基于MATLAB下的16QAM仿真精编版

合集下载

MATLAB环境下16QAM调制及解调仿真程序说明(精)

MATLAB环境下16QAM调制及解调仿真程序说明(精)

姓名:NikeyMATLAB环境下环境下环境下环境下16QAM调制及解调仿真调制及解调仿真调制及解调仿真调制及解调仿真程序说明程序说明程序说明程序说明一、正交调制及相干解调原理框图正交调制原理框图相干解调原理框图二、MQAM调制介绍及本仿真程序的几点说明 MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。

为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。

为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。

三、仿真结果图附源程序代码:main_plot.m clear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N; %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc; %对基带信号进行16QAM调制y1=y; y2=y; %备份信号,供后续仿真用T=length(info/fb; m=fs/fb; nn=length(info;dt=1/fs; t=0:dt:T-dt;subplot(211;%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000,y(1:1000,t(1:1000,I(1:1000,t(1:1000,Q(1:1000,[0 35],[0 0],'b:';title('已调信号(In:red,Qn:green';%傅里叶变换,求出已调信号的频谱n=length(y; y=fft(y/n; y=abs(y(1:fix(n/2*2;q=find(y<1e-04; y(q=1e-04; y=20*log10(y;f1=m/n; f=0:f1:(length(y-1*f1;subplot(223;plot(f,y,'r';grid on;title('已调信号频谱'; xlabel('f/fb';%画出16QAM调制方式对应的星座图subplot(224;constel(y1,fs,fb,fc; title('星座图';SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dBy_add_noise=awgn(y2,SNR_in_dB(j; %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc; %对已调信号进行解调 numoferr=0; for i=1:Nif (y_output(i~=info(i,numoferr=numoferr+1;end;end;Pe(j=numoferr/N; %统计误码率end; figure;semilogy(SNR_in_dB,Pe,'red*-';grid on;xlabel('SNR in dB';ylabel('Pe';title('16QAM调制在不同信道噪声强度下的误码率';random_binary.m %产生二进制信源随机序列function [info]=random_binary(Nif nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元 N=10000; end;for i=1:N,temp=rand;if (temp<0.5,info(i=0; % 1/2的概率输出为0elseinfo(i=1; % 1/2的概率输出为1endend;qam.m function [y,I,Q]=qam(x,Kbase,fs,fb,fc;%T=length(x/fb; m=fs/fb; nn=length(x;dt=1/fs; t=0:dt:T-dt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映射I=x(1:2:nn-1; [I,In]=two2four(I,4*m;Q=x(2:2:nn; [Q,Qn]=two2four(Q,4*m;if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4; Q=bshape(Q,fs,fb/4;end;y=I.*cos(2*pi*fc*t-Q.*sin(2*pi*fc*t; %调制qamdet.m %QAM信号解调function [xn,x]=qamdet(y,fs,fb,fc;dt=1/fs; t=0:dt:(length(y-1*dt;I=y.*cos(2*pi*fc*t;Q=-y.*sin(2*pi*fc*t;[b,a]=butter(2,2*fb/fs; %设计巴特沃斯滤波器 I=filtfilt(b,a,I; Q=filtfilt(b,a,Q;m=4*fs/fb; N=length(y/m; n=(.6:1:N*m; n=fix(n;In=I(n; Qn=Q(n; xn=four2two([In Qn];%I分量Q分量并/串转换,最终恢复成码元序列xn nn=length(xn; xn=[xn(1:nn/2;xn(nn/2+1:nn];xn=xn(:; xn=xn';bshape.m %基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay;%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs;y=filter(b,1,x;two2four.m %二进制转换成四进制function [y,yn]=two2four(x,m;T=[0 1;3 2]; n=length(x; ii=1;for i=1:2:n-1;xi=x(i:i+1+1;yn(ii=T(xi(1,xi(2;ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:'; %映射电平分别为-1.5;0.5;0.5;1.5four2two.m %四进制转换成二进制function xn=four2two(yn;y=yn; ymin=min(y; ymax=max(y; ymax=max([ymax abs(ymin];ymin=-abs(ymax; yn=(y-ymin*3/(ymax-ymin;%设置门限电平,判决I0=find(yn< 0.5; yn(I0=zeros(size(I0;I1=find(yn>=0.5 & yn<1.5; yn(I1=ones(size(I1;I2=find(yn>=1.5 & yn<2.5; yn(I2=ones(size(I2*2; I3=find(yn>=2.5; yn(I3=ones(size(I3*3;%一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn;for i=1:n;xn(i,:=T(yn(i+1,:;end;xn=xn'; xn=xn(:; xn=xn';constel.m %画出星座图function c=constel(x,fs,fb,fc;N=length(x; m=2*fs/fb; n=fs/fc;i1=m-n; i=1; ph0=(i1-1*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1;y=2*fft(xi/n; c(i=y(2;i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c;ph=(0:5:360*pi/180;plot(1.414*cos(ph,1.414*sin(ph,'c';hold on;for i=1:length(c;ph=ph0-angle(c(i;a=abs(c(i/cmax*1.414;plot(a*cos(ph,a*sin(ph,'r*';end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:'; hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]; end;。

