初中数学《图形的全等》经典习题

合集下载

初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(18)

初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(18)

章节测试题1.【题文】如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.【答案】35°【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【解答】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65°,∴∠OBC=180º−65º−∠C=115°−∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°−∠C+135º+115°−∠C=360°,解得∠C=35°.2.【答题】有下列说法:①两个三角形全等,它们的形状一定相同;②两个三角形形状相同,它们一定是全等三角形;③两个三角形全等,它们的面积一定相等;④两个三角形面积相等,它们一定是全等三角形.其中正确的说法是()A. ①②B. ②③C. ①③D. ②④【答案】C【分析】根据全等三角形的定义以及性质一一判断即可.【解答】两个三角形全等,它们的形状一定相同,故①正确,两个三角形形状相同,它们不一定是全等三角形,故②错误,两个三角形全等,它们的面积一定相等,故③正确,两个三角形面积相等,它们不一定是全等三角形,故④错误,综上,正确的说法是①③,选C.3.【答题】如图,已知ΔABC≅ΔADE,AB=9,AC=3,则BE=()A. 6B. 7C. 8D. 9【答案】A【分析】利用全等三角形的性质得出AE的长,再根据BE=AB-AE得出答案.【解答】解:∵△ABC≌△ADE,AC=3,∴AE=AC=3,∵AB=9,∴BE=AB-AE=9-3=6.选A.4.【答题】如图,△ABC与△DEF是全等三角形,则图中的相等线段有()A. 1B. 2C. 3D. 4【答案】D【分析】全等三角形的对应边相等,据此可得出AB=DE,AC=DF,BC=EF;再根据BC-EC=EF-EC,可得出一组线段相等,据此找出组数,问题可解.【解答】∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC-EC=EF-EC,即BE=CF.故共有四组相等线段.选D.5.【答题】如图,△ABC≌△AED,点D在BC上,若∠EAB=42°,则∠DAC的度数是()A. 48°B. 44°C. 42°D. 38°【答案】C【分析】根据全等三角形的性质得到∠BAC=∠EAD,于是可得∠DAC=∠EAB,代入即可.【解答】解:∵△ABC≌△AED,∴∠BAC=∠EAD,∴∠EAB+∠BAD=∠DAC+∠BAD,∴∠DAC=∠EAB=42°,选C.6.【答题】如图,△ABC≌△AEF,则∠EAC等于()A. ∠BAFB. ∠CC. ∠FD. ∠CAF【答案】A【分析】根据全等三角形对应边相等可推出结论.【解答】解:∵△ABC≌△AEF,∴∠CAB=∠FAE,∴∠EAF﹣∠CAF=∠BAC﹣∠CAF,∴∠CAE=∠FAB,选A.7.【答题】如果△ABC≌△DEF,且△ABC的周长为100cm,A,B分别与D,E 对应,AB=30cm,DF=25cm,则BC的长为()A. 45cmB. 55cmC. 30cmD. 25cm【答案】A【分析】∵△ABC≌△DEF,∴DF=AC=25cm,△ABC的周长是100cm,那么BC=100-AB-DF.【解答】解:∵△ABC≌△DEF,A,B分别与D,E对应,∴AC=DF=25cm,又△ABC的周长是100cm,AB=30cm,∴BC=100-AB-AC=100-30-25=45cm,∴BC的长等于45cm.选A.8.【答题】已知:如图,△ABC≌△FED,且BC=DE.则∠A=______,AD=______.【答案】∠F CF【分析】据全等三角形的性质,全等三角形的对应角相等,全等三角形的对应边相等,即可求解.【解答】∵△ABC≌△FED,BC=DE,∴∠A=∠F,AC=DF,即AD+CD=CF+CD,∴AD=CF,故答案为∠F,CF.9.【答题】如果△ABC≌△ADE,∠B=80°,∠BAC=45°,那么∠E=______.【答案】55°【分析】直接利用全等三角形的性质得出对应角,进而结合三角形内角和定理得出答案.【解答】解:如图所示:∵△ABC≌△ADE,∠B=80°,∠BAC=45°,∴∠C=∠E=180°﹣80°﹣45°=55°.故答案为55°.10.【答题】已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=______,AE=______.【答案】(1)∠ADC(2)AD【分析】根据全等三角形的性质进行解答即可得答案.【解答】∵△ABE≌△ACD,∠B=∠C,∴∠AEB=∠ADC,AE=AD,故答案为∠ADC,AD.11.