数的两个数只有正负号不同,它们在数轴上的位置相对于原点对称。
我们通常在一个数前面添上“-”号,表示这个数的相反数;在一个数前面添上“+”号,表示这个数本身。
6.绝对值是数轴上表示数a的点与原点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。
任意有理数a,总有|a|≥0.7.两个负数,绝对值大的反而小。
8.有理数的加法法则:(1)同号两数相加,取相同的正负号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同相加,仍得这个数。
注意:一个有理数由正负号和绝对值两部分组成,所以进行加法运算时,应注意确定和的正负号与绝对值。
9.加法交换律:两个数相加,交换加数的位置,和不变,如:a+b=b+a。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,如:(a+b)+c=a+(b+c)。
10.有理数减法法则:减去一个数,等于加上这个数的相反数。
11.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数乘以0得0.12.乘法交换律:两个数相乘,交换因数的位置,积不变,如:ab=ba。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,如:(ab)c=a(bc)。
分配律:一个数乘以两个数的和,等于这个数分别乘以这两个数,再把积相加,如:a(b+c)=ab+ac。
【最新】华师大版七年级上册期末复习:第二章有理数

新华师大版七年级上册期末复习:第二章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:(1)相反意义的量,正负数:1、正数:大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数(或者小于0的数)3、0既不是正数也不是负数。
(注意:带有“+”号的数不一定是正数,带有“—”号的数不一定是负数)(2)有理数1、、、、统称为整数;、统称为分数。
2、和统称为有理数。
从符号上分:3、有理数可分为和和(3)、数轴:1:数轴定义:规定了、、、的直线叫数轴。
2:数轴意义:一般地,用表示原点,正数在原点的,负数在原点的3:在数轴上表示的两个数,的数总比的数大(4)、相反数:1:只有的两个数互为相反数,数a的相反数表示为,a-b的相反数是2、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的,并且到原点的距离。
3、正数的相反数是,负数的相反数是,0的相反数是4、互为相反数的两个数,和为0。
5、绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、倒数1除以一个数(零除外)的商,叫做这个数的倒数。
如果两个数互为倒数,那么这两个数的积等于1。
15、科学计数法:把一个大于10的数表示成a ×10n 的形式(其中a 是整数数位只有一位的数(即0<a<10),n 是正整数)。
9、近似数( ):10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
华东师大版七年级上册数学各章知识点总结

第1章 走进数学世界1.在n ·n 的正方形方格中,有1²+2²+3²+…2.幻方: 三阶幻方:四阶幻方: 第2章 有理数2.1.1正数和负数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)☀注意:零既不是正数,也不是负数.2.1.2有理数分类:方法1:整、分法方法2:正、零、负法16 2 313 5 11 108 9 7 612 414 15 1 有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.2.2.1数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.2.2.2在数轴上比较数的大小方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)☀注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。
负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较除(2.2.2)在数轴上比较数的大小的方法比较两个负数的大小的方法:两个负数,绝对值大的反而小.2.6.1有理数的加法法则法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)☀注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.2.6.2有理数加法的运算律加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.2.9.1有理数的乘法法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)2.9.2有理数乘法的运算律乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.☀注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在aⁿ中,a叫做底数,n叫做指数,aⁿ读作a的n次方,aⁿ看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10ⁿ的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.☀注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.☀注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10ⁿ看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.☀注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减3.1.1用字母表示数☀注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.3.1.2代数式定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.3.1.3列代数式列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.3.3.1单项式定义:由数与字母的乘积组成的代数式叫做单项式.☀注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.3.3.2多项式定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.3.3.3升幂排列与降幂排列定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.☀注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.3.4.1同类项定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.3.4.2合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.3.4.3去括号与添括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.☀注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.3.4.4整式的加减运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.☀注意:圆柱、球体等含有曲面的立体图形不称为多面体.4.2.1由立体图形到视图视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.4.2.2由视图到立体图形☀注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.4.5.1点和线点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:面棱顶点关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.4.5.2线段的长短比较比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.☀注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)4.6.1角角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角.角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)☀注意:描述物体运动的方向时,要以正北、正南方向为基准.4.6.2角的比较和运算题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.6.3余角和补角余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.☀注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线5.1.1对顶角对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角.对顶角的性质:对顶角相等.5.1.2垂线垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.5.1.3同位角、内错角、同旁内角同位角的定义:内错角的定义:同旁内角的定义:5.2.1平行线平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”. 两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.5.2.2平行线的判定判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行.5.2.3平行线的性质性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章有理数
一、有理数的意义
复习内容:有理数的意义、数轴、相反数、绝对值等概念,有理数的大小比较.