基于MATLAB的16QAM通信系统仿真毕业设计说明书

基于MATLAB的16QAM通信系统仿真毕业设计说明书

毕业设计说明书基于MATLAB的16QAM通信系统仿真摘要随着现在的通信技术的飞速发展,特别是移动通信技术,因频谱资源的限制,传统的通信系统容量开始不能满足目前用户需求,因此通信技术专家越来越关注频带利用率的问题。

如何提高频谱利用率以及高功率谱密度是我们追求的目标。

而正交振幅调制(Quadrature Amplitude Modulation,QAM)是一种振幅和相位联合键控,由于高频谱利用率和高功率谱密度等优点,它已成为了大容量数字微波、宽带无线接入和无线视频通信的一种重要技术方案。

本论文先介绍了16进制的正交振幅调制信号(16QAM)的调制解调原理,再利用MATLAB平台构建完整的16QAM通信系统,实现16QAM的调制解调系统的仿真,以及分析该系统性能。

以此证明16QAM调制技术相对其他调制方式的优点。

关键词:调制解调;正交振幅调制;MATLAB仿真ABSTRACTWith the rapid development of modern communication technology, especially mobile communications technology, the capacity of traditional communication systems can not meet the requirements of the current user. And because of the limited spectrum resource, the problem of bandwidth efficiency is growing concerned of experts in the field of communications. So finding the way that how to improve the spectrum efficiency and high power spectral density is our goal. Quadrature amplitude modulation (QAM) with its high spectral efficiency and high power spectral density and other advantages, becomes important to those communication application that include the large-capacity digital microwave technology solutions, broadband wireless access and wireless video communications, and so on.This article describes the principle of modulation and demodulation of 16QAM, then builds a complete communication system of 16QAM based on MATLAB, which is to realize the simulation of 16QAM modem system and to analyse the performance of the system.It can prove that 16QAM modulation technology is more superior than the other.Key words:modem system; qam;matlab目录1 绪论 (1)1.1 课题研究的意义 (1)1.2 国内外研究状况 (1)1.3 研究内容与章节安排 (2)2 课题理论基础 (3)2.1 调制解调的定义 (3)2.2 正交振幅调制 (4)2.2.1 QAM简介 (4)2.2.2 16QAM调制解调原理 (6)3 基于MATLAB的16QAM通信系统仿真 (9)3.1 MATLAB简介 (9)3.1.1 MATLAB介绍 (9)3.1.2 MATLAB语言特点 (9)3.2 16QAM调制解调仿真程序流程框图 (10)3.3 调制仿真模块 (11)3.3.1 信号源 (11)3.3.2 串/并变换 (11)3.3.3 2-4电平转换 (11)3.3.4 成形滤波器 (12)3.3.5 调制 (14)3.3.6 画星座图 (15)3.4 已调信号的噪声叠加 (16)3.5 解调仿真模块 (16)3.5.1 低通滤波器 (16)3.5.2 4-2电平转换 (16)3.5.3 并/串变换 (17)3.5.4 解调 (17)3.6 仿真结果 (18)4 16QAM通信系统的性能分析 (21)4.1 16QAM抗噪声性能 (21)4.2 16QAM频带利用率 (22)4.3 16QAM信号在AWGN信道下的性能 (22)4.4. 16QAM和16PSK的性能比较 (23)5 总结与展望 (25)5.1 总结 (25)5.2 未来展望 (26)参考文献 (27)致谢 (29)附录:主程序 (30)1 绪论1.1 课题研究的意义随着现代的通信技术的飞速发展,特别是移动通信技术,因为频谱资源的限制,传统的通信系统的容量开始不能满足目前用户的需求,因此通信技术专家越来越关注频带利用率的问题。

基于Matlab的16QAM通信系统的设计与仿真.