【答题】如图,点B、A、E在同一直线上,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAC=______°.【答案】50【分析】首先利用三角形内角和定理求得∠CAE=115°;然后由全等三角形的对应角相等得到∠DAB=∠CAE=115°,再根据平角的定义即可求出.【解答】解:∵∠E=40°,∠C=25°,∠E+C+∠CAE=180°,∴∠CAE=115°,又∵△ADB≌△ACE,∴∠DAB=∠CAE=115°,∵∠BAE=180°,∴∠DAC=∠DAB+∠C-180°=115°+115°-180°=50°.故答案是:50°.12.【题文】如图,△ADE≌△BCF,AD=8cm,CD=5cm,试求BD的长.【答案】3cm【分析】由△ADE≌△BCF可知AD=BC,∴AC=BD,于是可求.【解答】解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=5cm,∴BD=8﹣5=3cm.13.【题文】如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【答案】对应边:AN与AM,BN与CM;对应角:∠BAN=∠CAM,∠ANB=∠AMC.【分析】根据全等三角形的对应顶点在对应位置,按顺序找即可解答.【解答】∵△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,∴对应边:AN与AM,BN与CM;对应角:∠BAN=∠CAM,∠ANB=∠AMC.14.【题文】已知:如图,△AFD≌△CEB.求证:AD∥BC,AE=CF.【答案】证明见解答.【分析】根据△AFD≌△CEB推出∠A=∠C,AF=CE即可证明AD∥BC,AE=CF.【解答】证明:∵△AFD≌△CEB∴∠A=∠C,AF=CE∴AD∥BCAF-EF=CE-EF∴AE=CF.15.【题文】如图,ΔABD≌ΔEBC,AB=3cm,BC=5cm.求DE的长【答案】DE=2cm【分析】由全等三角形可得BD=BC,AB=BE,然后再由DE=BD-BE即可得出结果.【解答】解:∵ΔABD≌ΔEBC∴BD=BC=5cm,AB=BE=3cm∴DE=BD-BE=5-3=2cm.答:DE的长为2cm.16.【答题】下列各组的两个图形属于全等图形的是()A. B.C. D.【答案】D【分析】根据全等图形的概念判断即可.【解答】A.∵两个图案的形状不形同,故不全等;B.∵两个图案的大小不相等,故不全等;C.∵两个图案的形状不形同,故不全等;D.∵两个图案的形状形同,大小相等,故全等;17.【答题】下列四组三角形中,一定是全等三角形的是()A. 周长相等的两个等边三角形B. 三个内角分别相等的两个三角形C. 两条边和其中一个角相等的两个三角形D. 面积相等的两个等腰三角形【答案】A【分析】依据全等三角形的概念即可做出选择.【解答】解:A.周长相等的两个等边三角形,三边都相等,故A正确;B.三个内角分别相等的两个三角形,三角形相似,不一定全等,故B错误;C.两条边和其中一个角相等的两个三角形,只有这个角是两边夹角三角形才全等,故C错误;D.面积相等的两个等腰三角形,不一定全等,故D错误;答案为A.18.【答题】如图,△ACB≌△A'C'B',∠ACB=70°,∠ACB'=100°,则∠BCA'的度数为()A. 30°B. 35°C. 40°D. 50°【答案】C【分析】根据全等三角形的性质和角的和差即可得到结论.【解答】解:∵△ACB≌△A'C'B',∠ACB=70°,∴∠ACB=∠A´CB´=70°,又∵∠ACB'=100°,∴∠BCB'=∠ACB'-∠ACB=100°-70°=30°,∴∠BCA´=∠B´CA´-∠B´CB=70°-30°=40°.故答案为C.19.【答题】下列语句:错误的个数是()①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相等的两个多边形形全等A. 4个B. 3个C. 2个D. 1个【答案】B【分析】根据能够完全重合的两个图形叫做全等形即可作出判断.【解答】解:①面积相等的两个三角形不一定全等,故此说法错误;②两个等边三角形一定是相似图形,但不一定全等,故此说法错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故此说法错误;综上可得错误的说法有①②④共3个.选B.20.【答题】如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=().A. 35°B. 30°C. 25°D. 20°【答案】B【分析】根据全等三角形的性质得到对应角相等,再根据对顶角相等和三角形内角和为180°,即可求得答案.【解答】∵△ABO≌△DCO,∠D=80°,∴∠D=∠A=80°,由于∠DOC=70°,∠DOC是∠AOB的对顶角,∴∠DOC=∠AOB=70°,由于三角形内角和为180°.则∠B=180°-∠AOB-∠A=30°.选择B项.。

