Inhomogeneous magnetic behavior of Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO3

合集下载

光纤通信英文版常见中英对照单词表教学内容

光纤通信英文版常见中英对照单词表教学内容

精品文档AAbsorption coefficient 吸收系数ac alternating current 交变电流交流Acoustic phonon 声学声子Active component 有源器件AM amplitude modulation 幅度调制AM , FM , PM :幅度/频率/相位调制AON all-optical network 全光网络AOTF acoustic optic tunable filter 声光调制器APD avalanche photodiode 雪崩二极管AR coatings antireflection coatings 抗反膜ASE amplified spontaneous emission 放大自发辐射ASK amplitude shift keying 幅移键控ASK/FSK/PSK 幅/频/相移键控ATM asynchronous transfer mode 异步转移模式Attenuation coefficient 衰减系数Attenuator 衰减器Auger recombination :俄歇复合AWG arrayed-waveguide grating 阵列波导光栅BBand gap :带隙Band pass filter 带通滤波器Beam divergence 光束发散BER bit error rate 误码率BER: 误码率BH buried heterojunction 掩埋异质结Binary representation 二进制表示方法Binary 二进制Birefringence 双折射Birefringence 双折射Bitrate-distance product 比特距离的乘积Block diagram 原理图Boltzman statistics :玻尔兹曼统计分布BPF band pass filter 带通滤波器Bragg condition 布拉格条件Bragg diffraction 布拉格衍射Brillouin scattering 布里渊散射Brillouin shift 布里渊频移Broad area 宽面Buried heterostructure 掩埋异质结CC3 cleaved-coupled cavity 解理耦合腔Carrier lifetime :载流子寿命CATV common antenna cable television 有线电视CDM code division multiplexing 码分复用Characteristics temperature 特征温度Chirp 啁啾Chirped Gaussian pulse 啁啾高斯脉冲Chromatic dispersion 色度色散Chromatic dispersion 色度色散Cladding layer :包层Cladding 包层CNR carrier to noise ratio 载噪比Conduction band :导带Confinement factor 限制因子Connector 连接头Core cladding interface 纤芯包层界面Core-cladding interface 芯层和包层界面Coupled cavity 耦合腔CPFSK continuous-phase frequency-shift keying 连续相位频移键控Cross-phase modulation 交叉相位调制Cross-talk 串音CSO Composite second order 复合二阶CSR Z:载波抑制归零码Cutoff condition 截止条件CVD chemical vapour deposition 化学汽相沉积CW continuous wave 连续波Cylindrical preform :预制棒DDBR distributed Bragg reflector 分布布拉格反射DBR: distributed Bragg reflector 分布式布拉格反射器精品文档dc direct current 直流DCF dispersion compensating fiber色散补偿光纤Depressed-cladding fiber: DFB distributed feedback DFB: Distributed Feedback Differential gain 微分增益 Differential quantum efficiency Diffusion 扩散Digital hierarchy 数字体系 DIP dual in line package 双列直插 Direct bandgap :直接带隙 Directional coupler定向耦合器Dispersion compensation fiber :色散补偿光纤 Dispersion decreasing fiber:色散渐减光纤Dispersion parameter :色散参数 Dispersion shifted fiber 色散位移光纤Dispersion slope 色散斜率 Dispersion slope :色散斜率 Dispersion-flatten fiber :色散平坦光纤 Dispersion-shifted fiber :色散位移光纤 Double heterojunction 双异质结 Double heterostructure :双异质结Doubly clad :双包层DPSK differential phase-shift keying 差分相移键控Driving circuit 驱动电路 Dry fiber 无水光纤 DSF dispersion shift fiber色散位移光纤DWDM dense wavelength division multiplexing/multiplexer 密集波分复用 / 器DWDM: dense wavelength division multiplexing密集波分 复用E~GEDFA erbium doped fiber amplifier掺铒光纤激光器Edge emitting LED 边发射 LED Edge-emitting 边发射 Effective index 有效折射率 Eigenvalue equation 本征值方程 Elastic scattering 弹性散射 Electron-hole pairs 电子空穴对 Electron-hole recombination 电子空穴复合 Electron-hole recombination :电子空穴复合Electrostriction 电致伸缩效应 Ethernet 以太网 External cavity 外腔External quantum efficiency 外量子效率 Extinction ratio 消光比 Eye diagram 眼图 FBG fiber-bragg grating光纤布拉格光栅FDDI fiber distributed data interface 光纤数据分配接口 FDM frequency division multiplexing 频分复用FDM :频分复用 Fermi level 费米能级 Fermi level :费米能级Fermi-Dirac distribution :费米狄拉克分布 FET field effect transistor场效应管Fiber Manufacturing :光纤制作 Field radius 模场半径Filter 滤波器Flame hydrolysis 火焰裂解FM frequency modulation 频率调制Forward-biased :正向偏置 FP Fabry Perot 法布里 - 珀落 Free spectral range 自由光谱范围 Free - space communication自由空间光通信系统Fresnel transmissivity 菲涅耳透射率 Front end 前端Furnace 熔炉FWHM full width at half maximum 半高全宽Differential-dispersion parameter 凹陷包层光纤 分布反馈 分布式反馈微分量子效率FWHM: 半高全宽FWM four-wave mixing 四波混频Gain coefficient 增益系数Gain coupled 增益耦合Gain-guided semiconductor laser 增益波导半导体激光器Germania 锗GIOF graded index optical fiber 渐变折射率分布Graded-index fiber 渐变折射率光纤Group index 群折射率精品文档 GVD group-velocity dispersion GVD: 群速度色散 H~LHBT heterojunction-bipolar transistor 异质结双极晶体管HDTV high definition television高清晰度电视Heavy doping :重掺杂 Heavy-duty cable 重型光缆Heterodyne 外差 Heterojunction :异质结 HFC hybrid fiber-coaxial混合光纤 / 电缆Higher-order dispersion 高阶色散 Highpass filter 高通滤波器 Homodyne 零差Homojunction :同质结 IC integrated circuit 集成电路 IM/DD intensity modulation with direct detection强度调制直接探测IM/DD: 强度调制 / 直接探测 IMD intermodulation distortion 交互调制失真 Impulse 冲激Impurity 杂质 Index-guided 折射率导引 Indirect bandgap :非直接带隙 Inelastic scattering 非弹性散射 Inhomogeneous 非均匀的Inline amplifier 在线放大器 Intensity noise 强度噪声 Intermodal dispersion : 模间色散 Intermode dispersion 模间色散 Internal quantum efficiency :内量子效率 Intramodal dispersion: 模内色散 Intramode dispersion 模内色散 Intrinsic absorption 本征吸收 ISDN integrated services digital network 综合业务数字网ISI intersymbol interference码间干扰Isotropic 各向同性 Jacket 涂层 Jitter 抖动 Junction :结 Kinetic energy :动能精品文档群速度色散 Lambertian source 朗伯光源LAN local-area network 局域网Large effective-area fiber 大有效面积发光Laser threshold 激光阈值 Laser 激光器 Lateral mode 侧模 Lateral 侧向Lattice constant :晶格常数 Launched power 发射功率 LD laser diode 激光二极管 LD :激光二极管LED light emitting diode 发光二极管LED: 发光二极管 L-I light current 光电关系 Light-duty cable 轻型光缆 Linewidth enhancement factor 线宽加强因子 Linewidth enhancement factor 线宽增强因子Linewidth 线宽Longitudinal mode 纵模 Longitudinal model 纵模 Lowpass filter 低通滤波器 LPE liquid phase epitaxy 液相外延 LPE :液相外延M~NMacrobending 宏弯MAN metropolitan-area network 城域网 Material dispersion 材料色散 Material dispersion:材料色散Maxwell 's equations 麦克斯韦方程组 MBE molecular beam epitaxy 分子束外延 MBE :分子束外延MCVD Modified chemical vapor deposition相沉积MCVD :改进的化学汽相沉积 Meridional rays 子午光线 Microbending 微弯 Mie scattering 米氏散射MOCVD metal-organic chemical vapor deposition机物化学汽相沉积MOCVD :改进的化学汽相沉积 Modal dispersion 模式色散改进的化学汽金属有精品文档Mode index 模式折射率Modulation format 调制格式Modulator 调制器MONET Multiwavelength optical networkMPEG motion-picture entertainment group 小组MQW: 多量子阱MSR mode-suppression ratioMSR: Mode suppression ratioMultimode fiber 多模光纤MZ mach-Zehnder 马赫泽德NA numerical aperture 数值孔径Near infrared 近红外NEP noise-equivalent powerNF noise figure 噪声指数Nonradiative recombinationNonradiative recombinationNormalized frequency 归一化频率NRZ :非归零码NSE nonlinear Schrodinger equationNumerical aperture 数值孔径Nyquist criterion 奈奎斯特准则O P QOC optical carrier 光载波OEIC opto-electronic integrated circuit 光电集成电路OOK on-off keying 开关键控OOK :通断键控OPC optical phase conjugation 光相位共轭Optical mode 光模式Optical phase conjugation 光相位共轭Optical soliton 光孤子Optical switch 光开关Optical transmitter 光发射机Optical transmitter :光发射机OTDM optical time-division multiplexing 光时分复用OVD outside-vapor deposition 轴外汽相沉积OVD :轴外汽相沉积OXC optical cross-connect 光交叉连接Packaging 封装Packet switch 分组交换Parabolic-index fiber 抛物线折射率分布光纤Passive component 无源器件PCM pulse-code modulation 脉冲编码调制PCM :脉冲编码调制PCVD :等离子体化学汽相沉积PDF probability density function 概率密度函数PDM polarization-division multiplexing 偏振复用PDM :脉冲宽度调制Phase-matching condition 相位匹配条件Phase-shifted DFB laser 相移DFB 激光器Photon lifetime 光子寿命PMD 偏振模色散Polarization controller 偏振控制器Polarization mode dispersion :偏振模色散Polarization 偏振PON passive optical network 无源接入网Population inversion :粒子数反转Power amplifier 功率放大器Power-conversion efficiency 功率转换效率PPM :脉冲位置调制Preamplifer 前置放大器PSK phase-shift keying 相移键控Pulse broadening 脉冲展宽Quantization noise 量化噪声Quantum efficiency 量子效率Quantum limit 量子极限Quantum limited 量子极限Quantum noise 量子噪声RRA raman amplifier 喇曼放大器Raman scattering 喇曼散射Rate equation 速率方程Rayleigh scattering 瑞丽散射Rayleigh scattering 瑞利散射精品文档Receiver sensitivity 接收机灵敏度Receiver 接收机Refractive index 折射率Regenerator 再生器Repeater spacing 中继距离Resonant cavity 谐振腔ResponsibilityMPN mode-partition noise 模式分配噪声MQW multiquantum well 多量子阱MSK minimum-shift keying 最小频偏键控模式分配噪声模式抑制比等效噪声功率非辐射复合:非辐射复合NRZ non-return to zero 非归零多波长光网络视频动画专家非线性薛定额方程响应度Responsivity 响应度Ridge waveguide laser 脊波导激光器Ridge waveguide 脊波导RIN relative intensity noise 相对强度噪声RMS root-mean-square 均方根RZ return-to-zero 归零RZ: 归零码SSAGCM separate absorption, grading, charge, and multiplication 吸收渐变电荷倍增区分离APD 的一种SAGM separate absorption and multiplication 吸收渐变倍增区分离APD 的一种SAM separate absorption and multiplication 吸收倍增区分离APD 的一种Sampling theorem 抽样定理SBS 受激布里渊散射SBS stimulated Brillouin scattering 受激布里渊散射SCM subcarrier multiplexing 副载波复用SDH synchronous digital hierarchy 同步数字体系SDH :同步数字体系Self-phase modulation 自相位调制Sellmeier equation :塞米尔方程Sensitivity degradation 灵敏度劣化Sensitivity 灵敏度Shot noise 散粒噪声Shot noise 散粒噪声Single-mode condition 单模条件Sintering :烧结SIOF step index optical fiber 阶跃折射率分布SLA/SOA semiconductor laser/optical amplifier 半导体光放大器SLM single longitudinal mode 单纵模SLM: Single Longitudinal mode 单纵模Slope efficiency 斜率效率SNR signal-to-noise ratio 信噪比Soliton 孤子SONET synchronized optical network 同步光网络SONET :同步光网络Spectral density :光谱密度Spontaneous emission :自发辐射Spontaneous-emission factor 自发辐射因子SRS 受激喇曼散射SRS stimulated Raman scattering 受激喇曼散射Step-index fiber 阶跃折射率光纤Stimulated absorption :受激吸收Stimulated emission :受激发射STM synchronous transport module 同步转移模块STM :同步转移模块Stripe geometry semiconductor laser 条形激光器Stripe geometry 条形STS synchronous transport signal 同步转移信号Submarine transmission system 海底传输系统Substrate: 衬底Superstructure grating 超结构光栅Surface emitting LED 表面发射LED Surface recombination :表面复合Surface-emitting 表面发射TCP/IP transmission control protocol/internet protocol 传输控制协议/ 互联网协议TDM time-division multiplexing 时分复用TDM :时分复用TE transverse electric 横电模Ternary and quaternary compound :三元系和四元系化合物Thermal equilibrium :热平衡Thermal noise 热噪声Thermal noise 热噪声Threshold current 阈值电流Timing jitter 时间抖动TM transverse magnetic 横磁Total internal reflection 全内反射Transceiver module 收发模块精品文档Transmitter 发射机Transverse 横向Transverse mode 横模TW traveling wave 行波U ~ ZVAD vapor-axial epitaxy 轴向汽相沉积VAD :轴向沉积Valence band :价带VCSEL vertical-cavity surface-emitting laser 垂直腔表面发射激光器VCSEL: vertical cavity surface-emitting lasers 垂直腔表面发射激光器VPE vapor-phase epitaxy 汽相沉积VPE :汽相外延VSB vestigial sideband 残留边带Wall-plug efficiency 电光转换效率WAN wide-area network 广域网Waveguide dispersion 波导色散Waveguide dispersion :波导色散Waveguide imperfection 波导不完善WDMA wavelength-division multiple access 波分复用接入系统WGA waveguide-grating router 波导光栅路由器White noise 白噪声XPM cross-phase modulation 交叉相位调制YIG yttrium iron garnet 钇铁石榴石晶体Zero-dispersion wavelength 零色散波长Zero-dispersion wavelength :零色散波长。