基于Matlab的16QAM通信系统的设计与仿真.

淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目:16QAM通信系统性能分析与MATLAB仿真系(院):电子工程学院学期:2013-2014-2专业班级:姓名:学号:基于Matlab的16QAM通信系统的设计与仿真1绪论1.1 研究背景与研究意义应用MATLAB的编程方法和功能模块可以搭建各种仿真系统,还可以应用丰富的时间域、频率域、相位域的仿真测量仪器。

许多新一代通信系统的系统级仿真程序出现在MATLAB软件的演示实例中,这使得学习的效率大为提高,对技术与系统的理解已经从概念深入到电路方案和选取层面。

Simulink是Mathworks公司推出的基于Matlab平台的著名仿真环境。

Simulink作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。

QAM(Quadrature Amplitude Modulation):正交振幅调制。

正交振幅调制,这是近年来被国际上移动通信技术专家十分重视的一种信号调制方式。

QAM是数字信号的一种调制方式,在调制过程中,同时以载波信号的幅度和相位来代表不同的数字比特编码,把多进制与正交载波技术结合起来,进一步提高频带利用率。

正交调幅是一种将两种调幅信号汇合到一个信道的方法,因此会双倍扩展有效带宽。

正交调幅被用于脉冲调幅,特别是在无线网络应用。

1.2 课程设计的目的和任务随着现代通信技术的发展,特别是移动通信技术高速发展,频带利用率问题越来越被人们关注。

在频谱资源非常有限的今天,传统通信系统的容量已经不能满足当前用户的要求。

正交幅度调制QAM(Quadrature Amplitude Modulation)以其高频谱利用率、高功率谱密度等优势,成为宽带无线接入和无线视频通信的重要技术方案。

首先介绍了QAM调制解调原理,提出了一种基于MATLAB的16QAM 系统调制解调方案,包括串并转换,2-4电平转换,抽样判决,4-2电平转换和并串转换子系统的设计,对16QAM的星座图和调制解调进行了仿真,并对系统性能进行了分析,进而证明16QAM调制技术的优越性。

基于MATLAB的16QAM通信系统的仿真

基于MATLAB的16QAM通信系统的仿真

【摘要】随着现代通信技术的发展,特别是移动通信技术高速发展,频带利用率问题越来越被人们关注。

在频谱资源非常有限的今天,传统通信系统的容量已经不能满足当前用户的要求。

正交幅度调制QAM(Quadrature Amplitude Modulation)以其高频谱利用率、高功率谱密度等优势,成为宽带无线接入和无线视频通信的重要技术方案。

本文首先介绍了QAM调制解调原理,提出了一种基于MATLAB的16QAM系统调制解调方案,对16QAM的星座图和调制解调进行了仿真,并对系统性能进行了分析,进而证明16QAM调制技术的优越性。

【关键词】正交振幅调制;MATLAB;调制解调;仿真一调制简介调制在通信系统中的作用至关重要。

所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。

广义的调制分为基带调制和带通调制(也称载波调制)。

载波调制,就是用调制信号去控制载波的参数的过程,即使载波的某一个或某几个参数暗中啊调制信号的规律而变化。

调制信号是指来自信源的消息信号(基带信号),这些信号可以是模拟的,也可以是数字的。

未受调制的周期性震荡信号称为载波,它可以是正弦波,也可以使非正弦波(如周期性脉冲序列)。

载波调制后称为已调信号,它含有调制信号的全部特征。

基带信号对载波的调制是为了实现下列一个或多个目标:第一,在无线传输中,信号是以电磁波的形式通过天线辐射到空间的。

为了获得较高的辐射效率,天线的尺寸必须与发射信号波长相比拟,而基带信号包含的较低频率分量的波长较长,只是天线过长而难以实现。

但若通过调制,把基带信号的频谱搬至较高的载波频率上,是已调信号的频谱与信道的带通特性相匹配,这样就可以提高传输性能,以较小的发送功率与较短的天线来辐射电磁波。

第二,把多个基带信号分别搬移到不同的载频处,以实现信道的多路复用,提高信道利用率。

第三,扩展信号带宽,提高系统抗干扰、抗衰落能力,还可实现传输带宽与信噪比之间的互换。

因此,调制对通信系统的有效性和可靠性有着很大的影响和作用。

16QAM仿真代码(matlab)