初中数学几何全等100题

初中数学几何全等100题

第一部分 全等100题1.如图1.1所示,在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是∠ABC 的角平分线,DE ⊥AB 于点E . (1)如图(a )所示,连接EC ,求证:△EBC 为正三角形.(2)如图(a )所示,点M 是线段CD 上一点(与点C 、D 不重合),以为BM 一边,在BM 的下方作∠BMG =60°,MG 交DE 的延长线于点G ,求证:AD =DM +DG . (3)如图(c )所示,点M 是线段AD 上的一点(与点A 、D 不重合),以BM 为一边,在BM 的下方作∠BMG =60°,MG 交DE 的延长线于点G ,求证:探究DM 、DG 和AD 之间的数量关系,并说明理由.图1.1(c )(b )(a )AAAB BB2.如图1.2所示,在△ABC 中,AB =AC ,BD ⊥AC 于点D ,点E 为线段AD 上一点,点F 为线段BD 上一点,满足CE =BF ,且BE 平分∠ABD . 求证:∠EBC =∠BEF =45°.图1.23.如图1.3所示,在菱形ABCD 中,∠BAD =60°,M 为对角线AC 上异于A 、C 的一点,以AM 为边,作等边△AMN ,线段MN 与AD 交于点G ,连接NC 、DM ,Q 为线段NC 的中点,连接DQ 、MQ .求证:(1)DM =2DQ ;(2)DQ ⊥MQ .图1.3BN4.如图1.4所示,凸四边形ABCD 中,AB >AD ,AC 平分∠BAD ,过点C 作DE ⊥AB 于点E ,并且AE=(AB +AD ).求证:∠ABC 与∠ADC 互补.图1.45.如图1.5所示,在等腰Rt △ABC 中,∠ACB =90°,点E 是AC 上一点,连接BE ,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF . 当AF =DF 时,求证:DC =BC .图1.5B6.如图1.6所示,在等腰Rt△ABC中,AD为斜边上的中线,以D为端点任作两条互相垂直的射线与两腰相交于点E、F,连接EF与AD相交于点G.求证:∠AED=∠AGF.7.如图1.7所示,AD是△ABC的中线,点E、F分别在AB、AC上,且DE⊥DF,求证:BE+CF>EF.8.如图1.8所示,已知正方形ABCD,点E为边AB上异于点A、B的一动点,EF∥AC,交BC于点F,点G为DA延长线上一定点,满足AG=AD,GE的延长线与DF交于点H,连接BH.探究:∠EHB是否为定值?如果是定值,请说明理由,并求出该定值;如果不是定值,请说明理由.9.如图1.9所示,在Rt△ABC中,∠ACB=90°,点D是线段AC上一点,BC=CD,过点A作AE⊥BD交BD的延长线于点E.(1)如图(a)所示,若BC=3,AEAB.(2)如图(b)所示,点F是AB的中点,连接FC、FE,探究CF、EF的位置关系与数量关系.(3)如图(c)所示,EF与AC交于点H,若AD=BD(a)(b)(c)10.如图1.10所示,已知矩形ABCD 中,点E 为AB 上一点,连接CE ,在CE 上找一点F ,连接AF ,使得∠FA C =∠ECB ,且∠DCA =∠DAF .求证:CF =2EB .11.如图1.11所示,点E 是正方形ABCD 边CD 上一动点,BE 的垂直平分线交对角线AC 于点G ,垂足为点H ,连接BG ,并延长交AD 于点F ,连接EF ;若AC =√2a ,探究:△DFE 的周长L 是否为定值?如果是定值,求出这个值;如果不是,请说明理由图1.11FBADE12.如图1.12所示,AD 为△ABC 的角平分线,直线MN ⊥AD 于点A ,点E 为MN 上一动点,且不与A 重合,若△AB C 的周长记为P A ,△EBC 的周长记为P B ,探究P A 、P B 的大小关系13.如图1.13所示,在△ABC 中,∠BAC =120°,AD 为中线,将AD 绕点A 顺时针旋转120°得到AE ,点F 为AC 上一点,连接BF ,∠ABE =∠AFB ,若AF =6,BE =7;求CF图1.12BN图1.13CB14.如图1.14所示,在△ABC 中,AD 平分∠BAC ,DG 垂直平分BC 于点G ,DE ⊥AB 于点E ,连接DC ,若AB =A ,AC =B (A >B ),求BE (用含A 、B 的代数式表示)15.如图1.15所示,在等腰Rt △ABC 中,∠ACB =90°,点D 、E 是斜边AB (不包括点A 、B )上的两点,且∠DCE =45°;求证:DE 2=AD 2+BE 2图1.14D BA图1.15B16.如图1.16所示,在△ABD中,∠ABD=60°,点C为△ABD外部一点,满足AB=AC,连接DC、BC,DE⊥AD交BC于点E,且DE平分∠BDCn(n>1)17.如图1.17所示,在等腰Rt△ABC中,∠BAC=90°,点E在Rt△ABC外部,连接BE,以BE为直角边作等腰Rt△BED,连接AD、AE,点H是AE的中点,过点C作CF∥AD,过点D作DF∥AC,两线交于点F,连接AF ,点G是AF的四等分点.求证:HG⊥AF.18.如图1.18所示,在等腰Rt△ABC中,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°.若BD.S△ABC19.如图1.19所示,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,CD=DE,连接BE并延长交AC于点F,延长FD到点G,连接BG.若FG=BG,求证:BG⊥FG.20.如图1.20所示,在矩形ABCD中,点O为AC的中点,AO=AE=CF.若OE=OF=6,求AE.21.如图1.21所示,在△ABC中,点P为BC上一动点,且不与点B、C重合,AP⊥BE于点E,AP⊥CD 于点D,点F为BC的中点.求证:EF=DF.22.如图1.22所示,菱形ABCD是由两个正三角形拼成的,点P是△ABD内任意一点,现把△BPD绕点B旋转到△BQ C的位置.(1)若四边形BPDQ是平行四边形,求∠BPD.(2)若△PQD是等腰直角三角形,求∠BPD.(3)若∠APB=1000,且△PQD是等腰三角形,求∠BPD.23.如图1.23所示,AB=AC,∠ABC=β,EC=ED,∠CED=2β,点P为BD的中点,连接AE、PE.当060=β时,求PEAE.24.如图1.24所示,在等边△ABC中,点F在AC的延长线上,点D在BC上,延长BF与射线DA交于点E ,连接EC,且AF+CD=AD,DE=15,AF=4.求:(1)∠BEC;(2)AEBAECSS∆∆;(3)BECS∆.25.如图1.25所示,在等边△ABC中,BD⊥AC于点D,BE平分∠CBD交AC于点E,在BC上取一点G ,连接EG,且EG=2DE,点F是△ABC外一点,连接AF、BF、EF,满足∠FBE=∠FAB=600,连接GF交B E于点H,求证:GF⊥BE.26.如图1.26所示,在△ABC中,AB=a,AC=b,分别以AB、AC为边作正方形ABED、ACGF,连接BD ,点H、I分别是BD、BC的中点,连接HI.若HI=c,求△ABC的面积.27.如图1所示,在等腰Rt△ABC中,∠BAC=90°,在等腰Rt△EFC中,∠FEC=90°,连接AE、BF,点M为AE的中点,点N为BF的中点.探究AE与MN的位置关系和数量关系.28.如图1所示,点P为正方形ABCDDH⊥AP,点E为AP上一点,AH=EH,∠CDE的平分线交AP的延长线于点F,连接BF29.如图1所示,在等边△ABC内,点P为任意一点,连接AP、BP、CP.(1)求证:以AP、BP、CP为边,一定能构成一个三角形.(2)若∠APB=110°,∠BPC=135°,求以边AP、BP、CP所构成的三角形的三个内角的值.(3)若∠APB=110°,问∠BPC为何值时,以边AP、BP、CP所构成的三角形为直角三角形?30.如图1所示,在四边形ABDE中,点C是BD的中点,BD=DE=8,AB=2,∠ACE=135°,求AE的最大值.31.如图1.31所示,△ABF 、△ADE 都是等边三角形,BE 与DF 交于点C ,连接AC 。

初中数学 全等三角形经典题型50题(含答案)