电磁场微波词汇汉英对照表

电磁场微波词汇汉英对照表

电磁场微波词汇汉英对照表二画二端口网络two port network二重傅立叶级数double Fourier series入射场incident field入射波incident wave三画小波wavelet四画无功功率reactive power无限(界)区域unbound region无源网络passive network互易性reciprocity互阻抗mutual impedance互耦合mutual coupling互连interconnect天线antennas天线方向性图pattern of antenna匹配负载matched load孔aperture孔(缝)隙天线aperture antennas内阻抗internal impedance介电常数permittivity介质dielectric介质波导dielectric guide介质损耗dielectric loss介质损耗角dielectric loss angle介电常数dielectric constant反射reflection反射系数reflection coefficient分离变量法separation of variables五画主模dominant mode正交性orthogonality正弦的sinusoidal右手定则right hand rule平行板波导parallel plate waveguide平面波plane wave功率密度density of power功率流(通量)密度density of power flux 布魯斯特角Brewster angle本征值eigen value本征函数eigen function边值问题boundary value problem四端口网络four terminal network矢量位vector potential电压voltage电压源voltage source电导率conductivity电流元current element电流密度electric current density电荷守恒定律law of conservation of charge 电荷密度electric charge density电容器capacitor电路尺寸circuit dimension电路元件circuit element电场强度electric field intensity电偶极子electric dipole电磁兼容electromagnetic compatibility矢量vector矢径radius vector失真distortions平移translation击穿功率breakdown power节点node六画安培电流定律Ampere’s circuital law传播常数propagation constant亥姆霍兹方程Helmholtz equation动态场dynamic field共轭问题conjugate problem共面波导coplanar waveguide (CPW)有限区域finite region有源网络active network有耗介质lossy dielectric导纳率admittivity同轴线coaxial line全反射total reflection全透射total transmission各向同性物质isotropic matter各向异性nonisotropy行波traveling wave光纤optic fiber色散dispersion网格mesh全向天线omnidirectional antennas阵列arrays七画串扰cross-talk回波echo良导体good conductor均匀平面波uniform plane wave均匀传输线uniform transmission line近场near-field麦克斯韦方程Maxwell equation克希荷夫电流定律Kirchhoff’s current law 环行器circulator贝塞尔函数Bessel function时谐time harmonic时延time delay位移电流electric displacement current芯片chip芯片组chipset远场far-field八画变分法variational method定向耦合器directional coupler取向orientation法拉第感应定律Faraday’s law of induction 实部real part空间分量spatial components波导waveguide波导波长guide wave length波导相速度guide phase velocity波阻抗wave impedance波函数wave function波数wave number泊松方程Poisson’s equation拉普拉斯方程Laplace’s equation坡印亭矢量Poynting vector奇异性singularity 阻抗矩阵impedance matrix表面电阻surface resistance表面阻抗surface impedance表面波surface wave直角坐标rectangular coordinate极化电流polarization current极点pole非均匀媒质inhomogeneous media非可逆器件nonreciprocal devices固有(本征)阻抗intrinsic impedance单位矢量unit vector单位法线unit normal单位切线unit tangent单极天线monopole antenna单模single mode环行器circulator驻波standing wave驻波比standing wave ratio直流偏置DC bias九画标量位scalar potential品质因子quality factor差分法difference method矩量法method of moment洛伦兹互易定理Lorentz reciprocity theorem 屏蔽shield带状线stripline标量格林定理scalar Green’s theorem面积分surface integral相对磁导率relative permeability相位常数phase constant相移器phase shifter相速度phase velocity红外频谱infra-red frequency spectrum矩形波导rectangular waveguide柱面坐标cylindrical coordinates脉冲函数impulse function复介电常数complex permittivity复功率密度complex power density复磁导率complex permeability复矢量波动方程complex vector wave equation贴片patch信号完整性signal integrity信道channel寄生效应parasite effect指向天线directional antennas喇叭天线horn antennas十画准静态quasi-static旁路电流shunt current高阶模high order mode高斯定律Gauss law格林函数Green’s function连续性方程equation of continuity耗散电流dissipative current耗散功率dissipative power偶极子dipole脊形波导ridge waveguide径向波导radial waveguide径向波radial wave径向模radial mode能量守恒conservation of energy能量储存energy storage能量密度power density衰减常数attenuation constant特性阻抗characteristic impedance特征值characteristic value特解particular solution勒让德多项式Legendre polynomial积分方程integral equation涂层coating谐振resonance谐振长度resonance length十一画混合模hybrid mode部分填充波导partially filled waveguide 递推公式recurrence formula探针馈电probe feed接头junction基本单位fundamental unit理想介质perfect dielectric理想导体perfect conductor唯一性uniqueness虚部imaginary part透射波transmission wave透射系数transmission coefficient 球形腔spherical cavity球面波spherical wave球面坐标spherical coordinate终端termination终端电压terminal voltage射频radio frequency探针probe十二画涡旋vortices散度方程divergence equation散射scattering散杂电容stray capacitance散射矩阵scattering matrix斯托克斯定理Stoke’s theorem斯涅尔折射定律Snell’s law of refraction阴影区shadow region超越方程transcendental equation超增益天线supergain antenna喇叭horn幅角argument最速下降法method of steepest descent趋肤效应skin effect趋肤深度skin depth微扰法perturbational method等相面equi-phase surface等幅面equi-amplitude surface等效原理equivalence principle短路板shorting plate短截线stub傅立叶级数Fourier series傅立叶变换Fourier transformation第一类贝塞耳函数Bessel function of the first kind第二类汉克尔函数Hankel function of the second kind解析函数analytic function激励excitation集中参数元件lumped-element场方程field equation场源field source场量field quantity遥感remote sensing振荡器oscillators滤波器filter十三画隔离器isolator雷达反射截面radar cross section (RCS)损耗角loss angle感应电流induced current感应场induction field圆波导circular waveguide圆极化circularly polarized圆柱腔circular cavity铁磁性ferromagnetic铁氧体陶瓷ferrite ceramics传导电流conducting current传导损耗conduction loss传播常数propagation constant传播模式propagation mode传输线模式transmission line mode传输矩阵transmission matrix零点Zero静态场static field算子operator输入阻抗input impedance椭圆极化elliptically polarized微带microstrip微波microwave微波单片集成电路microwave monolithic integrated circuit MMIC毫米波单片集成电路millimeter wave monolithic integrated circuit M3IC十四画漏电电流leakage current渐进表示式asymptotic expression模式mode模式展开mode expansion模式函数mode模式图mode pattern截止波长cut off wavelength截止频率cut off frequency鞍点saddle频谱spectrum线性极化linearly polarized线积分line integral磁矢量位magnetic vector potential磁通magnetic flux 磁场强度magnetic intensity磁矩magnetic moment磁损耗角magnetic loss angle磁滞损耗magnetic hysteresis磁导率permeability十五画辐射radiate增益gain横电场transverse electric field横电磁波transverse electromagnetic wave 劈wedge十六画雕落场evanescent field雕落模式evanescent mode霍尔效应Hall effect辐射电阻radiation resistance辐射电导radiation conductance辐射功率radiation power辐射方向性图radiation pattern谱域方法spectral method十七画以上瞬时量insaneous quantity镜像image峰值peak value函数delta function注:本词汇表参考了《正弦电磁场》(哈林顿著孟侃译)。

