解二元一次方程组练习题:代入消元法
代入消元法解二元一次方程组的步骤

代入消元法解二元一次方程组的步骤代入消元法是解二元一次方程组的一种有效方法,下面将介绍具体的步骤:1. 确定两个方程中要消去的未知量通过观察两个方程,找到其中一个未知量的系数相同的两项,以此为目标要消去的未知量。
例如,方程组2x + 3y = 74x - y = 1要消去的未知量可以是y,因为第一条方程的系数为3,而第二条方程中的系数为-1。
2. 将其中一个方程针对目标未知量进行变形以要消去的未知量为目标,将其中一个方程进行变形,使其系数与另一个方程中的系数相同。
例如,对于上述方程组,可将第一条方程变形为:6x + 9y = 21使其y的系数和第二条方程中的一致。
3. 将变形后的方程和另一个方程组成新的方程组将变形后的方程和另一个方程组成新的方程组,例如:4x - y = 16x + 9y = 214. 将新方程组中的一个方程中的目标未知量代入到另一个方程中将新方程组中的一个方程中的要消去的未知量按照目标未知量的系数代入到另一个方程中。
例如,将第一条方程中y的代入到第二条方程中,有:6x + 9(4x-1) = 215. 解方程得到目标未知量的值根据新的方程,可以解出目标未知量的值,例如:6x + 36x - 9 = 2142x = 30x = 30/42 = 5/76. 将求得的未知量的值代入到原方程中求出另一个未知量将求得的未知量的值代入到任意一个原方程中,求出另一个未知量的值,例如:2x + 3y = 72×(5/7) + 3y = 73y = 49/7 - 10/7y = 39/217. 检验解的正确性将求得的两个未知量的值代入到原方程组中,检验解的正确性。
如果两个方程都成立,那么该解就是正确的。
通过以上步骤,可以使用代入消元法解二元一次方程组。
8.2.1代入消元法解二元一次方程组

y=ax+b或x=my+n
1、用含x的代数式表示y: x + y = 22 y = 22-x 2、用含y的代数式表示x: 2x - 7y = 8 2x = 8+7y
8 7y x 2
篮球联赛中每场比赛都要分出胜负,每队胜 一场得2分,负一场得1分.如果某队为了争取较 好名次,想在全部22场比赛中得40分,那么这个 队胜、负场数应分别是多少? 解:设胜x场,负y场. x y 22 ① 2 x y 40 ② 解:设胜x场. 2 x (22 x) 40 ③
解:设这些消毒液应该分装x大瓶、y小瓶. ① 5 x 2 y 由题意得 ② 500 x 250 y 22500000
由①,得
5 y x 2
③
5 500 x 250 x 22500000 2
把③代入②,得 解得 x=20000 把x=20000代入③,得
x 20000 y 50000
x=13 – 4y
③
把③代入① ,得 2(13 – 4y)+ 3y=16 26 –8y +3y =16 13-4y+4y=13 把y=2代入① 或②可以吗? – 5y= – 10 0y=0 y=2 把求出的解 把y=2代入③ ,得 x=5
x 5 ∴原方程组的解是 y 2
代入原方程 组,可以知 道你解得对 不对。
① ②
4 x 5 y 460 2 x 3 y 240
①
②
由②, 得 2x=240-3y
③
把③代入①,得 2(240-3y)+5y=460 480-6y+5y=460 -y=-20 y=20. 把y=20代入③,得 2x+3×20=240 x=90.
8.2《消元——解二元一次方程组》同步练习题(2)及答案