初中数学 全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

因为 BC=ED,CF=DF,∠BCF=∠EDF 。

所以 三角形BCF 全等于三角形EDF(边角边)。

所以 BF=EF,∠CBF=∠DEF 。

连接BE 。

在三角形BEF 中,BF=EF 。

所以 ∠EBF=∠BEF 。

又因为 ∠ABC=∠AED 。

所以 ∠ABE=∠AEB 。

所以 AB=AE 。

在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。

所以 三角形ABF 和三角形AEF 全等。

所以 ∠BAF=∠EAF (∠1=∠2)。

ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

三角形全等的判定专题训练题

三角形全等的判定专题训练题

三角形全等的判定专题训练题(1)1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。

求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。

求证:AC ⊥CE 。

6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF=EG ,(2)BF ∥DG 。

7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。

求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。

8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。

求证:AB=AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC上任一点。

求证:PA=PD 。

12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。

求证:EB ∥CF 。

13、如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

14、如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。

初中数学全等图形练习题

初中数学全等图形练习题

初中数学全等图形练习题1. 下列图形是全等图形的是( )A.B.C.D.2. 如图,在△ABC中,D,E分别为BC,AC边上的中点,AD,BE相交于点G,若S△BDE=1,S△ABC=( )A.1B.2C.3D.43. 如图,O是等边△ABC内的一点,OA=1,OC=3,∠AOC=150∘,则OB的长为()A.3B.4C.2√2D.√104. 下列说法中,正确的个数为()①用一张像底片冲出来的10张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A.1个B.2个C.3个D.4个5. 如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同6. 如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60∘,若CG=3,AH=7,则菱形ABCD的边长为()A.8B.9C.D.7. 下列说法正确的是()A.所有正方形都是全等图形B.所有长方形都是全等图形C.所有半径相等的圆都是全等图形D.面积相等的两个三角形是全等图形8. 如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________.9. 用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是________(填序号)10. 如图,有6个条形方格图,图上由实线围成的图形是全等形的有________.11. 请在下图中把正方形分成2个、4个、8个全等的图形:________.12. 下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=________.13. 全等图形的形状和大小都相同.________ (判断对错).14. 如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.15. 判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.16. 沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.17. 我们把两个能够互相重合的图形称为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.18. 如图,在Rt△ABC中,∠ACB=90∘,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)19. 如图,△ABC中,∠B=∠C,点D、E、分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,求证:ED=EF.参考答案与试题解析初中数学全等图形练习题一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】全等图形【解析】全等图形应形状相同,大小一致.【解答】解:全等图形应形状相同,大小一致.只有B符合题意.故选B.2.【答案】D【考点】三角形的面积【解析】此题暂无解析【解答】解:由题意得:△BDE和△CDE等底同高,所以S△CDE=S△BDE=1.所以S△BCE=2S△BDE=2.因为△BCE和△BAE等底同高,所以S△ABC=2S△BCE=4.故选D.3.【答案】D【考点】旋转的性质等边三角形的性质【解析】此题暂无解析【解答】解:将△AOC绕A点顺时针旋转60∘到△AO′B的位置,由旋转的性质,得AO=AO′,所以△AOO′是等边三角形,由旋转的性质可知∠AOC=∠AO′B=150∘,所以∠BO′O=150∘−60∘=90∘.因为OO′=OA=1,BO′=OC=3,所以OB=√12+32=√10.故选D.4.【答案】B【考点】全等图形【解析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解.【解答】解:①用一张像底片冲出来的10张五寸照片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的正六边形是全等形,错误,正六边形的边长不一定相等;④面积相等的两个直角三角形是全等形,错误.综上所述,说法正确的是①②共2个.故选B.5.【答案】B【考点】全等图形【解析】根据全等图形的定义,能够完全重合的两个图形是全等图形解答即可.【解答】解:如果两个图形全等,则这个图形必定是形状大小完全相同.故选B.6.【答案】B【考点】菱形的性质等边三角形的性质与判定相似多边形的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】全等图形【解析】根据全等形的概念:能够完全重合的两个图形叫做全等形进行分析即可.【解答】解:A、所有正方形都是全等图形,说法错误;B、所有长方形都是全等图形,说法错误;C、所有半径相等的圆都是全等图形,说法正确;D、面积相等的两个三角形是全等图形,说法错误;故选:C.二、填空题(本题共计 6 小题,每题 5 分,共计30分)8.【答案】21cm【考点】规律型:图形的变化类全等图形【解析】观察图形,发现:以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图的时候,需要再往右用3个格,画第四个图的时候,需要再往右走1个格,以此类推,则画10个图,需要4+1+3+1+3+1+3+1+3+1=21个.【解答】解:∵后面画出的图形与第一个图形完全一样,∴以中间的点看,再画第二个图形的时候,需要再往右用1个格,画第三个图形的时候,需要再往右用3个格,画第四个图形的时候,需要再往右用1个格,以此类推,则画10个图形,需要4+(1+3+1+3+1+3+1+3+1)=21个.故答案为:21cm.9.【答案】①②⑤【考点】全等图形【解析】解:拿两个“90∘60∘30∘的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故答案为:①②⑤.【解答】此题暂无解答10.【答案】①和⑥,②③⑤【考点】全等图形【解析】设每个小方格的边长为1,分别表示出第个图形的各边长,再根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,①与⑥的的三条边对应相等,②,③,⑤的四条边对应相等,故①⑥是全等形,②③⑤是全等形.故答案为:①和⑥,②③⑤.11.【答案】分法可分别如下所示:【考点】全等图形【解析】(1)选择对边的两个中点连接即可;(2)分别连接对边的两个中点即可;(3)分别连接对边的两个中点及不相邻的两个顶点即可.【解答】解:所作图形如下所示:.12.【答案】27cm【考点】全等图形【解析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:∵AB=3cm,∴CD=2AB=6cm,∴AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm13.【答案】正确【考点】全等图形【解析】利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.【解答】解:全等图形的形状和大小都相同,正确.故答案为:正确.三、解答题(本题共计 6 小题,每题 5 分,共计30分)14.【答案】解:如图所示:.【考点】全等图形【解析】利用网格图形的特征和全等图形的性质即可求解.【解答】此题暂无解答15.【答案】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【考点】全等图形【解析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.【解答】解:(1)全等.理由:等边三角形各角都是60∘,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.16.【答案】解:如下图所示:【考点】作图—应用与设计作图全等图形【解析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,且必须保证分割后的两个图形相同.【解答】解:如下图所示:17.【答案】解:(1)所画图形如上.(2)能,所画图形如上所示.【考点】全等图形【解析】(1)根据题意画出图形即可,注意所得的图形不应全等.(2)作长为1,宽分别为1,2,3,4,5的图形即可.【解答】解:(1)所画图形如上.(2)能,所画图形如上所示.18.【答案】,△ACD和△CDB即为所求【考点】作图—应用与设计作图【解析】作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边AD=DB.的一半,可得CD=12【解答】解19.【答案】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.【考点】全等三角形的性质【解析】此题暂无解析【解答】证明:∠DEC=∠B+∠BDE,∠DEC=∠DEF+∠CEF 又∵∠DEF=∠B,∴∠BDE=∠CEF又∵BD=CE,∠B=∠C,∴△EBD≅△FCE,∴ED=EF.。