16QAM仿真代码(matlab)

% 16QAM 系统仿真function [ ber_AWGN,ber_Ray] = M16QAM()EbN0dB=1:3:30;EbN0dB1=1:10;N=4*100000;for ii=1:length(EbN0dB)sigma2(ii)=2.5/(2*4*(10^(EbN0dB(ii)/10)));sigma21(ii)=2.5/(2*4*(10^(EbN0dB1(ii)/10)));bits=randint(1,N);%调制s=M16QAM_modulate(bits,length(bits(:)));% Rayleign信道干扰noise=sqrt(sigma2(ii))*( randn(1,N/4)+ 1i*randn(1,N/4) );h= sqrt(0.5)*(randn(1,N/4) + 1i*randn(1,N/4) );receiver=s.*h+noise; %Rayleign 衰减信道% 高斯信道干扰noise1=sqrt(sigma21(ii))*( randn(1,N/4)+ 1i*randn(1,N/4) );receiver1=s+noise1; %高斯信道% 信道均衡receiver = receiver./h;%解调并计算误码率Rayleign信道demodata = M16QAM_demodulate( receiver,length(receiver(:)) );errCount=sum(abs(bits-demodata));ber_Ray(ii)=errCount/N;%解调并计算误码率高斯信道demodata = M16QAM_demodulate( receiver1,length(receiver1(:)) );errCount=sum(abs(bits-demodata));ber_AWGN(ii)=errCount/N;endend% 16QAM 调制function [ s ] = M16QAM_modulate( bits,N)ii=0;for i=1:4:Nii=ii+1;if bits(i)==0&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*pi/4);elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*3*pi/4);elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*5*pi/4);elseif bits(i)==0&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*7*pi/4);elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*atan(1/3));elseif bits(i)==0&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*atan(3));elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+pi/2));elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*(pi-atan(1/3)));elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+pi));elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*(3*pi/2-atan(1/3)));elseif bits(i)==0&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+3*pi/2));elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*(2*pi-atan(1/3)));elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*pi/4);elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*3*pi/4);elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*5*pi/4);elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*7*pi/4);endendend% 16 QAM 解调function [ demodata ] = M16QAM_demodulate( receiver ,N)A=[0 1 0 1; -1 0 0 1;-1 0 -1 0;0 1 -1 0;1 inf 0 1;0 1 1 inf;-1 0 1 inf;-inf -1 0 1;-inf -1 -1 0;-1 0 -inf -1;0 1 -inf -1;1 inf -1 0;1 inf 1 inf;-inf -1 1 inf;-inf -1 -inf -1;1 inf -inf -1];for k=1:Nif (real(receiver(k))>=A(1,1))&&(real(receiver(k))<A(1,2))&&...(imag(receiver(k))>=A(1,3))&&(imag(receiver(k))<A(1,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(2,1))&&(real(receiver(k))<A(2,2))...&&(imag(receiver(k))>=A(2,3))&&(imag(receiver(k))<A(2,4)) demodata(k*4-3)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(3,1))&&(real(receiver(k))<A(3,2))...&&(imag(receiver(k))>=A(3,3))&&(imag(receiver(k))<A(3,4)) demodata(k*4-3)=1;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(4,1))&&(real(receiver(k))<A(4,2))...&&(imag(receiver(k))>=A(4,3))&&(imag(receiver(k))<A(4,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(5,1))&&(real(receiver(k))<A(5,2))...&&(imag(receiver(k))>=A(5,3))&&(imag(receiver(k))<A(5,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(6,1))&&(real(receiver(k))<A(6,2))...&&(imag(receiver(k))>=A(6,3))&&(imag(receiver(k))<A(6,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(7,1))&&(real(receiver(k))<A(7,2))...&&(imag(receiver(k))>=A(7,3))&&(imag(receiver(k))<A(7,4)) demodata(k*4-3)=1;demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(8,1))&&(real(receiver(k))<A(8,2))...&&(imag(receiver(k))>=A(8,3))&&(imag(receiver(k))<A(8,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(9,1))&&(real(receiver(k))<A(9,2))...&&(imag(receiver(k))>=A(9,3))&&(imag(receiver(k))<A(9,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(10,1))&&(real(receiver(k))<A(10,2))...&&(imag(receiver(k))>=A(10,3))&&(imag(receiver(k))<A(10,4)) demodata(k*4-3)=1;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=1;elseif (real(receiver(k))>=A(11,1))&&(real(receiver(k))<A(11,2))...&&(imag(receiver(k))>=A(11,3))&&(imag(receiver(k))<A(11,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=1;elseif (real(receiver(k))>=A(12,1))&&(real(receiver(k))<A(12,2))...&&(imag(receiver(k))>=A(12,3))&&(imag(receiver(k))<A(12,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(13,1))&&(real(receiver(k))<A(13,2))...&&(imag(receiver(k))>=A(13,3))&&(imag(receiver(k))<A(13,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(14,1))&&(real(receiver(k))<A(14,2))...&&(imag(receiver(k))>=A(14,3))&&(imag(receiver(k))<A(14,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(15,1))&&(real(receiver(k))<A(15,2))...&&(imag(receiver(k))>=A(15,3))&&(imag(receiver(k))<A(15,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=1;elseif (real(receiver(k))>=A(16,1))&&(real(receiver(k))<A(16,2))...&&(imag(receiver(k))>=A(16,3))&&(imag(receiver(k))<A(16,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=1;end endend。