。
二. 选择题 10. 若 y=kx+b中,当 x=-1 时,y=1;当 x=2 时,y=-2,则 k 与 b 为( )
k 1 A. b 1
k 1 B. b 0
k 1 C. b 2
k 1 D. b 4
x 1
ax by 0
8.2《消元——解二元一次方程组》同步练习题(2)
知识点:
1、代入法:用代入消元法解二元一次方程组的步骤: (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用 含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
13. 对于方程组 4x 5y 17 ,用加减法消去 x,得到的方程是(
)
A. 2y=-2
B. 2y=-36 C. 12y=-2 D. 12y=- 36
14.
将方程-
1 2
x+y=1中
x
的系数变为
5,则以下正确的是(
)
A. 5x+y=7
B. 5x+10y=10 C. 5x-10y=10 D. 5x-10y=-10
∴原方程组解为 x 2 y 2
(4)解:由②得:x=3y-7……③ ③代入① :2(3y-7)+5y=8 11y=22 y=2
把 y=2代入③得 x=-1 ∴原方程组解为
x 1 y 2
16. (1)解:②×4-①×3 得:11y=-33 ∴y=-3 把 y=-3 代入①得:4x-9=3 x=3
7. 二元一次方程组 kx 2 y 5 的解是方程 x-y=1的解,则 k=
。
二元一次方程组代入消元法

步骤四:检查所求解是否符合 原方程组
最后,我们应该验证得到的解是否符合原方程组,确保解是正确的。
实例演示
通过一个实际的例子,我们可以更好地理解二元一次方程组代入消元法的应 用。
练习题和解答
通过一些练习题和详细的解答,我们可以进一步巩固代入消元法的理解和应用。
结论和要点
通过代入消元法,我们可以解决二元一次方程组,并得到准确的未知数的值。 这种方法简单且易于理解,是解决方程组的重要工具。
步骤一:选择一个方程解出其 中一个变量
通过选择一个方程,将其中一个未知数解出,得到一个关于另一个未知数的 表达式。
步骤二:将得到的解代入到另 一个方程中
将步骤一中得到的解代入到另一个方程中,这样我们就得到了一个只包含一 个未知数的方程。
步骤三:将代入后的方程求解 得到另一个变量的值
通过求解步骤二中得到的方程,我们可以得到另一个未知数的代入消元法可以帮助我们解决两个未知数的方程组。
什么是二元一次方程组
二元一次方程组是包含两个未知数的方程组。代入消元法是一种解决这种方 程组的有效方法。
代入消元法的定义和原理
代入消元法是通过选择一个方程,将其中一个变量解出,并将解代入到另一 个方程中,进而求解另一个变量的值。
专题 解二元一次方程组(计算题50题)(原卷版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。
代入消元法解二元一次方程组

代入消元法解二元一次方程组
解决二元一次方程组的方法有很多,其中最常用的有两种:一项式消元法和代入消元法。
一项式消元法:
1.将解的变量以相同的方式乘以系数;
2.将乘积加到另一个方程;
3.根据等式简化系统;
4.重写并求解方程;
5.最后,回答问题的根即是方程的解。
代入消元法:
1.从一个方程开始,找到另一个方程中包含的一个变量;
2.令该变量等于步骤1中得到的表达式;
3.将该表达式代入替换步骤2中得到的变量;
4.重写方程,得到另一个方程;
5.如果任意一个方程已经有两个变量,将解的变量带入方程,并求解;
6.最后,回答问题的根即是方程的解。
代入消元法解二元一次方程组专题习题

代入消元法解二元一次方程组专题习题1.已知$x-y=1$,用含有$x$的代数式表示$y$为:$y=x-1$;用含有$y$的代数式表示$x$为:$x=y+1$。
2.已知$x-2y=1$,用含有$x$的代数式表示$y$为:$y=\frac{x-1}{2}$;用含有$y$的代数式表示$x$为:$x=2y+1$。
3.已知$4x+5y=3$,用含有$x$的代数式表示$y$为:$y=\frac{3-4x}{5}$;用含有$y$的代数式表示$x$为:$x=\frac{3-5y}{4}$。
4.用代入法解下列方程组:1)$\begin{cases}y=4x\\2x+y=5\end{cases}$解:将$y=4x$代入$2x+y=5$得:2x+4x=5$,解方程得:$x=\frac{5}{6}$,将$x=\frac{5}{6}$代入$y=4x$得:$y=2\frac{2}{3}$,所以,原方程组的解为:$(x,y)=(\frac{5}{6},2\frac{2}{3})$。
2)$\begin{cases}x-y=4\\2x+y=5\end{cases}$解:将$x-y=4$解出$y$得:$y=x-4$,将$y=x-4$代入$2x+y=5$得:2x+x-4=5$,解方程得:$x=3$,将$x=3$代入$y=x-4$得:$y=-1$,所以,原方程组的解为:$(x,y)=(3,-1)$。
3)$\begin{cases}3m+2n=6\\4m-3n=1\end{cases}$解:将$3m+2n=6$解出$3m$得:$3m=6-2n$,即$m=2-\frac{2}{3}n$,将$m=2-\frac{2}{3}n$代入$4m-3n=1$得:4(2-\frac{2}{3}n)-3n=1$,解方程得:$n=-\frac{5}{2}$,将$n=-\frac{5}{2}$代入$m=2-\frac{2}{3}n$得:$m=4$,所以,原方程组的解为:$(m,n)=(4,-\frac{5}{2})$。
(完整版)代入消元法解方程及答案