全等三角形的基础和经典例题含有答案

全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13-3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。

图13-5表示图形的全等时,要把对应顶点写在对应的位置。

(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

【苏科版】七年级数学下册第十一章 图形的全等 单元测试A卷(含答案)

【苏科版】七年级数学下册第十一章 图形的全等 单元测试A卷(含答案)

七(下)数学下第11章图形的全等 A卷一.选择题(每题4分,共20分)1.全等图形是指两个图形( )A.大小相同B.形状相同C.能够重合D.相等2.如图,△ABC≌△ECD,∠A=48°,∠D=62°点B.C.D在同一直线上,则图中∠ACE的度数是( )A.38°B.48°C.132°D.62°3.下列各组的条件,能判定△ABC≌△A′B′C′的是( )A.AB=A′B′,AC=A′C′,∠C=∠C′ ;B.AB=A′B′,AC=A′C′,∠B=∠B′C.AB=A′B′,AC=A′C′,∠A=∠A′ ;D.∠A=∠A′,∠B=∠B′,∠C=∠C′4.如图,已知AB=AC,BD⊥AC于点D,CE⊥AB于点E,图中全等三角形的组数是( )A.5B.4C.3D.25.说法错误的是( )A.如果两个三角形中,有一角及这个角的平分线以及这个角所对边上的高对应相等,那么这两个三角形全等B.如果两个三角形中,有两条边和第三边上的高对应相等,那么这两个三角形全等C.如果两个三角形中,有一边及该边上的高和中线对应相等,那么这两个三角形全等D.如果两个三角形中,有两个角和其中一角的平分线对应相等,那么这两个三角形全等二.填空题(第6~10题,每题4分,第11题8分,共28分)6.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有______对全等三角形.7.如图,△ABC≌△ADE,则,AB=_________,∠E=∠________.若∠BAE=120°,∠BAD=40°,则∠BAC=_________°.8.如图,在△ABC中,AD平分∠BAC,D为BC边的中点,DE⊥AB于点E,DF⊥AC于点F,图中有_________对相等的线段,它们是_______________________.9.两根钢条AB′.BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5 cm,则槽宽为__________cm.10.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件________或________;若利用“HL”证明△ABC≌△ABD,则需要加条件___________或____________.11.如图,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD还需要增加一个什么条件?把增加的条件在横线上,并将相应的根据填在后面的括号内.(1)_______________;(2)_________________;(3)_______________;(4)_________________.三.解答题(第12.13题,每题8分,第14~17题,每题9分,共52分)12.如图,∠A=∠D,∠C=∠F,要使△ABC≌DEF,还要增加什么条件?试说明你的理由.13.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3 cm,求∠DFE的度数和EC的长.14.如图,△ABC中,AB=AC,D是BC的中点,试说明AD⊥BC.15.如图,A.B两点是湖两岸上的两点,为测A.B两点距离,由于不能直接测量,请你设计一种方案,测出A.B两点的距离,并说明你的方案的可行性.(8分)16.已知:如图.AB=CD,AF=CE,BE=DF,试说明∠B=∠C.你认为本题还可以得到哪些结论,尽可能多地写出来.17.将一个正方形分割成4个全等的部分.你有几种分割的方法?在每一种方法中,每一个全等部分是怎样得到另一个全等部分的?请你至少提供三种不同的方案.参考答案—.1.C 2.B 3.C4.B5.B二.6.3 7.AD,∠C,80 8.5,AB=AC.AE=AF.BE=CF.BD=CD.DE=DF9.510.∠CAB=∠DAB,∠ABC=∠ABD.AC=AD,BC=BD11.AC=BD,BC=AD,SAS∠BAC=∠ABD,AC=BD,ASA;∠BAC=∠ABD,BC=AD,AAS;AC=BD,HL三.12.只要增加一对边相等即可,利用“AAS”或“ASA”证明两三角形全等.13.∠DFE=90°,CE=3 cm14.由已知得△ABD≌△ACD,则∠ADB=∠ADC,进而得AD⊥BC15.构造以AB为一边的三角形以及这个三角形的全等三角形,如过A作河岸的平行线AC,过B作AC的垂直线BD.AC.BD交于点O.在OC上取点C使OC=OA.过C作∠ACD=∠BAC.CD交BD于点D.由“ASA”得△OCD≌△OAB,则有AB=CD,只要测量出CD的长,即可. 16.由AF=CE,得AE=CF,则可证△ABE≌△CDF,即∠B=∠C还可以得到∠D=∠B,∠AEB=∠CFD17.分割成如图1.图2或图3均可(答案不唯一).其中图1.图2的全等部分可以看作是平移得到的;图l.图3的全等部分可以看作是旋转得到的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形的认识试卷副标题1.命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果a2=b2,那么a=b;⑧三角对应相等的两三角形全等;⑨如果∠A+∠B=90°,那么∠A与∠B互余.其中真命题有…()A. 3个B. 4个C. 5个D. 6个2.下列条件中能判定△ABC≌△DEF的是()A. AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC. AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF3.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形4.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;其中假命题共有()A. 1个B. 2个C. 3个D. 4个5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A. 50 B. 62 C. 65 D. 687.如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()A. 2对B. 3对C. 4对D. 5对8.下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCOB.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD 9.如图,AC=DF,∠ACB=∠DFE,点B、E、C在一条直线上,则下列条件中不能断定△ADC≌DEF的是()A.∠A=∠D B. BE=CF C. AB=DE D. AB∥DE10.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B. 4 C.D. 511.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.