矩形平面靶磁场分析及薄膜厚度模拟

矩形平面靶磁场分析及薄膜厚度模拟
(1)在现有的ITO镀膜玻璃生产线基础上,为了解决刻蚀不均匀造成靶材利用率 低的问题,通过标量磁位法建立了计算矩形平面磁控靶磁场分布的数学模型,对计算区 域作了简化处理,用ANSYS有限元软件进行了磁场分布的模拟,系统分析了结构参数 对靶面磁场均匀性和强度的影响,得出两种改进的磁钢排布结构,改进的无导磁片的结 构和改进的有导磁片的结构,其在磁场强度及均匀性方面都优于现有结构。而改进的有 导磁片的结构能有效提高靶面刻蚀均匀性,增加靶面横向刻蚀区域的宽度,缩小端部磁 场与中部水平磁场之间的差别,消除“端部效应”,进而“相对”延长靶的寿命。实验 验证了这一结果。
confirmed this result.
Based on the FJL560C11 ultrahi曲vacuum magne订on、vith ion beam union sputtering system,we presented a mold to simulate the film thickness distribution,and established the relationship between film thickness distribution and the target—subsume distance,thus the superior thin film uniformity could be achieved by adjusting target-substrate distance. According to the calculation and analysis we know that the target-substrate distance is a major
factor which affects the thickness distribution ofthe deposited films.In the certain scope,film