8.2消元——解二元一次方程组第1课时用代入消元法解方程组基础题知识点1用一个未知数表示另一个未知数1.在方程2x-3y=6中,用含有x的代数式表示y,得()A.y=23x-6 B.y=-23x-6C.y=23x-2 D.y=-23x+22.用含有x或y的式子表示y或x:(1)已知x+y=5,则y=(2)已知x-2y=1,则y=(3)已知x+2(y-3)=5,则x=(4)已知2(3y-7)=5x-4,则x=知识点2用代入法解二元一次方程3.用代入法解方程组x=2y,y-x=3,①②下列说法正确的是() A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x4.用代入法解方程组y=1-x,x-2y=4时,代入正确的是() A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=45.(丹东中考)二元一次方程组x+y=5,2x-y=4的解为()A.x=1y=4B.x=2y=3C.x=3y=2D.x=4y=16.(贵阳中考)方程组x+y=12,y=2的解为x=7.用代入法解下列方程组:(1)(重庆中考)①y=2x-4,②3x+y=1;(2) y=3-x,①2x+3y=7;②(3)3m=5n,①2m-3n=1;②(4)3x+2y=19,①2x-y=1.②知识点3代入法解二元一次方程组的简单应用8.(柳州中考)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少克?中档题9.用代入法解方程组2x-5y=0,①3x+5y-1=0②时,最简单的方法是()A.先将①变形为x=52y,再代入②B.先将①变形为y=25x,再代入②C.先将②变形为x=1-5y3,再代入①D.先将①变形为5y=2x,再代入②10.方程组x=y+5,2x-y=5的解满足x+y+a=0,则a的值是()A.5 B.-5 C.3 D.-311.在二元一次方程4x-3y=14中,若x,y互为相反数,则x=2,y=-2.12.(哈尔滨中考)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.13.用代入法解下列方程组:(1)5x+2y=15,①8x+3y=-1;②(2)3(y-2)=x-17,2(x-1)=5y-8;(3) x+y3+x-y2=6,3(x+y)-2(x-y)=28.14.已知x=2,y=-1是方程组ax+y=b,4x-by=a+5的解,求a,b的值.15.(日照中考)已知关于x,y的二元一次方程组x+2y=3,3x+5y=m+2的解满足x+y=0,求实数m的值.综合题16.先阅读材料,然后解方程组.材料:解方程组x-y-1=0①,4(x-y)-y=5.①答案:8.2消元——解二元一次方程组第1课时用代入消元法解方程组基础题知识点1用一个未知数表示另一个未知数1.在方程2x-3y=6中,用含有x的代数式表示y,得(C)A.y=23x-6 B.y=-23x-6C.y=23x-2 D.y=-23x+22.用含有x或y的式子表示y或x:(1)已知x+y=5,则y=5-x;(2)已知x-2y=1,则y=12(x-1);(3)已知x+2(y-3)=5,则x=11-2y;(4)已知2(3y-7)=5x-4,则x=6y5-2.知识点2用代入法解二元一次方程3.用代入法解方程组x=2y,y-x=3,①②下列说法正确的是(B)A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x4.用代入法解方程组y=1-x,x-2y=4时,代入正确的是(C)A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=45.(丹东中考)二元一次方程组x+y=5,2x-y=4的解为(C)A.x=1y=4B.x=2y=3C.x=3y=2D.x=4y=16.(贵阳中考)方程组x+y=12,y=2的解为x=10y=2.7.