如图,在△ABC和△BAD中,若∠C=∠D,再添加一个条件,就可以判定△ABC≌△BAD 你添加的条件是.13.如图,已知AC=BD,则再添加条件,可证出△ABC≌△BAD.14.如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要补加一个条件是或或.15.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= cm.16.如图,△ABC≌△EFC,CF=3cm,CE=4cm,∠F=36°,则BC= cm,∠B=度.17.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.18.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与对应;B与对应;C与对应;D与对应.19.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).20.如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有对.21.如图,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC(1)证明:△C′BD≌△B′DC;(2)证明:△AC′D≌△DB′A;(3)对△A BC、△ABC′、△BCA′、△CAB′,从面积大小关系上,你能得出什么结论?22.如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.23.如图,已知:△ABC中,∠ACB=90°,D为AC边上的一点,E为DB的中点,CE的延长线交AB于点F,FG∥BC交DB于点G.试说明:∠BFG=∠CGF.24.如图(1),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.25.如图,两个全等的直角三角形△ABC和△A1B1C1中,∠ACB=∠A1C1B1=90°,两条相等的直角边AC,A1C1在同一直线上,A1B1与AB交于O,AB与B1C1交于E1,A1B1与BC交于E.(1)写出图中除△ABC≌△A1B1C1外的所有其它各组全等三角形(不再连线和标注字母);(2)求证:B1E1=BE.26.(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.27.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE的道理.28.用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.29.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.30.如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:;得到的一对全等三角形是△≌△.参考答案1.B【解析】试题分析:根据邻补角互补,对顶角相等的性质,线段的性质,直线的性质,倒数的特殊规定,绝对值的选择性,全等三角形的判定,余角的定义对各小题分析判断后即可求解.解:①邻补角互补,正确;②对顶角相等,正确;③被截线不平行则同旁内角不互补,故本小题错误;④两点之间线段最短,是线段的性质,正确;⑤直线是向两方无限延伸的,没有长短,故本小题错误;⑥0没有倒数,故本小题错误;⑦如果a2=b2,那么a=b或a=﹣b,故本小题错误;⑧三角对应相等的两三角形相似但不一定全等,故本小题错误;⑨如果∠A+∠B=90°,那么∠A与∠B互余,是定义,正确.综上所述,真命题有①②④⑨共4个.故选B.考点:对顶角、邻补角;倒数;线段的性质:两点之间线段最短;全等三角形的判定.点评:本题是对基础知识的综合考查,熟记概念与性质是解题的关键.2.D【解析】试题分析:全等三角形的判定方法有:SAS,ASA,AAS,SSS,而SSA,AAA都不能判定两三角形全等,根据以上内容判断即可.解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故本选项正确;故选D.考点:全等三角形的判定.点评:本题考查了全等三角形的判定的应用,题目比较好,但是一道比较容易出错的题目,全等三角形的判定方法有:SAS,ASA,AAS,SSS.3.D【解析】试题分析:根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选D.考点:全等三角形的性质.点评:本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.4.B【解析】试题分析:根据三角形全等的判定方法即可解得,做题时要根据已知条件结合判定方法逐个验证.解:①符合SAS,成立;②SSA不符合三角形全等的条件;③符合SAS,是真命题;④没有对应相等不符合三角形全等的条件,是假命题.则正确的是①和③.故选B.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.B【解析】试题分析:全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.考点:全等三角形的判定.点评:本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.A【解析】试题分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.考点:全等三角形的判定与性质.点评:本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.7.C【解析】试题分析:根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证,做题时要由易到难,循序渐进.解:①△ODC≌△OEC∵BD⊥AO于点D,AE⊥OB于点E,OC平分∠AOB∴∠ODC=∠OEC=90°,∠1=∠2∵OC=OC∴△ODC≌△OEC(AAS)∴OE=OD,CD=CE;②△ADC≌△BEC∵∠CDA=∠CEB=90°,∠3=∠4,CD=CE∴△OBE≌△OCD(AAS)∴AC=BC,AD=BE,∠B=∠A;③△OAC≌△OBC∵OD=OE∴OA=OB∵OA=OB,OC=OC,AC=BC∴△ABO≌△ACO(SSS);④△OAE≌△OBD∵∠ODB=∠OEA=90°,OA=OB,OD=OE∴△AEC≌△ADB(HL).故选C.考点:全等三角形的判定.点评:本题考查了全等三角形的判定方法;全等三角形的判定方法一般有:AAS、SAS、ASA、SSS、HL.应该对每一种方法熟练掌握做到灵活运用,做题时要做到不重不漏.提出猜想,证明猜想是解决几何问题的基本方法.8.C【解析】试题分析:全等三角形的判定定理有:SAS、ASA、AAS、SSS,只要具备以上四种方法中的一种,即可判定联三角形全等.解:A、因为∠AOB=∠DOC,根据SAS可判断△ABO≌△DCO,故本选项错误;B、AB=AB,根据SSS可证出△ABC≌△ABD,故本选项错误;C、全等三角形的判定定理有SAS、ASA、AAS、SSS,根据已知不能得出以上三个条件,即两三角形不全等,故本选项正确;D、∵AE=BE,CE=DE,∴AD=BC,∵AB=AB,AC=BD,根据SSS可证出△ABC≌△BAD,故本选项错误.故选C.考点:全等三角形的判定.