等离子体书籍全集

等离子体书籍全集

Plasma Physics Books(非常全的等离子体物理书单)General PublicP. I. John, Plasma Sciences and the Creation of Wealth, Tata-McGraw-Hill, New Delhi, 2005.Yaffa & Shalom Eliezer, The Fourth State of Matter, Hilger, Bristol, 1989 (2nd edition, 2001).John W. Freeman, Storms in Space, Cambridge, 2001.Kenneth R. Lang, The Cambridge Encyclopedia of the Sun, Cambridge Press, 2001.Hans Wilhelmsson, Fusion: A Voyage Through the Plasma Universe, IOP, 1999. Steven T. Suess and Bruce T. Tsurutani, From the Sun: Auroras, Magnetic Storms, Solar Flares, Cosmic Rays, American Geophysical Union, 1998. T. Kenneth Fowler, The Fusion Quest, Johns Hopkins Press, 1997. Kenneth R. Lang, Sun, Earth and Sky, Springer-Verlag, Berlin, 1995, 1997. Gareth Wynn-Williams, The Fullness of Space, Cambridge, 1992.Paul D. Thompson, Gases & Plasmas, Lippincott Company, Philadelphia, 1966 (out of print)IntroductoryPlasma Science: Basic Physics of the Local Cosmos, National Academy Press, Washington D.C., 2004.A. A. Harms et al., Principles of Fusion Energy, World Scientific, 2000. R. Hazeltine and F. Waelbroeck, The Framework of Plasma Physics, Perseus Books, 1998.Plasma Science: From Fundamental Research to Technological Applications, National Academy Press, Washington D.C., 1995.R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics, IOP, 1995.Richard Dendy, Plasma Physics, Cambridge, 1993, 1995.Francis Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, 1974, 1988.Basic Plasma PhysicsNonequilibrium Phenomena in Plasmas, A. Surjalal Sharma and Predhiman Kaw, eds., Springer, 2005.Takashi Fujimoto, Plasma Spectroscopy, Clarendon Press, Oxford, 2004. J. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge, 2004. T. Tajima, Computational Plasma Physics with Applications to Fusion and Astrophysics, Westview Press, 2004.William Kruer, The Physics of Laser Plasma Interactions, Westview Press,2003.Y. Elskens and D. Escande, Microscopic Dynamics of Plasmas and Chaos, IOP, 2002.Per Helander and Dieter J. Sigmar, Collisional Transport in Magnetized Plasmas, Cambridge, 2002.Paul Gibbon, Short Pulse Laser Interactions with Matter, Imperial College Press, 2000.R. Davidson, The Physics of Nonneutral Plasmas, Imperial College Press, 2001.V. A. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma, Taylor & Francis Group, London, 2001.H. Wilhelmsson and E. Lazzaro, Reaction-Diffusion in the Physics of Hot Plasmas, IOP, 2000.J. T. Mendonca, Theory of Photon Acceleration, IOP, 2000.Paul Gibbon, Short Pulse Laser Interactions with Matter, Imperial College Press, 2000.J. Weiland, Collective Modes in Inhomogeneous Plasmas, IOP, 1999. S. S. Moiseev, V. Oraevsky, and V. Pungin, Non-Linear Instabilities in Plasmas and Hydrodynamics, IOP Press, 1999.Vladimir Fortov and Igor Iakubov, The Physics of Non-Ideal Plasma, Imperial College Press, 1999.Plasma Chemistry, L. S. Polak and Yu A. Lebedev, eds., Cambridge, 1999. V. V. Antsiferov and G. I. Smirnov, Coherent Radiation Processes in Plasmas, Cambridge, 1999.M. Brambilla, Kinetic Theory of Plasma Waves: Homogeneous Plasmas, Oxford, 1998.Hans R.Griem, Principles of Plasma Spectroscopy,Cambridge, 1997.W. Horton and Y-H Ichikawa, Chaos and Structures in Nonlinear Plasmas, World Scientific, 1996.The Physics of Dusty Plasmas, P. Shukla, D. Mendis & V. Chow, editors, World Scientific, 1996.Toshiro Ohnuma, Radiation Phenomena in Plasmas, World Scientific, 1996.C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves with Electron Beams and Plasmas, World Scientific, 1995E. A. Oks, Plasma Spectroscopy, Springer-Verlag, 1995.W. Lochte-Holtgreven, Plasma Diagnostics, North-Holland, 1968, APS 1995. Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory, H. Kikuchi, editor, Plenum Press, NY, 1995.Sanborn C. Brown, Basic data of plasma physics, AIP Press, 1994.V. Shevelko and L. Vainshtein, Atomic Physics for Hot Plasmas, Oxford, 1993.Setsuo Ichimaru, Statistical Plasma Physics, Vol. 1. Basic Principles, Vol. 2. Condensed Plasmas, Perseus Books, 1992, 1994.Thomas Stix, Waves in Plasmas, AIP Press, 1992.Nonlinear and Relativistic Effects in Plasmas, V. Stefan, ed., AIP, 1992.A. Mikhailovskii, Electromagnetic Instabililties in an Inhomogeneous Plasma, IOP, 1992.R. A. Cairns, Radiofrequency Heating of Plasmas, IOP, 1991.Ronald Davidson, An Introduction to the Physics of Nonneutral Plasma, Addison-Wesley, 1990.W. Manheimer and C. Lashmore-Davies, MHD and Microinstabilities in Confined Plasmas, IOP, 1989.R. C. Cross, An Introduction to Alfven Waves, Hilger, Bristol, 1988.A. Galeev and R. Sudan, Basic Plasma Physics, North-Holland, 1989(selections from Handbook of Plasma Physics, Vol. 1 & 2, 1983, 1984) J. P. Freidberg, Ideal Magnetohydrodynamics, Plenum Pr., NY, 1987. Plasma Waves and Instabilities, C. L. Grabbe, ed., American Assoc. of Physics Teachers, 1986.Dwight Nicholson, Introduction to Plasma Theory, Wiley, 1983.E. Lifshitz and L. Pitaevskii, Physical Kinetics: Volume 10, Elsevier, 1981.N. Krall and A. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, 1973.Fusion PlasmasJeffrey Freidberg, Plasma Physics and Fusion Energy, Cambridge Univ. Press, 2007.Plasma Physics: Confinement, Transport and Collective Effects, A. Dinklage et al., eds., Springer-Verlag, 2005.G. McCracken and P. Stott, Fusion: The Energy of the Universe, Elsevier, 2005.J. Wesson, Tokomaks, 3rd ed., Oxford Univ. Press, 2004.C. Braams and P. Stott, Nuclear Fusion: Half a Century of Magnetic Confinement Fusion, IOP Press, 2002.R. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators, Imperial College Press, 2001.P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, IOP Press, 2000.Paul M. Bellan, Spheromaks, Imperial College Press, 2000.M. Liberman, J. Degroot, A. Toor, and L. Spielman, Physics of High-Density Z-Pinch Plasmas, Springer, 1999.M. Wakatani, Stellerator and Heliotron Devices, Oxford Univ. Press, 1998. J. Lindl, Inertial Confinement Fusion, Springer, 1998.A. B. Mikahilovskii, Instabilities in a Confined Plasma, IOP, 1998. Laser Plasma Interactions 5: Inertial Confinement Fusion, M. Hooper, ed., IOP, 1996.Physics of High Energy Particles in Toroidal Systems, T. Tajima and M.Okamoto, eds., AIP Press, 1994.M. N. Rosenbluth, New Ideas in Tokamak Confinement, Springer, 1994. B. Kadomtsev and I. Kurchatov, Tokamak Plasma: A Complex Physics System, IOP, 1993.M. Nezlin and I. Kurchatov, Physics of Intense Beams in Plasmas, IOP, 1993.H. L. Berk, Fusion, Magnetic Confinement, in Encyclopedia of Applied Physics, Vol. 6, pp. 575-607, VCH Publishers, Inc., 1993.Richard D. Hazeltine and James D. Meiss, Plasma Confinement, Perseus Books, 1992.High-frequency Plasma Heating, ed. A. Litvak, AIP, 1992.K. Nishikawa, and M. Wakatani, Plasma Physics: Basic Theory with Fusion Applications, Springer-Verlag, 1990.Kenro Miyamoto, Plasma Physics for Nuclear Fusion, MIT Press, 1980, 1989. J. Reece Roth, Introduction to Fusion Energy, Lincoln Rembrandt, Charlottesville, 1986.Weston Stacey, Fusion: An Introduction to the Physics and Techniques of Magnetic Confinement Fusion, Wiley, 1984.Space PlasmasThe Mars Plasma Environment, C. T. Russell, ed., Springer, 2007. Cosmic Magnetic Fields, R. Wielebinski and R. Beck, eds., Springer-Verlag, 2005.Wolfgang Kundt, Astrophysics: A New Approach, Springer-Verlag, 2005.D. A. Gurnett and A. Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications, Cambridge, 2005.James Lequeux, The Interstellar Medium, Springer-Verlag, 2005.A. C. Das, Space Plasma Physics: An Introduction, Narosa Publishing House, New Delhi, 2004.Gunther Rudiger and Rainer Hollerbach, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory , Wiley-VCH, 2004.Gerd W. Prolss, Physics of the Earth's Space Environment, Springer-Verlag, 2004.Solar and Space Weather Radiophysics, Astrophysics and Space Science Library, Vol. 314, Dale Gary and C. Keller, eds., Kluwer, 2004.J. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge, 2004. M-B Kallenrode, Space Physics: An Intro to Plasmas and Particles in the Heliosphere and Magnetospheres, Springer-Verlag, 2001, 2004.Toshi Tajima, Computational Plasma Physics: With Applications to Fusion & Astrophysics, Perseus, 2004.Markus Aschwanden, Physics of the Solar Corona, Springer-Verlag, 2004. Exploration of the Outer Heliosphere and the Local Interstellar Medium,NAS/NRC, National Academies Press, Washington, DC, 2004.Space Plasma Simulation, Jorg Buchner et al., eds.,Springer-Verlag, 2003 Alan C. Tribble, The Space Environment: Implications for Spacecraft Design, Princeton, 2003.Arnoldo O. Benz, Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, Kluwer Academic Publ., 2002.Syun-Ichi Akasofu, Exploring the Secrets of the Aurora, Kluwer Academic Publ., 2002.Arnold Hanslmeier, The Sun and Space Weather, Kluwer Academic Publ., 2002.H. Kikuchi, Electrodynamics in Dusty and Dirty Plasmas -Gravito-Electrodynamics and EHD, Kluwer, 2001.Space Weather, Paul Song, Howard J. Singer, and George L. Siscoe, eds., Geophys. Mono. 125, American Geophysical Union, 2001.Plasma Astrophysics, B. Coppi et al, eds.Vol. 142, Int'l School of Physics Enrico Fermi, 2000.E. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications, Cambridge, 2000.F. Verheest, Waves in Dusty Space Plasmas, Kluwer, 2000.A. Choudhuri, The Physics of Fluids and Plasmas: An Intro for Astrophysicists, Cambridge, 1999.Jorg Buchner, Plasma Astrophysics and Space Physics, Kluwer Academic Publ., 1999.Vinod Krishan, Astrophysical Plasmas and Fluids, Kluwer Academic Publ., 1999.Magnetic Helicity in Space and Laboratory Plasmas, M. R. Brown, R. C. Canfield, A. A. Pevtsov, eds., Geophys. Mono. 111, American Geophysical Union, 1999.Sun-Earth Plasma Connections, J. L. Burch, R. Carovillano, S. Antiochos, ed., Geophys. Mono. 109, American Geophysical Union, 1999. Measurement Techniques in Space Plasmas, Particles, ...Fields, R. F. Pfaff, J. Borovsky, D. Young, eds., Geophys. Mono. volumes 102, 103, American Geophysical Union, 1998.D. Bryant, Electron Acceleration in the Aurora and Beyond, IOP, 1998. M.-B. Kallenrode, Space Physics: Plasmas and particles in the Heliosphere and Magnetosheres, Springer, 1998.T. Tajima and K. Shibata, Plasma Astrophysics, Addison-Wesley, 1997. R. A. Treumann and W. Baumjohann, Advanced Space Plasma Physics, World Scientific, 1997.J. F. Lemaire, D. Heynderickx, and D. N. Baker, eds., Radiation Belts: Models and Standards, Geophys. Mono. 97, American Geophysical Union, 1996. W. Baumjohann and R. A. Treumann, Basic Space Plasma Physics, World Scientific, 1996.V. V. Zheleznyakov, Radiation in Astrophysical Plasmas, Kluwer Academic Publ., Dordrecht, 1996.The Physics of Dusty Plasmas, P. Shukla, D. Mendis and V. Chow, eds., World Scientific, 1996.Plasma Astrophysics and Cosmology, Anthony L. Peratt, ed., Kluwer, 1995. Margaret Kivelson and Chris Russell, Introduction to Space Physics, Cambridge, 1995.J. Buchner, Physics of Space Plasmas, MIT Press, 1995.Charles F. Kennel, Convection and Substorms, Oxford Univ. Press, 1995. Leonard F. Burlaga, Interplanetary Magnetohydrodynamics, Oxford Press, 1995.P. Sturrock, Plasma Physics: An Intro to the Theory of Astrophysical, Geophysical, and Laboratory Plasmas, Cambridge, 2004.J. G. Kirk, D. B. Melrose, and E. R. Priest, Plasma Astrophysics, Springer-Verlag, 1994.Sergei Sazhin, Whistler-mode Waves in a Hot Plasma, Cambridge Univ. Press, 1993.S. Peter Gary, Theory of Space Plasma Microinstabilities, Cambridge, 1993. Anthony Peratt, Physics of the Plasma Universe, Springer-Verlag, 1992. George Parks, Physics of Space Plasmas, Addison-Wesley, 1991. Modeling Magnetospheric Plasma Processes, G. Wilson, ed., American Geophysical Union, 1991.F. Curtis Michel, Theory of Neutron Star Magnetospheres, U. Chicago, 1991. Numerical Simulation of Space Plasmas, B. Lembege and J. Eastwood, eds., North-Holland, 1988.Donald Melrose, Instabilities in Space and Laboratory Plasmas, Cambridge, 1986.Eric Priest, Solar Magnetohydrodynamics, Reidel, 1985.Plasma TechnologyPlasma Technology for Textiles, R. Shishoo, ed., Woodhead Publ., Cambridge, 2007.The Physics and Technology of Ion Sources, Ian Brown, ed., Wiley, 2004.A. Fridman and L. Kennedy, Plasma Physics and Engineering, Taylor and Francis, 2004.Emerging Applications of Vacuum-ARC-Produced Plasma, Ion, and Electron Beams, E. Oks and I. Brown, eds, Kluwer, 2003.Bundesministerium fur Bildung und Forschung, Plasma Technology, BMBF (www.bmbf.de), Germany, 2001 (in German and English -www.bmbf.de/pub/plasma_technology.pdf)J. Reece Roth, Industrial Plasma Engineering, Vol. 2 - Applications, IOP, 2001.E. Bazelyan and Y. Raizer, Lightning Physics and Lightning Protection, IOP, 2000.K. Muraoka and M. Maeda, Laser Aided Diagnostics of Gases and Plasmas,IOP, 2000.Yu. M. Aliev, H. Schluter, and A. Shivarova, Guided-Wave-Produced Plasmas, Springer, 2000.W. N. G. Hitchon, Plasma Processes for Semiconductor Fabrication, Cambridge, 1999.Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, Andre Bouchoule, ed., Zukov and O. Solonenko, eds., Lavoisier, 1999.Thermal Plasmas and New Materials Technology, vol 1&2, M. Zukov and O. Solonenko, eds., Cambridge, 1999.H. Zhang, Ion Sources, AIP, 1999.M. Sugawara, Plasma Etching: Fundamentals and Applications, Oxford, 1998. Microlithography: Science and Technology, J. R. Sheats and B. W. Smith, eds., Marcel Dekker, NY, 1998.I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas, Wiley, 1998. Generation and Application of High Power Microwaves, R. Cairns and A. Phelps, eds., IOP, 1997.Environmental Aspects in Plasma Science, Sugiyama, L., T. Stix, and W. Mannheimer, eds., AIP Press, 1997.Y. P. Raizer and J. E. Allen, Gas Discharge Physics, AIP, 1997. Plasma Science and the Environment, W. Manheimer, L. Sugiyama, and T. Stix, eds., AIP, 1996.R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas, IOP, 1996.Dynamics of Transport in Plasmas and Charged Beams, G. Maino and M. Ottaviani, eds., World Scientific, 1996.12th International Symposium on Plasma Chemistry, J. V. Heberlein, D. W. Ernie, and J. T. Roberts, Int'l Union of Pure and Applied Chemistry, Univ. of Minnesota Pr., Minneapolis, Aug., 1995. Rimini, E., Ion Implantation: Basics to Device Fabrication, Kluwer Academic Publishing, Boston,1995.Stephen O. Dean and N. Poltoratskaya, "Applications of Fusion and Plasma Device Technologies," in Plasma Devices and Operations, Vol. 4, 1995. J. Reece Roth, Industrial Plasma Engineering, Vol. 1 - Principles, IOP, 1995.Michael Lieberman and Allan Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley & Sons, 1994.Alfred Grill, Cold Plasma in Materials Fabrication, IEEE Press, 1994. J. C. Miller, Laser Ablation, Springer-Verlag,1994.Plasma Spraying: Theory and Applications, ed. R. Suryanarayanan, World Scientific, 1993.Non-thermal Plasma Techniques for Pollution Control, B. M. Penetrante and S. E. Schulteis, eds., NATO-ASI Series G, Vol. 34, Parts A and B, 1993.Plasma Technology: Fundamentals and Applications, eds. M. Capitelli and C. Gorse, Plenum Press, 1992.Dry Etching for VLSI, eds. A. J. van Roosmalen, J. A. G. Baggerman, S.J.H. Brader, Plenum Press, NY, 1991.Handbook of Plasma Processing Technology, eds. S. Rossnagel, J. Cuomo, and W. Westwood, Noyes Publications, 1990.Plasma Polymerization and Plasma Interactions with Polymeric Materials, ed. H. Yasuda, Wiley & Sons, 1990.Plasma Diagnostics, eds. O. Auciello and D. Flamm, Academic Press, 1989. Plasma Etching, eds. D. Manos and D. Flamm, Academic Press, 1989.A. Chambers, R. Fitch, Walmley, S. Coldfield, andB. Halliday, Basic Vacuum Technology, IOP Publ., 1989.Russ Morgan, Plasma Etching in Semiconductor Fabrication, Elsevier, 1985. Plasma Diagnostic Techniques, eds. R. Hudlestone and S. Leonard, Academic Press, 1978. Techniques and Applications of Plasma Chemistry, eds. J. Hollahan and A. Bell, Wiley & Sons, 1974.Computational Plasma PhysicsT. Tajima, Computational Plasma Physics: With Applications to Fusion and Astrophysics, Addison Wesley, 1989.C. K. Birdsall, and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, 1985, 1991.Hockney and Eastwood, Computer Simulation using Particles, Adam Hilger, 1988._______________________________________________________New and Special SourcesPlasma science materials from Russia and other FSU statesare a specialty of Cambridge International Science Publishing.William Beaty's Nikola Tesla and Tesla Coil pageand resources on ball lightningVladimir Rokov and Martin Uman, Lightning Physics and Effects, Cambridge Press, 2003.。