Matlab环境中16-QAM的性能仿真

Matlab环境中16-QAM的性能仿真

Matlab环境下16-QAM仿真1.原理框图2.matlab程序:clear all;nsymbol=100000;%每种信噪比下的发送符号数M=16;%16-QAMgraycode=[0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10];%格雷码编码规则EsN0=5:20;%信噪比的范围snr1=10.^(EsN0/10);%将dB值转化成线性值msg=randint(1,nsymbol,M);%由0-15的整数值组成的均匀随机数msg1=graycode(msg+1);%将随机数映射成格雷码msgmod=qammod(msg1,M);%16-QAM调制spow=norm(msgmod).^2/nsymbol;%求出每个符号的平均功率for indx=1:length(EsN0)sigma=sqrt(spow/(2*snr1(indx))) ;%根据符号功率求出噪声功率rx=msgmod+sigma*(randn(1,length(msgmod))+j*randn(1,length(msgmod)));%混入高斯加性白噪声y=qamdemod(rx,M);%16-QAM的解调decmsg=graycode(y+1);%格雷码的逆映射[err,ber(indx)]=biterr(msg,decmsg,log2(M));%求误比特率[err,ser(indx)]=symerr(msg,decmsg);%求误符号率Endp4=2*(1-1/sqrt(M)*qfunc(sqrt(3*snr1/(M-1))));ser1=1-(1-p4).^2;%理论误符号率ber1=1/log2(M)*ser1;%理论误比特率semilogy(EsN0,ber,'o',EsN0,ser,'*',EsN0,ser1,EsN0,ber1,'-k.');title('16-QAM载波调制信号在AWGN信道下的性能');xlabel('Es/N0');ylabel('误比特率和误符号率');legend('误比特率','误符号率','理论误符号率','理论误比特率');scatterplot(msgmod);%画出调制之后的星座图title('16-QAM调制之后的星座图');xlabel('同相分量');ylabel('正交分量');scatterplot(rx);%画出混入高斯加性白噪声后的星座图title('16-QAM信号经过AWGN信道之后的星座图');xlabel('同相分量');ylabel('正交分量');程序说明:先将均匀随机数映射成格雷码,再用qammod函数实现16-QAM调制,已调信号由分别表示幅度和相位的两部分数据构成。

MATLAB环境下16QAM调制及解调仿真程序说明

创作编号:BG7531400019813488897SX创作者:别如克*姓名:NikeyMATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相干解调原理框图正交调制原理框图相干解调原理框图二、MQAM调制介绍及本仿真程序的几点说明MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。