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定有:SAS、ASA、AAS、SSS,题型较好,但是一道比较容易出错的题目.9.C【解析】试题分析:根据全等三角形的判定ASA推出三角形全等,即可判断A;求出BC=EF,根据SAS 即可判断B;根据有两边和其中一边的对角相等不能判断两三角形全等,即可判断C;根据平行线性质推出∠B=∠DEF,根据AAS即可判断D.解:A、在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;B、∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;C、根据AB=DE,∠ACB=∠DFE,AC=DF,不能判定△ABC和△DEF全等,故本选项正确;D、∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;故选C.考点:全等三角形的判定;平行线的性质.点评:本题考查了平行线性质和全等三角形的判定的应用,熟练地运用定理进行推理是解此题的关键,题目比较好,难度适中.10.B【解析】试题分析:由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠AHE+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.考点:全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=45°,AD是高,得出BD=AD是正确解答本题的关键.11.2【解析】试题分析:AB不是全等三角形的对应边,但它通过全等三角形的对应边转化为AB=CD,而使AB+CD=AD﹣BC可利用已知的AD与BC求得.解:∵△ACF≌△DBE,∠E=∠F,∴CA=BD,∴CA﹣BC=DB﹣BC,即AB=CD,∴AB+CD=2AB=AD﹣BC=9﹣5=4(cm),∴AB=2(cm).故填2.考点:全等三角形的性质.点评:本题主要考查了全等三角形的对应边相等.难点在于根据图形得到线段AB=CD,也是解决本题的关键.12.∠DAB=∠CBA(答案不唯一)【解析】试题分析:由图可知,AB是公共边,然后根据全等三角形的判定方法选择添加不同的条件即可.解:∵∠C=∠D,AB是公共边,∴可添加∠DAB=∠CBA或∠DBA=∠CAB,故答案为:∠DAB=∠CBA(答案不唯一).考点:全等三角形的判定.点评:本题考查了全等三角形的判定,根据∠D、∠C是公共边AB的对角,只能选择利用“角角边”证明两三角形全等添加条件.13.∠CAB=∠DBA@BC=AD【解析】试题分析:本题要判定△ABC≌△ADC,已知AC=BD,AB是公共边,具备了两组边对应相等,故添加BC=AD、∠CAB=∠DBA,后可分别根据SSS、SAS、能判定△ABC≌△ADC.解:AC=BD,AB是公共边,加∠CAB=∠DBA,就可以用SAS证出△ABC≌△BAD;加BC=AD就可以用SSS证出△ABC≌△BAD.故填∠CAB=∠DBA@BC=AD.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.∠A=∠D AB=CD ∠ACB=∠DBC【解析】试题分析:要证明△ABC≌△DCB,已知∠ABC=∠DCB,且有一个公共边BC=BC,则可以添加一组角从而利用AAS、ASA判定其全等;添加边从而利用SAS判定其全等.解:补充∠A=∠D.∵∠ABC=∠DCB,BC=BC,∠A=∠D∴△ABC≌△DCB(AAS)补充∠ACB=∠DBC.∵∠ABC=∠DCB,BC=BC,∠ACB=∠DBC∴△ABC≌△DCB(ASA)补充AB=CD.∵∠ABC=∠DCB,AB=CD,BC=BC∴△ABC≌△DCB(SAS).∴故填∠A=∠D或AB=CD或∠ACB=∠DBC.考点:全等三角形的判定.点评:题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.10【解析】试题分析:根据△DEF周长是32cm,DE=9cm,EF=13cm就可求出第三边DF的长,根据全等三角形的对应边相等,即可求得AC的长.解:DF=32﹣DE﹣EF=10cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=10cm.考点:全等三角形的性质.点评:本题考查全等三角形的性质,解题时应注重识别全等三角形中的对应边,要根据对应角去找对应边.16.3 36【解析】试题分析:运用“全等三角形的对应边相等,对应角相等”即可得,做题时要根据△ABC≌△EFC找对对应边.解:∵△ABC≌△EFC,CF=3cm,∠F=36,∴BC的对应边是CF,∠B的对应角是∠F,∴BC=FC=3cm,∠B=∠F=36°.故填3,36.考点:全等三角形的性质.点评:本题考查了全等三角形的性质及对应关系的找法;全等三角形书写时各对应顶点应在同一位置,找准对应关系是解决本题的关键.17.【解析】试题分析:根据图形得出当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;根据以上结果得出当有n个点时,图中有个全等三角形即可.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.考点:全等三角形的判定.点评:本题考查了对全等三角形的应用,关键是根据已知图形得出规律,题目比较典型,但有一定的难度.18.M N Q P【解析】试题分析:能够完全重合的两个图形叫做全等形.按照剪开前后各基本图形是重合的原则进行逐个验证、排查.解:由全等形的概念可知:A是三个三角形,与M对应;B是一个三角形和两个直角梯形,与N对应;C是一个三角形和两个四边形,与Q对应;D是两个三角形和一个四边形,与P对应故分别填入M,N,Q,P.考点:全等图形.点评:本题考查的是全等形的识别,注意辩别组成图形的基础图形的形状.19.①②③【解析】试题分析:由已知条件,可直接得到三角形全等,得到结论,采用排除法,对各个选项进行验证从而确定正确的结论.解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).所以正确结论有①②③.故填①②③.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.得到三角形全等是正确解决本题的关键.20.4【解析】试题分析:根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证.解:∵CD⊥AB,BE⊥AC,垂足分别为D、E,且AO平分∠BAC,∴△ODA≌△OEA,∴∠B=∠C,AD=AE,∴△ADC≌△AEB,∴AB=AC,∴△OAC≌△OAB,∴△COE≌△OBD.故填4.考点:全等三角形的判定.点评:本题考查了三角形全等的判定方法;提出猜想,验证猜想是解决几何问题的基本方法,做题时要注意从已知条件开始思考结合全等的判定方法逐一判断,做到不重不漏,由易到难.21.(1)先证明:△C′BD≌△ABC,再证明△ABC≌△B′DC;(2)根据(1)的结论,可以证明:△AC′D≌△DB′A;(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.【解析】试题分析:(1)先证明:△C′BD≌△ABC,再证明△ABC≌△B′DC;(2)根据(1)的结论,可以证明:△AC′D≌△DB′A;(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.(1)△C′BD与△ABC中,BC=DC,AB=BC′,∠C′BD=60°+∠ABD=∠ABC,∴△C′BD≌△ABC,∴C′D=AC又在△BCA与△DCB′中,BC=DC,AC=B′C,∠ACB=∠B′CD=60°,∴△BCA≌△DCB′.