【原创1.11】南京邮电大学专业英语词汇释义精选

【原创1.11】南京邮电大学专业英语词汇释义精选
magnetized // 磁化 magnetostatics // 静磁 magnetron // 磁控管 mast // 天线 Maxwell's equation // 麦 克斯韦方程
medium // 介质 metallic // 金属的 method of moments // 矩 量法
MF/ // 中频 MIC/ // 微波集成电路 microstrip // 微带 minority carrier // 少数载 流子
第1页共2页
南京邮电大学 电磁场与无线技术 专业英语词汇释义 精选
net power // 净功率 newsletter // 通讯 N-LOS/ / 非视距 nonconductive // 不导电 nonresonant // 非谐振 nonthermal // 非热的 nonuniform plane // 非均 匀平面
ohm // 欧姆 ohmic // 阻值 Ohm's law // 欧姆定律 open-circuited // 开路 optics // 光学 orientation // 定向 orthonormal bases // 正交 基
oscillator // 振荡器 oscilloscope // 示波器
C
cable // 电缆 capacitance // 电容 cathode // 阴极 cavity // 空穴 空腔 ceiver // 接收器 cellular // 蜂窝网 channelization // 信道化
charge // 电荷 circuit // 电路 circulator // 环行器 coaxial probe // 同轴探针 coil // 线圈 cold cathode // 冷阴极管 compatibility // 兼容性 component // 元件 compound // 化合物的 conductance // 电导 conductivity // 电导率 conductor // 导体 conformal // 共形 conjugate // 共轭 constitutive relationship // 本构关系

现代体部磁共振诊断学 原理

现代体部磁共振诊断学 原理

现代体部磁共振诊断学原理英文回答:Modern body magnetic resonance imaging (MRI) is a medical imaging technique that uses a strong magnetic field and radio waves to generate detailed images of the body's internal structures. The principle behind MRI is based on the behavior of hydrogen atoms in the body.When a patient undergoes an MRI scan, they are placed inside a large cylindrical magnet. This magnet creates a strong magnetic field that aligns the hydrogen atoms in the body. Radio waves are then applied to the body, causing the hydrogen atoms to absorb energy and enter an excited state.After the radio waves are turned off, the hydrogen atoms return to their original alignment with the magnetic field. As they do so, they release energy in the form of radio waves. These radio waves are detected by the MRI machine and used to create a detailed image of the body.Different tissues in the body have different amounts of hydrogen atoms and different rates of energy release. This allows MRI to differentiate between different types of tissues, such as muscles, organs, and blood vessels. By manipulating the magnetic field and radio waves, MRI can also provide information about blood flow and tissue characteristics, such as water content and cell density.MRI is a non-invasive and versatile imaging technique that can be used to diagnose a wide range of medical conditions. It is particularly useful for imaging soft tissues, such as the brain, spinal cord, and joints. MRI can detect abnormalities such as tumors, infections, and injuries. It can also be used to monitor the progression of diseases and evaluate the effectiveness of treatments.In conclusion, modern body MRI uses a strong magnetic field and radio waves to create detailed images of the body's internal structures. It is a valuable tool in medical diagnosis and provides important information about tissue characteristics and blood flow. MRI is safe, non-invasive, and widely used in clinical practice.中文回答:现代体部磁共振诊断学是一种医学影像技术,利用强磁场和无线电波生成身体内部结构的详细图像。

(英文)量子力学-电子自旋

Electron Spin
Electron spin hypothesis Solution to H atom problem gave three quantum numbers, n, , m. These apply to all atoms. Experiments show not complete description. Something missing. Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split Na D-line (orange light emitted by excited Na) split by 17 cm-1 Many experiments not explained without electron "spin."
Stern-Gerlach experiment early, dramatic example.
Stern-Gerlach experiment
glass plate Magnet ms
Ag beam
oven baffles
Ag
N S
&#toms deflected by inhomogeneous magnetic field. Single unpaired electron - should not give to lines on glass plate. s-orbital. No orbital angular momentum. No magnetic moment. Observed deflection corresponds to one Bohr magneton. Too big for proton.

主动型氢原子钟的研究进展

主动型氢原子钟的研究进展何克亮;张为群;林传富【摘要】The active hydrogen atomic clock (H clock) based on hydrogen microwave amplifi-cation by stimulated emission of radiation (H maser) have excellent short-term and mid-term frequency stability. The atomic storage bulb is the key technology of H clock. The atomic ensemble interact with electromagnetic field in the storage bulb situated in theTE011 resonant cavity. The dynamical processes, the phase noise of H maser and H clock, and relaxations including storage time, spin-exchange collision, atoms collisions with wall and inhomogeneous magnetic field are briefly described. The new cavity auto-tuning method and double state selection method for improving the frequency stability are introduced. The technology im-provements such as vacuum system, ionization source are also introduced. Finally, some development prospects for H clock are proposed.%基于氢原子微波激射器(氢脉泽)的主动型氢原子钟(氢钟)拥有极好的中短期频率稳定度,而原子储存泡是氢脉泽的关键技术.位于微波谐振腔内的原子储存泡中的氢原子系综与电磁场相互作用.简述了氢原子系综与电磁场相互作用的动力学过程、氢脉泽和主动型氢原子钟的相位噪声,还介绍了原子储存、原子与原子的自旋交换碰撞、原子与泡壁的碰撞和磁场不均匀弛豫等主要弛豫过程.并概述了在腔频的自动调谐方法、双选态系统方面的发展和电离源、真空系统等技术方面的改进.最后,讨论了氢钟的发展前景.【期刊名称】《天文学进展》【年(卷),期】2017(035)003【总页数】22页(P345-366)【关键词】原子钟;氢微波激射器;原子储存泡;弛豫;频率稳定度【作者】何克亮;张为群;林传富【作者单位】中国科学院上海天文台,时间频率技术研究室,上海 200030;中国科学院大学,北京 100049;中国科学院上海天文台,时间频率技术研究室,上海 200030;中国科学院上海天文台,时间频率技术研究室,上海 200030【正文语种】中文【中图分类】TH714.1微波激射器和激光器都能实现电磁场的受激辐射放大,有相似的原理,都是量子电子学的重要内容;激光器主要被作为相干单色光源,而微波激射器与之不同,主要被作为频率源。