(一)用正、负数表示具有相反意义的量
1、如果用正数表示某种意义的量,那么负数就表示其相反意义的量.
2、常用的一些符号和数学语言的含义:
⑴a>0,表明a是正数.⑵a<0,表明a是负数.
⑶a≥0,表明a是非负数,即a是正数或a为0.
⑷a≤0,表明a是非正数,即a是负数或a为0.
(二)数轴
1、规定了原点、正方向和单位长度的直线叫做数轴.
2、在数轴上表示的两个数,右边的数总比左边的数大.
3、正数都大于零,负数都小于零,正数大于负数.
(三)相反数
1、只有符号不同的两个数称互为相反数.
2、零的相反数是零.
3、数a的相反数是-a.
说明:要表示一个数的相反数,只在这个数的前面添上一个“—”号就行了.
(四)绝对值
1、 a (a>0)
|a|= 0 (a=0)
-a (a<0)
说明:求一个数的绝对值,就是想办法去掉绝对值符号.因此,在具体求一个数的绝对值时,首先要判断它的正负,然后利用法则求出它的绝对值.
二、有理数的运算
重点复习有理数的混合运算,并复习近似数和有效数字,并掌握科学记数法.
(一)有理数的加法
1、法则:
⑴同号两数相加,取相同的符号,并把绝对值相加.
⑵绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去
较小的绝对值.
⑶互为相反数的两个数相加得零.
⑷一个数与零相加,仍得这个数.
(二)有理数的减法
1、法则:减去一个数,等于加上这个数的相反数.
(三)有理数的加减混合运算
1、方法和步骤:
⑴将有理数加减法统一成加法,然后省略括号和加号.
⑵运用加法法则、加法运算律进行简便运算.
(四)有理数的乘法
1、法则:
⑴两数相乘,同号得正,异号得负,并把绝对值相乘.
⑵任何数与零相乘,都得零.
⑶几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.【简记为“奇负偶正”】 ⑷几个数相乘,有一个因数为零,积为零.
(五)有理数的除法
1、法则: ⑴除以一个数等于乘以这个数的倒数. ⑵两数相除,同号得正,异号得负,并把绝对值相除. ⑶零除以任何一个不等于零的数,都得零.
⑷乘积为1的两个数互为倒数.
(六)有理数的乘方
1、 法则: ⑴正数的任何次幂都是正数. ⑵负数的奇次幂是负数,负数的偶次幂是正数.
(七)有理数的混合运算
1、 运算顺序: ⑴先算乘方,再算乘除,最后算加减. ⑵同级运算,按照从左到右的顺序进行. ⑶如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.
(八)科学记数法、近似数和有效数字
1、科学记数法:把一个大于10的数记成n
a 10⨯的形式.
说明:⑴a 是一个只有一位整数的数.
⑵10的指数n 比原数的整数数位少1.
2、⑴近似数的精确度表示:⑴精确到×位 ⑵保留几个有效数字 ⑵有效数字:一个近似数从左边第一个不是0的数字起,到精确到的数位止,
所有的数字,都叫做这个数字的有效数字.
说明:①问精确到哪一位,看最右边的有效数字所在的位置属哪一位.
②用科学记数法表示的近似数的有效数字位数只看“×”号前的部分.
第三章整式的加减⑴
复习内容:主要复习列代数式,求代数式的值.
(一)代数式的有关知识
1、代数式是用运算符号(加、减、乘、除以及乘方)把数和表示数的字母连结而成的式子.
▲ 单独一个数或一个字母也是代数式.
2、代数式的书写格式:
①若是数字与数字相乘,仍然用“×”号;若是字母与字母相乘,通常省略乘号,且按
字母的顺序排列.例如b ×a 应写成ab .