为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。

为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。

三、仿真结果图附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N); %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); %对基带信号进行16QAM调制y1=y; y2=y; %备份信号,供后续仿真用T=length(info)/fb; m=fs/fb; nn=length(info);dt=1/fs; t=0:dt:T-dt;subplot(211);%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title('已调信号(In:red,Qn:green)');%傅里叶变换,求出已调信号的频谱n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04; y=20*log10(y);f1=m/n; f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title('已调信号频谱'); xlabel('f/fb');%画出16QAM调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc); title('星座图');SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc); %对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),创作编号:BG7531400019813488897SX创作者:别如克*numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在不同信道噪声强度下的误码率');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2的概率输出为0elseinfo(i)=1; % 1/2的概率输出为1endend;qam.mfunction [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb; nn=length(x);dt=1/fs; t=0:dt:T-dt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映射I=x(1:2:nn-1); [I,In]=two2four(I,4*m);Q=x(2:2:nn); [Q,Qn]=two2four(Q,4*m);if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t); %调制qamdet.m%QAM信号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb; N=length(y)/m; n=(.6:1:N)*m; n=fix(n);In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I分量Q分量并/串转换,最终恢复成码元序列xnnn=length(xn); xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:); xn=xn';bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m创作编号:BG7531400019813488897SX创作者:别如克*%二进制转换成四进制function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; %映射电平分别为-1.5;0.5;0.5;1.5four2two.m%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]);ymin=-abs(ymax); yn=(y-ymin)*3/(ymax-ymin);%设置门限电平,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); y n(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); y n(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3;%一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';constel.m%画出星座图function c=constel(x,fs,fb,fc);N=length(x); m=2*fs/fb; n=fs/fc;i1=m-n; i=1; ph0=(i1-1)*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n; c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:');hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]);end;创作编号:BG7531400019813488897SX创作者:别如克*。

16QAM仿真代码(matlab)(可编辑修改word版)