物理英语单词表

电容器:Capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor有功:active power无功:reactive power电流:current容量:capacity电压:voltage有功损耗:reactive loss无功损耗:active loss功率因数:power-factor功角:power-angle电压等级:voltage grade空载电流:no-load current阻抗:impedance变电站 transformer substation 补偿度 degree of compensation 高抗 high voltage shunt reactor 电阻:resistor电抗:reactance电导:conductance电纳:susceptance遥测:YC(t EL emetering)遥信:YX定子:stator功角:power-angle上限:upper limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer 高压侧 high side输电线 transmission line稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability 电厂 power plant能量输送 power transfer交流 AC装机容量 instal LED capacity电网 power system落点 drop point开关站 switch station故障 fault调节 regulation裕度 magin电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitance三相故障 three phase fault切机 generator triping高顶值 high limited value强行励磁 reinforced excitation 机端 generator terminal静态 static (state)动态 dynamic (state)机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics 斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker正序阻抗:positive sequence impedance负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance三绕组变压器:three-column transformer ThrClnTrans 励磁电流(转子电流):magnetizing current固定串联电容补偿fixed series capacitor compensation 双回同杆并架 double-circuit lines on the same tower 单机无穷大系统 one machine - infinity bus system故障切除时间 fault clearing time极限切除时间 critical clearing time并联电容器:shunt capacitor线路补偿器 LDC(line drop compensation)无功负载:reactive load 或者QLoad无功补偿 reactive power compensation输电系统 power transmission systemice 冰ice calorimeter 冰量热计ice model 冰模型iconoscope 光电摄象管icosahedron 二十面体ideal black body 理想黑体ideal constraints 理想约束ideal crystal 理想晶体ideal fluid 完全铃ideal gas 理想气体ideal gas law 理想气体定律ideal lattice 理想晶格ideal liquid 理想液体ideal solid 理想固体ideal solution 理想溶液ideally imperfect crystal 理想非完美晶体ideally perfect crystal 理想完美晶体identity parameter 晶体参数ignition 点火ignition potential 点火电位ignitron 点火管illuminance 光照度illuminant 光源illuminating engineering 照盲程学illuminating lamp 照闷illumination 光照度illumination curve 照度曲线illumination photometer 照度计illumination photometry 照度测量illuminator 照冒置illuminometer 照度计image 象image analyzer 图象分析器image charge 象电荷image contrast 象对比度image converter 变象管image converter tube 变象管image distortion 图象失真image force 象力image formation 成象image frequency 象频image hologram 象全息图image iconoscope 图象光电摄象管image intensifier 影象增强器影象放大器image intensifier tube 影象增强器影象放大器image orthicon 超正析象管image parameter 成象参数image pickup tube 摄象管image plane 象平面image point 象点image processing 图象处理image ratio 镜频波道的相对增益image restoration 象恢复image space 象空间image surface 象曲面imagelyzer 图象分析器immersion 浸没immersion lens 浸没透镜immersion method 浸没法immersion microscope 油浸显微镜immersion objective 浸没物镜immersion refractometer 浸没折射计impact 冲击impact ionization 碰撞电离impact matrix 碰撞矩阵impact parameter 碰撞参数impact parameter method 碰撞参数法impact strength 冲豢度impact stress 冲沪力impact test 冲辉验impedance 阻抗impedance bridge 阻抗电桥impedance matching 阻抗匹配imperfect crystal 非完美晶体imperfect gas 非理想气体impressed forces 外力imprisonment of resonance radiation 共振辐射陷获improper variable 准变星impulse 冲击冲量impulse approximation 冲稽似impulse function 脉冲函数impulse generator 脉冲发生器impulse of force 冲量impulsive current 脉冲电流impulsive force 冲力impulsive sound 冲基impulsive tone 撞霍impurity 杂质impurity atom 杂质原子impurity band 杂质能带impurity center 杂质中心impurity conduction 杂质导电impurity level 杂质能级impurity scattering 杂质散射impurity semiconductor 杂质半导体in clockwise direction 向顺时针的方向in counter colckwise direction 向反时针的方向in situ observation 就地观察incandescence 白炽incandescent lamp 白炽灯inch 英寸incidence 入射incidence angle 入射角incident beam 入射束incident light 入射光incident particle 入射粒子incident plane 入射面incident ray 入射光线incident wave 入射波inclination factor 倾斜因子inclinometer 磁倾计incoherence 非相干性incoherent light 非相干光incoherent scatteering 非相干散射incommensurate structure 不相应结构incompressibility 不可压缩性incompressible flow 不可压缩流indefinite metric 不定度量independent atom model 独立原子模型independent particle 独立粒子independent particle model 独立粒子模型independent variable 自变数indeterminancy 不确定性indeterminancy principle 测不准原理index 指数index of refraction 折射率indicating lamp 指示灯indicator 指示器指示剂indifferent equilibrium 中性平衡indirect exchange interaction 间接交换相互酌indirect illumination 间接照明indirect measurement 间接测量indirect transition 间接跃迁indirectly heated cathode 旁热式阴极indistinguishability of identical particles 全同粒子的不可分辨性indium 铟individual error 人为误差individual excitation 单独激发induced current 感应电流induced electromotive force 感应电动势induced emission 感应发射induced radioactivity 感应放射性induced representation 诱导表示inductance 电感感应系数inductance coil 感应线圈induction 感应;归纳induction accelerator 感应加速器induction coefficient 感应系数induction coil 感应线圈induction field 感应磁场induction furnace 感应电炉induction heating 感应加热induction method 归纳法induction motor 感应电动机inductive 感应的inductor coil 感应线圈indus 印第安座inelastic collision 非弹性碰撞inelastic scattering 非弹性散射inert gas 惰性气体inertia 惯性inertial force 惯性力inertial frame of reference 惯性系inertial mass 惯性质量inertial resistance 惯性阻力inertial system 惯性系inertial wave 惯性波inferior conjunction 下合inferior mirage 下现幻景inferior planet 地内行星infinite medium 无限介质infinite universe 无限宇宙infinitesimal rotation 无穷小转动infinitesimal transformation 无穷小变换inflationary universe 暴涨宇宙inflector 偏转器influence machine 感应起电机information processing 信息处理information quantity 信息量information retrieval 信息恢复information theory 信息论infra acoustic 声下的infra acoustic frequency 亚声频infra sound 次声infranics 红外线电子学infrared 红外线的infrared active 红外激活的infrared astronomical satellite 红外天文卫星infrared astronomy 红外天文学infrared catastrophe 红外灾变infrared divergence 红外发散infrared lamp 红外灯infrared laser 红外激光器infrared magnitude 红外星等infrared microscope 红外线显微镜infrared photocell 红外线光电管infrared photography 红外摄影infrared radiation 红外辐射infrared rays 红外线infrared spectrophotometer 红外分光光度计infrared spectroscopy 红外光谱学infrared spectrum 红外光谱inhomogeneous broadening 非均匀增宽inhomogeneous plasma 非均匀等离子体inhomogeneous superconductor 非均质超导体inhomogeneous universe 非均匀宇宙initial black hole 原始黑洞initial permeability 初始磁导率initial phase 初相initial state 初态initial stress 初应力initial velocity 初速度injection 注入injection laser 注入型激光器注入型二极管激光器injector accelerator 注入加速器injury 损伤inlet pressure 进口压力inner bremsstrahlung 内韧致辐射inner corona 内冕inner electron 内层电子inner product 内积inner quantum number 内量子数inner shell 内壳层input 输入input output channel 输入输出通道input output unit 输出输入装置input program 输入程序input routine 输入程序insolation 日射inspection 检查instability 不稳定性instability energy 不稳定能instantaneous axis of rotation 瞬时转动轴instantaneous neutron 瞬发中子instantaneous pole 瞬时极instantaneous power 瞬时功率instanton 瞬子instruction 指令instrument 仪器仪表instrument transformer 仪表变换器instrumental error 仪企差instrumental function 仪漂数insulating paper 绝缘纸insulating transformer 绝缘变压器insulation 绝缘insulation resistance 绝缘电阻insulator 绝缘体integral calculus 积分学integral equation 积分方程integral invariant 积分不变式integral transform 积分变换integrated circuit 集成电路integrated optics 集成光学integrated reflection intensity 积分反射强度integrating sphere 乌布利希球integrating wattmeter 累积瓦特计integration circuit 积分电路integration type analog to digital conversion 积分型模拟数字转换intense slow positron beam 强慢速阳电子束intensifier 加厚剂intensity 强度intensity alternation 强度交变intensity factors of spectral lines 谱线强度因子intensity modulation 亮度灯intensity of magnetic field 磁场强度intensity of magnetization 磁化强度intensity of radioactivity 放射性强度intensity of sound 声强intensity region 强度范围intensive quantity 内包量intensive variable 示强变量interaction 相互酌interaction energy 相互酌能interaction force 相互酌力interaction potential 相互酌势interaction range 相互酌区interatomic 原子间的interatomic distance 原子间距离interatomic forces 原子间力intercalation 夹层interchange instability 变换不稳定性interchangeability 互换性intercombination 相互组合intercrystalline 晶粒间的interdiffusion 互扩散interface 边界面interfacial electric phenomenon 界面电现象interfacial potential 界面势interfacial tension 界面张力interfacial viscosity 界面粘性interference 干涉interference color 干扰色interference filter 干扰滤光片interference fringe 干涉条纹interference microscope 干涉显微镜interference of equal inclination 等倾角干涉interference of equal thickness 等厚度干涉interference of light 光的干涉interference of polarized light 偏振光的干涉interference refractometer 干涉折射计interference spectroscope 干涉分光镜interferometer 干涉仪interferometry 干涉度量学intergalactic matter 星系际物质intergalactic space 星系际空间intermediate coupling 中间耦合intermediate energy 中间能量intermediate energy physics 中能物理学intermediate frequency 中频intermediate frequency transformer 中频变换器intermediate image 中间影象intermediate neutron 中速中子intermediate nucleus 复核intermediate orbit 中间轨道intermediate state 中间态intermediate vector boson 弱玻色子intermetallic compounds 金属间化合物intermittent discharge 间歇放电intermolecular 分子间的intermolecular force 分子间力intermolecular interaction 分子间相互酌internal adsorption 内吸附internal conversion 内转换internal conversion electron 内转换电子internal electron pair creation 内电子对产生internal energy 内能internal exposure 内照射internal force 内力internal friction 内摩擦internal impedance 内阻抗internal ionization 内电离internal magnetic field 内磁场internal photoelectric effect 内光电效应internal pressure 内压internal quantum number 内量子数internal reflection 内反射internal resistance 内阻internal rotation 内旋转internal storage 内部存储器internal stress 内应力internal target 内靶internal viscosity 内粘滞international atomic time 国际原子时international geophysical year 国际地球物理年international latitude service 国际纬度服务international practical temperature scale 国际实用温标international prototype metre 国际米原器international standard atomsphere 国际标准大气international system of units 国际单位制international temperature scale 国际温标international thermonuclear experimental reactor 国际热核实验反应堆international unit 国际单位interpenetration 相互穿透interplanar crystal spacing 晶面间距interplanetary dust 行星际尘埃interplanetary magnetic field 行星际磁场interplanetary matter 行星际物质interplanetary space 行星际空间interpolation formula 内插公式interrupt 中断interrupter 断续器interspace 空隙interstellar absorption 星际吸收interstellar absorption line 星际线interstellar cloud 星际云interstellar dust 星际尘埃interstellar gas 星际气体interstellar line 星际线interstellar magnetic field 星际磁场interstellar matter 星际物质interstellar molecule 星际分子interstellar reddening 星际红化interstellar space 星际空间interstice 缝隙interstitial alloy 填隙式合金interstitial atom 填隙原子interstitial diffusion 填隙式扩散interstitial ion 填隙离子interstitial solid solution 填隙式固溶体interval 间隔interval rule 间隔规则intraatomic 原子内的intracrystalline 晶体内的intramolecular 分子内的intramolecular bond 分子内键intramolecular forces 分子内力intramolecular rotation 分子内转动intrinsic conduction 本占电intrinsic energy 内能intrinsic magnetic moment 固有磁矩intrinsic magnetization 内倥化intrinsic parity 内兕称intrinsic permeability 固有磁导率intrinsic semiconductor 本针导体intrinsic viscosity 本粘性intrinsic wavelength 固有波长invar 殷钢invariable plane 不变平面invariance 不变性invariant 不变式invariant of strain 应变不变量invariant subgroup 不变子群inverse circuit 反演电路inverse compton effect 逆康普顿效应inverse fluorite structure 逆萤石结构inverse photoelectric effect 逆光电效应inverse photoelectron spectroscopy 逆光电光谱学inverse piezoelectric effect 逆压电效应inverse predissociation 逆前级离解inverse problem 逆问题inverse process 逆过程inverse proportion 反比例inverse raman effect 反转喇曼效应inverse raman spectroscopy 反转喇曼光谱学inverse reaction 逆反应inverse scattering method 逆散射法inverse spinel 反尖晶石inverse spinel structure 反尖晶石型结构inverse square law 平方反比律inverse transformation 逆变换inverse voltage 逆电压inverse zeeman effect 反向塞曼效应inversion 反演inversion axis 反演轴inversion doublet 反转双重线inversion formula 反演公式inversion layer 反转层;逆温层inversion spectrum 反转光谱inversion system 倒象系inversion temperature 转换温度invert 反演inverted magnetron gage 逆磁控管计inverted multiplet 反转多重态inverted term 颠倒项inverter 逆变换装置inviscid flow 无粘性流invisible radiation 不可见的辐射invisible rays 不可见的射线iodine 碘ion 离子ion accelerator 离子加速器ion acceptor 离子接受体ion acoustic instability 离子声波不稳定性ion activity 离子活度ion avalanche 离子雪崩ion beam 离子束ion beam probe 离子束探针ion bombardment 离子轰击ion channelling 离子沟道效应ion cloud 离子云ion cluster 离子簇ion concentration 离子浓度ion condensation 离子凝聚ion cyclotron frequency 离子回旋频率ion cyclotron resonance heating 离子回旋共振加热ion cyclotron resonance method 离子回旋共振法ion density 离子密度ion diffusion 离子扩散ion electron recombination 离子电子再化合ion exchange 离子交换ion exchange resin 离子交换尸ion impact 离子碰撞ion implantation 离子注入ion implanted junction 离子注入结ion induced desorption 离子感应退吸ion induced x ray analysis 离子感应x 射线分析ion lattice 离子晶格ion loss 离子损耗ion microprobe analyzer 离子微探针分析器ion microscope 离子显微镜ion molecule 离子型分子ion neutralization 离子中和ion neutralization spectroscopy 离子中和波谱学ion optics 离子光学ion orbit 离子轨道ion pair 离子对ion pair formation 离子对生成ion plasma frequency 离子等离子体频率ion pump 离子泵ion recombination 离子复合ion saturation current 离子饱和电流ion scattering spectroscopy 离子散射能谱学ion selective electrode 离子选择电极ion sheath 离子鞘ion source 离子源ion temperature 离子温度ion trap 离子陷阱ion yield 离子产额ionic atmosphere 离子气氛ionic bond 异极键ionic charge 离子电荷ionic compound 离子化合物ionic conduction 离子导电ionic crystal 离子晶体ionic current 离子电流ionic laser 离子激光器ionic migration 离子迁移ionic mobility 离子迁移率ionic molecule 离子型分子ionic polymerization 离子聚合ionic radius 离子半径ionic recombination 离子复合ionic strength 离子强度ionic structure 离子结构ionium 锾ionization 电离ionization by collision 碰撞电离ionization chamber 电离室ionization current 电离电流ionization density 电离密度ionization fluctuation 电离涨落ionization limit 电离极限ionization loss 电离损失ionization potential 电离电势ionization power 致电离能力ionization rate 电离率ionization vacuumgage 电离真空计ionized atom 电离原子ionized layer 电离层ionizer 电离装置ionizing energy 电离能量ionizing power 致电离能力ionizing radiation 电离线ionoluminescence 离子发光ionometer 离子计ionosphere 电离层ionospheric disturbance 电离层扰动ionospheric storm 电离层暴iras object iras 天体iridescence 虹色iridium 铱iris 可变光栏iris diaphragm 锁定光栏iris type accelerator guide 隔膜型加速波导管iron 铁iron constantan thermocouple 铁康铜热电偶iron group elements 铁族元素iron loss 铁耗irradiation 辐照irradiation damage 辐照损伤irradiation hardening 辐照硬化irradiation reactor 辐照用堆irreducible representation 不可约表示irregular galaxy 不规则星系irregular nebula 不规则星云irregular reflection 不规则反射irregular variable 不规则变星irreversibility 不可逆性irreversible process 不可逆过程irreversible reaction 不可逆反应irrotational field 非旋场isentrope 等熵线isentropic analysis 等熵分析isentropic surface 等熵面ising model 伊辛模型isoanomalous line 等异常线isobar 等压线isobaric 等压的isobaric analog resonance 同质异位素相似共振isobaric analog state 同质异位素相似态isobaric process 等压过程isobaric surface 等压面isocandle diagram 等烛光图isochor 等容线isochromatic 等色的isochromatic line 等色线isochromatic surface 等色面isochrone 等时线isochronism 等时性isochronous cyclotron 等时性回旋加速器isoclinal 等倾线isoclinal line 等倾线isoclinic line 等倾线isodiaphere 同差素isodynamic line 等力线isoelectric point 等电点isogon 等偏线isolated point 孤点isolation 隔离isolator 隔离器绝缘体isolux curve 等照度线isomagnetism 等偏isomer 同质异能素isomer shift 同质异能位移isomeric state 同质异能态isomeric transition 同质异能跃迁isomerism 同质异能性isomerization energy 同质异能化能isometric process 等容过程isomorphism 同构isopycnic 等密度的isopycnic line 等密度线isospace 电荷空间isospin 同位旋isostasy 地壳均衡说isostere 等比容线isosteric molecule 电子等排分子isotherm 等温线isothermal 等温的isothermal atmosphere 等温大气isothermal change 等温变化isothermal equilibrium 等温平衡isothermal expansion 等温膨胀isothermal process 等温过程isotone 同中子素isotope 同位素isotope analysis 同位素分析isotope effect 同位素效应isotope incoherence 同位素非相干性isotope separation 同位素分离isotope separator 同位素分离器isotope shift 同位素位移isotopic abundance 同位素丰度isotopic dating 同位素测年龄isotopic invariance 同位旋不变性isotopic spin 同位旋isotopic tracer 示踪同位素isotropic scattering 蛤同性散射isotropic turbulence 蛤同性湍流isotropic universe 蛤同性宇宙isotropy 蛤同性iterative method 迭代法itinerant electron 巡回电子itinerant electron magnetism 遍历电子磁性。