用代入法解下列方程组:(1)(重庆中考)y=2x-4,①3x+y=1;②解:把方程①代入方程②,得3x+2x-4=1.解得x=1.把x=1代入①,得y=-2.∴原方程组的解为x=1,y=-2.(2)y=3-x,①2x+3y=7;②解:把①代入②,得2x+3(3-x)=7.解得x=2.把x=2代入①,得y=1.∴原方程组的解是x=2,y=1.(3)3m=5n,①2m-3n=1;②解:将①变形为m=5n3.③把③代入②,得2×5n3-3n=1.解得n=3.把n=3代入③,得m=5×33=5.∴原方程组的解为m=5,n=3.(4)3x+2y=19,①2x-y=1.②解:由②,得y=2x-1.③将③代入①,得3x+4x-2=19.解得x=3.将x=3代入③,得y=5.∴原方程组的解为x=3,y=5.知识点3代入法解二元一次方程组的简单应用8.(柳州中考)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少克?解:根据题意,得x=y+50,x+y=300+50,解得x=200,y=150.答:大苹果的重量为200 g,小苹果的重量为150 g.中档题9.用代入法解方程组2x-5y=0,①3x+5y-1=0②时,最简单的方法是(D)A.先将①变形为x=52y,再代入②B.先将①变形为y=25x,再代入②C.先将②变形为x=1-5y3,再代入①D.先将①变形为5y=2x,再代入②10.方程组x=y+5,2x-y=5的解满足x+y+a=0,则a的值是(A)A.5 B.-5 C.3 D.-311.在二元一次方程4x-3y=14中,若x,y互为相反数,则x=2,y=-2.12.(哈尔滨中考)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有69幅.13.用代入法解下列方程组:(1)5x+2y=15,①8x+3y=-1;②解:由①,得x=3-25y.③把③代入②,得8(3-25y)+3y+1=0.解得y=125.把y=125代入③,得x=-47.∴原方程组的解是x=-47,y=125.(2)3(y-2)=x-17,2(x-1)=5y-8;解:原方程组变形为x=3y+11,①2x-5y=-6.②将①代入②,得2(3y+11)-5y=-6,6y+22-5y=-6.解得y=-28.把y=-28代入①,得x=3×(-28)+11=-73.∴原方程组的解是x=-73,y=-28.(3)x+y3+x-y2=6,3(x+y)-2(x-y)=28.解:原方程组可化为5x-y=36,①x+5y=28,②由①,得y=5x-36,③把③代入②,得x+5(5x-36)=28,解得x=8.把x=8代入③,得y=4.∴这个方程组的解是x=8y=4.14.已知x=2,y=-1是方程组ax+y=b,4x-by=a+5的解,求a,b的值.解:把x=2,y=-1代入ax+y=b,4x-by=a+5得2a-1=b,①8+b=a+5.②把①代入②,得8+(2a-1)=a+5,解得a=-2.把a=-2代入①,得2×(-2)-1=b,解得b=-5.∴a=-2,b=-5.15.(日照中考)已知关于x,y的二元一次方程组x+2y=3,3x+5y=m+2的解满足x+y=0,求实数m的值.解:解关于x,y的二元一次方程组x+2y=3,3x+5y=m+2.得x=2m-11,y=7-m.∵x+y=0,∴2m-11+7-m=0,解得m=4.综合题16.先阅读材料,然后解方程组.材料:解方程组x-y-1=0,4(x-y)-y=5.①②由①,得x-y=1.③把③代入②,得4×1-y=5,解得y=-1.把y=-1代入③,得x=0.∴原方程组的解为x=0,y=-1.这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组:2x-3y-2=0,①2x-3y+57+2y=9.②解:由①,得2x-3y=2.③把③代入②,得2+57+2y=9,解得y=4.把y=4代入③,得2x-3×4=2,解得x=7.∴原方程组的解为x=7,y=4.。