∴DB′=BA.∴△C′BD≌△B′DC(2)由(1)的结论知:C′D=B′C=AB′,B′D=BC′=AC′,又∵AD=AD,∴△AC′D≌△DB′A.(3)S△AB′C>S△ABC′>S△ABC>S△A′BC;S△AB′C=,S△A′BC=,S△ABC′=,S△ABC=,因为AB2=(AC2+BC2﹣2AC×BC×cos60°)整理得S△ACB′+S△BCA′=S△ABC′+S△ABC考点:全等三角形的判定;三角形的面积.点评:考查全等三角形的证明,考查在三角形中,已知两边和夹角求第三边的计算.22.有两种解法:①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.【解析】试题分析:有两种解法:①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.证明:方法一:延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC,∴BF=AC;方法二:延长AD至点M,使DM=AD,连接BM,在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴∠M=∠MAC,BM=AC,∵EA=EF,∴∠CAM=∠AFE,而∠AFE=∠BFM,∴∠M=∠BFM,∴BM=BF,∴BF=AC.考点:全等三角形的判定与性质.点评:本题考查了三角形全等的判定及性质、等腰三角形的性质.其中普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,解决此题的关键是作出巧妙的辅助线:倍长中线.23.本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.【解析】试题分析:本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.证明:∵∠ACB=90°,E为DB的中点,∴CE=DE=BE,(直角三角形斜边上的中线等于斜边一半)∴CE=EB,∴∠ECB=∠CBE,∵FG∥BC,∴∠GFE=∠ECB,∠EGF=∠CBE∴∠EGF=∠EFG,∴GE=EF,∵∠GEC=∠FEB,∴△GEC≌△FEB,∴∠EFB=∠EGC,∵∠BFG=∠EFB+∠EFG,∠CGF=∠EGC+∠EGF,∴∠BFG=∠CGF.考点:全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,从而得出FG=EG,即BD平分EF.(2)结论仍然成立,同样可以证明得到.【解析】(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,试题分析:从而得出FG=EG,即BD平分EF.(2)结论仍然成立,同样可以证明得到.(1)证明:∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,∴△BFG≌△DGE(AAS),∴FG=EG,即BD平分EF.(2)FG=EG,即BD平分EF的结论依然成立.理由:因为 AE=CF,所以 AF=CE,因为 DE垂直于AC,BF垂直于AC,所以角AFB=角CED,BF∥DE,因为AB∥CD,所以角A=角C,所以三角形ABF全等于三角形CDE,所以 BF=DE,所以四边形BEDF是平行四边形,所以 GE=GF,即:BD平分EF,即结论依然成立.考点:全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.【解析】试题分析:(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.(1)解:△ACE≌△A1C1E1,△OBE≌△O1B1E1;(2)证明:∵△ABC≌△A1B1C1∴AC=A1C1,BC=B1C1∴AC1=A1C已知∠A=∠A1,∠ACE=∠A1C1E1=90°∴△ACE≌△A1C1E1∴CE=C1E1又∵BC=B1C1∴B1E1=BE.考点:全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.26.(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.【解析】试题分析:(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.证明:(1)如图1∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,∵在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°,∴AC=2AD,AC=2AB,∴AD+AB=AC.(2)判断是:(1)中的结论①DC=BC;②AD+AB=AC都成立.理由如下:如下图,在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴△ADC≌△EBC,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.考点:全等三角形的判定与性质;角平分线的定义;三角形内角和定理.点评:本题考查了角平分线的性质,直角三角形的性质,和全等三角形的判定等知识综合运用,是一道由浅入深的训练题.27.根据已知,利用有两组角对应相等的两个三角形相似得到△AEF∽△DCF,从而得到∠E=∠C,再由已知可得∠BAC=∠DAE,又因为AC=AE,所以根据AAS可判定△ABC≌△ADE.【解析】试题分析:根据已知,利用有两组角对应相等的两个三角形相似得到△AEF∽△DCF,从而得到∠E=∠C,再由已知可得∠BAC=∠DAE,又因为AC=AE,所以根据AAS可判定△ABC≌△ADE.解:△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠E=∠C.∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,∴△ABC≌△ADE.考点:全等三角形的判定.点评:此题考查学生对相似三角形的判定及全等三角形的判定的理解及运用.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.应先确定选择哪对三角形,再对应三角形全等条件求解.【解析】试题分析:本题是一道开放性题,应先确定选择哪对三角形,再对应三角形全等条件求解.解:(1)BE=CF.证明:在△ABE和△ACF中,∵∠BAE+∠EAC=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵AB=AC,∠B=∠ACF=60°,∴△ABE≌△ACF(ASA).∴BE=CF;(2)BE=CF仍然成立.证明:在△ACE和△ADF中,∵∠CAE+∠EAD=∠FAD+∠DAE=60°,∴∠CAE=∠DAF,∵∠BCA=∠ACD=60°,∴∠FCE=60°,∴∠ACE=120°,∵∠ADC=60°,∴∠ADF=120°,在△ACE和△ADF中,∴△ACE≌△ADF,∴CE=DF,∴BE=CF,考点:全等三角形的判定.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.29.(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.【解析】试题分析:(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,。

相关文档
最新文档