基于朗道-利夫席茨-吉尔伯特方程的自旋阀动力学研究进展

基于朗道-利夫席茨-吉尔伯特方程的自旋阀动力学研究进展郭子政【摘要】巨磁阻效应的发现开辟了自旋电子学研究的新时代.目前,自旋电子学已经发展成为与磁学、半导体、微电子学、凝聚态物理等学科紧密结合的新学科.在自旋电子学研究中自旋阀结构,包括垂直自旋阀和横向自旋阀,发挥了至关重要的作用并成为各类自旋电子器件设计的基础.借助于各种自旋阀器件,人们又相继发现了Slonzeweski自旋转移矩、类场矩、自旋霍尔效应、自旋轨道矩等重要物理效应.本文将综述这些物理效应的概念及应用前景、面向应用需要解决的问题等等.我们将重点关注基于朗道-利夫席茨-吉尔伯特方程的动力学研究的进展情况.【期刊名称】《信息记录材料》【年(卷),期】2014(015)003【总页数】9页(P56-64)【关键词】自旋阀;自旋转矩;自旋轨道矩;朗道-利夫席茨-吉尔伯特方程【作者】郭子政【作者单位】华南农业大学理学院应用物理系,广州510642【正文语种】中文【中图分类】TQ581 引言电子学的发展和应用已有一百多年的历史,但电路和电子器件中所利用和研究的基本上只是电流,也就是电荷的流动,与自旋完全无关。