②数字与字母相乘,或数字与小括号相乘时,乘号可省略不写,但数字要写在前面.例如4×a 应写成4a ;3×(m+n)应写成3(m+n). ③代数式中出现除法运算时,应写成分数的形式.例如y x ÷2应写成y
x 2 ④代数式中出现带分数与字母相乘时,应把带分数化成假分数. 如b a 225不能写成b a 22
12.
⑤代数式的最后运算是加减运算时,如需注明单位的必须用括号把整个式子括起来.如
(a-b)元不能写成a-b元.
3、列代数式:一般是根据“先读先写”的原则来列代数式.
(二)代数式的值
1、方法与步骤:
⑴用数值代替代数式中的字母,简称“代入”.
⑵按照代数式指定的运算顺序计算出结果,简称“求值”.
说明:代数式的值是由代数式中的字母所取的值决定的.因此,在代入前,
必须先写“当……时”.
第三章整式的加减⑵
复习内容:整式、单项式、多项式、同类项的概念,合并同类项,去括号,添括号及整式的加减运算.
(一)单项式
1、定义:表示数字与字母的积的代数式叫做单项式.单独一个数或一个字母也是单项式.2、单项式中的数字因数叫做单项式的系数.
3、一个单项式中所有字母的指数的和,叫做这个单项式的次数.
(二)多项式
1、定义:几个单项式的和叫做多项式.
2、多项式的项:多项式中,每一个单项式叫做多项式的项.不含字母的项叫做常数项.3、多项式的次数:多项式中,次数最高的项的次数,叫做多项式的次数.
4、多项式的排列:
⑴升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列.
⑵降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列.
(三)同类项、合并同类项
1、定义:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.▲所有的常数项也是同类项
2、判断标准:⑴所含字母相同⑵相同字母的次数相同
3、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的次数保
持不变.
(四)去括号与添括号
1、去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号.
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都要
变号.
2、添括号法则:所添括号前面是“+”号,括到括号里的各项都不变号.
所添括号前面是“-”号,括到括号里的各项都要变号.
(五)整式的加减
1、步骤:①若有括号,则先去括号②如有同类项,再合并同类项
第四章图形的初步认识
复习内容:立体图形的三视图、展开图,最基本的图形——点和线,角,相交线,平行线.
(一)立体图形的三视图:正视图、左视图、俯视图
(二)立体图形的展开图
(三)最基本的图形——点和线
西 东
北
南
O A 60º ╭ ╮
1、两点之间,线段最短.
2、连结两点的线段的长度,叫做这两点的距离.
3、经过两点有一条直线,并且只有一条直线.(两点确定一条直线)
4、把一条线段分成两条相等线段的点叫做线段的中点.
(四)角
1、一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.
2、⑴如果两个角的和是90º,这两个角叫做互为余角.
⑵如果两个角的和是180º,这两个角叫做互为补角.
说明:①若∠1与∠2互余,则∠1+∠2=90º.
②若∠1与∠2互补,则∠1+∠2=180º.
3、⑴同角(或等角)的余角相等.
⑵同角(或等角)的补角相等.
4、用角度表示方向:
一般以正北、正南为基准,向东或向西
旋转的角度表示方向.如图,OA 方向表
示为北偏西60º. 5、对顶角相等.
(五)相交线 1、在同一平面内,经过直线上(或外)一点,有且只有一条直线与已知直线垂直.
2、垂线段最短。
从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. 3、同位角、内错角、同旁内角的概念:
准确地识别与确定同位角、内错角、同旁内角的关键是先判定截线与被截线,后判断位置.
同位角象“F”形 内错角象“Z”形 同旁内角象“C”形
(六)平行线
1、在同一平面内不相交的两条直线叫做平行线.
1、 经过已知直线外一点,有且只有一条直线与已知直线平行.
3、平行线的识别:
⑴同位角相等,两直线平行.⑵内错角相等,两直线平行.⑶同旁内角互补,两直线平行.
另:*平行于同一条直线的两条直线也互相平行
*垂直于同一条直线的两条直线也互相平行
4、平行线的特征:
⑴两直线平行,同位角相等.⑵两直线平行,内错角相等.⑶两直线平行,同旁内角互补.。