所以,目前的所谓电子器件实际上是以大量电子行为为基础的“电流”器件,应用的电子学也实际上是“电荷”电子学。

目前电荷电子学的发展遇到困难,主要有3点:第1,经典极限问题。

目前的多数电子器件中的电子运动服从经典的理论。

目前由于器件尺寸不断减小,电子的隧道效应发生几率不断增加。

当器件减少到纳米尺度时随时可能会引发量子效应而导致电子的非经典行为;第2,功耗问题。

随着芯片的集成度和时间速度的大幅提高,电子在电路中流动的速度越来越快,功耗也会成倍增大,并最终导致芯片不能正常工作;第3,逻辑与记忆分离问题。

目前的计算机仍然属于冯诺依曼型计算机,即计算机的长期储存部分(硬盘)和逻辑部分是明显分开的,记忆功能集中在硬盘上,逻辑功能集中在CPU上,互相之间有一定距离,传递信息的速度很慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Inhomogeneous magnetic behavior of Pr0.7Ca0.3CoO3 andNd0.7Ca0.3CoO3Asish K. Kundu a, E.V. Sampathkumaran b, K.V. Gopalakrishnan b, C.N.R. Rao a,*a Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for AdvancedScientific Research, Jakkur PO, Bangalore - 560064, India.b Department of Condensed Matter Physics & Materials Science, Tata Institute ofFundamental Research, Mumbai - 400 005, India.AbstractUnlike La0.7Ca0.3CoO2.97, Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO2.95 do not show distinct ferromagnetic transitions, but instead they exhibit very low magnetic moments down to 50 K. A detail study of magnetic properties of Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO2.95 shows that the materials are inhomogeneous, exhibiting properties similar to those of frustrated magnetic systems. In both these cobaltates, small ferromagnetic clusters seem to be present in an antiferromagnetic host.PACS: 72.80.Ga; 72.15.E; 74.25.Ha; 75.50.LkKeywords: Transition-metal oxides; Rare-earth compounds; Magnetic Properties; Spin-glassesCorresponding author. Tel.: +91-80-23623075; fax: +91-80-23622760E-mail address: cnrrao@jncasr.ac.in (C.N.R. Rao).1.IntroductionInvestigations of rare earth manganates of the general formula Ln1-x A x MnO3 (Ln = rare earth, A = alkaline earth) have revealed remarkable aspects of these materials which include colossal magnetoresistance (CMR), charge ordering (CO), orbital ordering as well as electronic phase separation [1-4]. Properties of these materials are crucially controlled by the average radius of the A-site cation, <r A> [3-7]. Thus, while La0.7Ca0.3MnO3 (<r A> = 1.205 Å) shows insulator to metal transition and ferromagnetism, with metallicity associated with ferromagnetism at low temperatures [3, 4, 8], Pr0.7Ca0.3MnO3 with a smaller <r A> (1.179 Å) shows no ferromagnetism or insulator to metal transition. Instead, the latter manganate exhibits charge ordering, orbital ordering and electronic phase separation [3, 4, 9]. We were interested in exploring whether the analogous cobaltates of general formula Ln1-x A x CoO3 (Ln = rare earth, A = alkaline earth) exhibit similar features. In this cobaltate system, the x = 0.3 composition is ferromagnetic and metallic when Ln = La and A = Sr or Ca [10-15] and also when Ln = Pr and A = Sr [15-17]. A cluster-glass behavior has also been suggested at low temperatures in these materials [11], but this has not been entirely established [14]. We considered it important to investigate the properties of Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO3, with smaller <r A> values of 1.179 and 1.168 Å respectively, to examine how their properties vary from those of La0.7Ca0.3CoO3 (<r A> = 1.354 Å).2. Experimental ProcedurePolycrystalline samples of Ln0.7Ca0.3CoO3-δ(Ln = La, Pr, Nd) were prepared by the conventional ceramic method. Stoichiometric mixtures of the respective rare earth oxides, alkaline earth carbonates and Co3O4 were weighed in desired proportions and milled for few hours with propanol. After the mixed powders were dried, they were calcined in air at 950 o C followed by heating at 1000 and 1100 o C for 12h each in air. The powders thus obtained were pelletized and the pellets sintered at 1200 o C for 12h in air. To improve the oxygen stoichiometry the samples were annealed in an oxygen atmosphere at a lower temperature (≤ 900 o C). The oxygen stoichiometry was determined by iodometric titrations, the error in the determination being ± 0.02. The oxygen stoichiometry in the Ln0.7Ca0.3CoO3-δ (Ln = La, Pr, Nd)thus obtained were 2.97, 3.00 and 2.95 respectively in the La, Pr and Nd derivatives.The phase purity of the samples was established by recording the X-ray diffraction patterns in the 2θ range of 10°-80° with a Seiferts 3000 TT diffractometer, employing Cu-Kα radiation. The unit cell parameters of Ln0.7Ca0.3CoO3-δ(Ln = La, Pr, Nd) are listed in Table 1 along with the weighted average radius <r A>. The <r A>, values were calculated using the Shannon radii for 12-coordination in the case of rhombohedral cobaltates, and for 9-coordination in the case of the orthorhombic ones. The uncertainties in the unit cell parameters are ± 0.004 Å. Magnetization measurements were made with a vibrating sample magnetometer (Lakeshore 7300) and with a SQUID magnetometer (Quantum Design). Electrical resistivity (ρ) measurements were carried out by the four-probe method with silver epoxy as the electrodes in the 300 – 20 K temperature ranges.3. Results and discussionPreliminary measurements (at 1 kOe) of the DC magnetic susceptibilities of Ln0.7Ca0.3CoO3-δwith Ln = La, Pr, Nd showed that while La0.7Ca0.3CoO2.97 clearly exhibits a ferromagnetic transition (T c ∼175 K), Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO2.95 do not show distinct ferromagnetic transitions down to 50 K (Fig. 1a). There is a slight increase in the susceptibility of Pr0.7Ca0.3CoO3 around 75 K, but this is not due to a genuine ferromagnetic transition. The magnetic behavior of a single crystal of Pr0.7Ca0.3CoO3 is similar to that of the polycrystalline sample (see inset of Fig. 1a). On the basis of the <r A> values, the ferromagnetic T c’s of Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO3 would be expected to be well above 100 K. Electrical resistivities of these cobaltates are also much higher (Fig. 1b). The large drop in the magnetic moment at low temperatures in the Pr and Nd derivatives is noteworthy. In order to understand the nature of these materials, we have investigated the magnetic properties of Pr0.7Ca0.3CoO3 in detail, down to low temperatures.In Fig. 2 we show the temperature variation of the DC magnetic susceptibility of Pr0.7Ca0.3CoO3 in the zero-field-cooled (ZFC) and field-cooled (FC) states (H = 100 Oe). There is considerable divergence in the ZFC and FC behavior just as in magnetically frustrated systems [11]. The data show two broad transitions around 60 K and 30 K. Measurements carried out at 5 kOe, however, do not reveal the two peaks (Fig 3), suggesting that the intermediate temperature range M-H behavior of this material is rather complex at low fields. The data in Fig. 3 suggest that magnetic ordering sets in around 75 K with the susceptibility going through a broad maximum around 15 K. Inversemagnetic susceptibility data, shown in the inset of Fig 3, yield a Curie temperature (θp) of - 30 K. The high temperature linear region of the inverse susceptibility data gives a magnetic moment of 4.7 µB. The shape of χ – T plot below 75 K is rather complex, not typical of normal ferromanets. It appears as though there is a spread of magnetic transition temperatures due to local environmental effects.In Fig. 4, we show the M – H behavior of Pr0.7Ca0.3CoO3. The behavior is rather complex especially in the temperature range of 25 – 60 K. The plots remain nonlinear upto 120 kOe even at 5 K. The behavior is unlike of ferromagnets and is somewhat comparable to that of frustrated systems. Extrapolation of the M – H data in the high field region to zero field gives a saturation moment of around 0.4 µB. The small value of the moment on cobalt in the apparently ferromagnetic state, compared with the value in the paramagnetic state, indicates itinerant ferromagnetism, which is possible because the material is conducting. From Fig. 5 we see that there is hysteresis at 5 K even at low fields, suggesting a ferromagnet-like behavior. The width of the hysteresis loop decreases markedly with increasing temperature. The above results reveal that ferromagnetic and antiferromagnetic interactions coexist at low temperatures, with the small conducting ferromagnetic domains or clusters giving rise to a small magnetic moment.AC susceptibility measurements (Fig. 6)show that the low-temperature transition has a frequency dependence of about 1.3 K, as the frequency is increased from 1.3 to 1330 Hz. The 60 K peak, however, shows little shift (Fig. 6). The position of the low temperature peak in the AC susceptibility data at 1.3 Hz, for which the field of measurement is 1 Oe, occurs at 37.4 K, and shifts to lower temperatures at higher fields.Thus, for H = 100 and 5000 Oe, the peak occurs at 31.5 and 12.7 K respectively. Because of the inhomogeneous nature, it is difficult to clearly assign one temperature for the bulk transition in this cobaltate, although the first transition clearly occurs around 60 K. While we have compared the inhomogeneous nature of Pr0.7Ca0.3CoO3 at low temperatures to that of cluster or spin-glasses [11], isothermal remnant magnetization measurements in the 5 – 60 K range rule out that the material is actually a glass. Thus, isothermal remnant magnetization is time-independent and does not decay logarithmically or exponentially. We, therefore, conclude that the behavior of Pr0.7Ca0.3CoO3 represents a special case of electronic phase separation.We have carried out studies on polycrystalline Nd0.7Ca0.3CoO2.95 as well. This sample also shows divergence in the ZFC and FC behavior at H = 100 Oe (Fig. 7), but the divergence is not marked as much as in Pr0.7Ca0.3CoO3. The ZFC data seems to suggest two close transitions between 0 and 20 K. The DC susceptibility data at high fields (H = 5 kOe) shows one distinct transition around 20 K (Fig. 8). The inverse magnetic susceptibility data yield a θp value – 170 K. The M – H behavior of this cobaltate is also nonlinear just as Pr0.7Ca0.3CoO3. The material shows narrow hysteresis below 5 K and below, at high fields (see inset Fig. 8).The electronic phase separation and associated magnetic properties of Pr0.7Ca0.3CoO3 and Nd0.7Ca0.3CoO2.95 arise because of the small average size of the A-site cations. In these two cobaltates, the average radius (for orthorhombic structure) is less than 1.18 Å, which is the critical value only above which long-range ferromagnetism manifests itself [18]. It is known that increase in size disorder and decrease in size favor phase separation.4. ConclusionsPr0.7Ca0.3CoO3 does not show a sharp ferromagnetic transition down to 50 K. There is large divergence between the DC magnetic susceptibility of the ZFC and FC sample. The magnetization is nonlinear with field. AC susceptibility data show evidence for a magnetic transition around 60 K and a frequency-dependent transition at low temperatures. Isothermal remnant magnetization measurements, however, reveal that the cobaltate is not a spin-glass. Properties of Nd0.7Ca0.3CoO2.95 are not unlike those of the Pr analogue. These various features indicate that these cobaltates are magnetically inhomogeneous, with small ferromagnetic clusters or domains being present in an antiferromagnetic matrix.AcknowledgementsThe authors would like to thank BRNS (DAE), India for support of this research.A. K. K wants to thank University Grants Commission, India for fellowship award.References[1] C.N.R. Rao and B. Raveau (Ed.) Colossal Magnetoresistance, Charge Ordering andRelated Properties of Manganese Oxides (Singapore: World Scientific) 1998.[2] A.P. Ramirez, J. Phys.: Condens. Matter 9 (1997) 8171.[3] C.N.R. Rao, J. Phys. Chem. B 104 (2000) 5877.[4] C.N.R. Rao, P.V. Vanitha, Curr. Opin. Solid State Mater. Sci. 6 (2002) 97.[5] H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio and B. Batlogg, Phys. Rev.Lett. 75 (1995) 914.[6] P.M. Woodward, T Vogt, D.E. Cox, A. Arulraj, C.N.R. Rao, P. Karen, A.K.Cheetam, Chem. Mater. 10 (1998) 3652.[7] N. Kumar, C.N.R. Rao, J. Solid State Chem. 129 (1997) 363.[8] E.O. Wollan, W.C. Koehler, Phys. Rev. 100 (1955) 545.[9] Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, Y. Tokura, Phys. Rev. B 53(1996) R1689.[10] G.H. Jonker, J.H. van Santen, Physica 19 (1953) 120.[11] M. Itoh, I. Natori, S. Kubota, K. Matoya, J. Phys. Soc. Jpn. 63 (1994) 1486.[12] H. Taguchi, M. Shimada, M. Koizumi, J. Solid State Chem. 41 (1982) 329.[13] N. Gayathri, A.K. Roychaudhuri, S.K. Tiwary, R. Gundakaram, A. Arulraj, C.N.R.Rao, Phys. Rev. B 56 (1997) 1345.[14] R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Physica B 271 (1999) 116.[15] C.N.R. Rao, O. Parkash, D. Bahadur, P. Ganguly, S. Nagabhushana, J. Solid StateChem. 22 (1977) 353.[16] H.W. Brinks, H. Fjellvag, A. Kjekshus, B.C. Hauback, J. Solid State Chem. 147(1999) 464.[17] K. Yoshii, A Nakamura, Physica B 281 & 282 (2000) 514.[18] L. Sudheendra, C.N.R. Rao, J. Phys.: Condens. Matter 15 (2003) 3029.Figure captionsFig. 1 Temperature dependence of (a) the magnetic susceptibility, χ, (H = 1000 Oe) and (b) the electrical resistivity, ρ, of Ln0.7Ca0.3CoO3-δ (Ln = La, Pr or Nd). The inset in (a) shows the magnetic susceptibility, χ, and inverse magnetic susceptibility, χ-1, of Pr0.7Ca0.3CoO3 for single crystal and polycrystalline samples.Fig. 2 Temperature dependence of magnetic susceptibility, χ, of Pr0.7Ca0.3CoO3 (H = 100 Oe). Solid and dotted lines represent zero-field-cooled (ZFC) and field-cooled (FC) data respectively.Fig. 3 Temperature dependence of magnetic susceptibility, χ, (H = 5000 Oe) of Pr0.7Ca0.3CoO3. The inset shows the temperature dependence of inverse magnetic susceptibility, χ-1, (H = 5000 Oe).Fig. 4 The high field magnetization curve of Pr0.7Ca0.3CoO3 at low temperatures.Fig. 5 Low field magnetic hysteresis of Pr0.7Ca0.3CoO3 at low temperatures.Fig. 6 AC- magnetic susceptibility data of Pr0.7Ca0.3CoO3 at 1 Oe.Fig. 7 Temperature dependence of the magnetic susceptibility, χ, of Nd0.7Ca0.3CoO2.95 (H = 100 Oe). Solid and dotted lines represent zero-field-cooled (ZFC) and field-cooled (FC) data respectively.Fig. 8 Temperature dependence of magnetic susceptibility, χ, of Nd0.7Ca0.3CoO2.95 (H = 5000 Oe). The inset shows low temperatures hysteresis.Table 1.Crystal Structure data of Ln0.7Ca0.3CoO3-δ(Ln = La, Pr, Nd)Lattice parameters (Å)Composition 〈r A〉(Å) Spacegroup a b cV(Å3)La0.7Ca0.3CoO2.97 1.354 R⎯3C 5.3906 - - 111.60 Pr0.7Ca0.3CoO3.00 1.179 Pnma 5.3577 7.5774 5.3436 216.94 Nd0.7Ca0.3CoO2.95 1.168 Pnma 5.3460 7.5638 5.3287 215.47100200300123χ(e m u /m o l )T(K)010020030010-310-210-1ρ(Ω.c m )T(K)020406080100120246810ZFCFCPr 0.7Ca 0.3CoO 3H = 100 Oeχ (e m u /m o l )T (K)501001502002500.00.10.20.3χ-1(m o l /e m u )Pr 0.7Ca 0.3CoO 3H = 5 kOeχ (e m u /m o l )T (K)8016024050100150 < T < 250 θp = -30 K µeff = 4.68 /f.u.T(K)204060801001200.20.40.60.8M (µB /f .u .)H (kOe)-10-50510-0.4-0.20.00.20.4M (µB /f .u .)H (kOe)1530450.00.51.01.52.0ZFCFCNd 0.7Ca 0.3CoO 3H = 100 Oeχ(e m u /m o l )T(K)1002003000.000.050.100.150.20χ(e m u /m o l )T(K)。

相关文档
最新文档