% 16QAM 系统仿真function [ ber_AWGN,ber_Ray] = M16QAM()EbN0dB=1:3:30;EbN0dB1=1:10;N=4*100000;for ii=1:length(EbN0dB)sigma2(ii)=2.5/(2*4*(10^(EbN0dB(ii)/10)));sigma21(ii)=2.5/(2*4*(10^(EbN0dB1(ii)/10)));bits=randint(1,N);%调制s=M16QAM_modulate(bits,length(bits(:)));% Rayleign信道干扰noise=sqrt(sigma2(ii))*( randn(1,N/4)+ 1i*randn(1,N/4) );h= sqrt(0.5)*(randn(1,N/4) + 1i*randn(1,N/4) );receiver=s.*h+noise; %Rayleign 衰减信道% 高斯信道干扰noise1=sqrt(sigma21(ii))*( randn(1,N/4)+ 1i*randn(1,N/4) );receiver1=s+noise1; %高斯信道% 信道均衡receiver = receiver./h;%解调并计算误码率Rayleign信道demodata = M16QAM_demodulate( receiver,length(receiver(:)) );errCount=sum(abs(bits-demodata));ber_Ray(ii)=errCount/N;%解调并计算误码率高斯信道demodata = M16QAM_demodulate( receiver1,length(receiver1(:)) );errCount=sum(abs(bits-demodata));ber_AWGN(ii)=errCount/N;endend% 16QAM 调制function [ s ] = M16QAM_modulate( bits,N)ii=0;for i=1:4:Nii=ii+1;if bits(i)==0&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*pi/4);elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*3*pi/4);elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*5*pi/4);elseif bits(i)==0&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(2)/2*exp(1i*7*pi/4);elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*atan(1/3));elseif bits(i)==0&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*atan(3));elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+pi/2));elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*(pi-atan(1/3)));elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+pi));elseif bits(i)==1&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*(3*pi/2-atan(1/3)));elseif bits(i)==0&&bits(i+1)==0&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(10)/2*exp(1i*(atan(1/3)+3*pi/2));elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==0s(ii)=sqrt(10)/2*exp(1i*(2*pi-atan(1/3)));elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*pi/4);elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==0&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*3*pi/4);elseif bits(i)==1&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*5*pi/4);elseif bits(i)==0&&bits(i+1)==1&&bits(i+2)==1&&bits(i+3)==1s(ii)=sqrt(2)*3/2*exp(1i*7*pi/4);endendend% 16 QAM 解调function [ demodata ] = M16QAM_demodulate( receiver ,N)A=[0 1 0 1; -1 0 0 1;-1 0 -1 0;0 1 -1 0;1 inf 0 1;0 1 1 inf;-1 0 1 inf;-inf -1 0 1;-inf -1 -1 0;-1 0 -inf -1;0 1 -inf -1;1 inf -1 0;1 inf 1 inf;-inf -1 1 inf;-inf -1 -inf -1;1 inf -inf -1];for k=1:Nif (real(receiver(k))>=A(1,1))&&(real(receiver(k))<A(1,2))&&...(imag(receiver(k))>=A(1,3))&&(imag(receiver(k))<A(1,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(2,1))&&(real(receiver(k))<A(2,2))...&&(imag(receiver(k))>=A(2,3))&&(imag(receiver(k))<A(2,4)) demodata(k*4-3)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(3,1))&&(real(receiver(k))<A(3,2))...&&(imag(receiver(k))>=A(3,3))&&(imag(receiver(k))<A(3,4)) demodata(k*4-3)=1;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(4,1))&&(real(receiver(k))<A(4,2))...&&(imag(receiver(k))>=A(4,3))&&(imag(receiver(k))<A(4,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(5,1))&&(real(receiver(k))<A(5,2))...&&(imag(receiver(k))>=A(5,3))&&(imag(receiver(k))<A(5,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(6,1))&&(real(receiver(k))<A(6,2))...&&(imag(receiver(k))>=A(6,3))&&(imag(receiver(k))<A(6,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(7,1))&&(real(receiver(k))<A(7,2))...&&(imag(receiver(k))>=A(7,3))&&(imag(receiver(k))<A(7,4)) demodata(k*4-3)=1;demodata(k*4-2)=0;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(8,1))&&(real(receiver(k))<A(8,2))...&&(imag(receiver(k))>=A(8,3))&&(imag(receiver(k))<A(8,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=0;elseif (real(receiver(k))>=A(9,1))&&(real(receiver(k))<A(9,2))...&&(imag(receiver(k))>=A(9,3))&&(imag(receiver(k))<A(9,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(10,1))&&(real(receiver(k))<A(10,2))...&&(imag(receiver(k))>=A(10,3))&&(imag(receiver(k))<A(10,4)) demodata(k*4-3)=1;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=1;elseif (real(receiver(k))>=A(11,1))&&(real(receiver(k))<A(11,2))...&&(imag(receiver(k))>=A(11,3))&&(imag(receiver(k))<A(11,4)) demodata(k*4-3)=0;demodata(k*4-2)=0;demodata(k*4-1)=1;demodata(k*4)=1;elseif (real(receiver(k))>=A(12,1))&&(real(receiver(k))<A(12,2))...&&(imag(receiver(k))>=A(12,3))&&(imag(receiver(k))<A(12,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=0;elseif (real(receiver(k))>=A(13,1))&&(real(receiver(k))<A(13,2))...&&(imag(receiver(k))>=A(13,3))&&(imag(receiver(k))<A(13,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(14,1))&&(real(receiver(k))<A(14,2))...&&(imag(receiver(k))>=A(14,3))&&(imag(receiver(k))<A(14,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4-1)=0;demodata(k*4)=1;elseif (real(receiver(k))>=A(15,1))&&(real(receiver(k))<A(15,2))...&&(imag(receiver(k))>=A(15,3))&&(imag(receiver(k))<A(15,4)) demodata(k*4-3)=1;demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=1;elseif (real(receiver(k))>=A(16,1))&&(real(receiver(k))<A(16,2))...&&(imag(receiver(k))>=A(16,3))&&(imag(receiver(k))<A(16,4)) demodata(k*4-3)=0;demodata(k*4-2)=1;demodata(k*4-1)=1;demodata(k*4)=1;end endend。

MATLAB环境下16QAM调制与解调仿真程序说明

姓名: NikeyMATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相干解调原理框图基带信号x串并转换In电平映射成形滤波Xcoswt载波发生器已调信号 y+90度相移Qn-sinwt已调信号yEPF电平映射成形滤波X正交调制原理框图InX LPF抽样判决coswt并恢复信号 x串载波恢复时钟恢复转换90度相移-sinwtQnX LPF抽样判决相干解调原理框图二、MQAM 调制介绍及本仿真程序的几点说明MQAM 可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。

为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。

为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。

三、仿真结果图附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000;% 设定码元数量fb=1;%基带信号频率fs=32;% 抽样频率fc=4;%载波频率 ,为便于观察已调信号,我们把载波频率设的较低Kbase=2;% Kbase=1, 不经基带成形滤波,直接调制 ;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N);% 产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc);% 对基带信号进行 16QAM 调制y1=y; y2=y;% 备份信号,供后续仿真用T=length(info)/fb;m=fs/fb;nn=length(info);dt=1/fs;t=0:dt:T-dt;subplot(211);%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为 10000 个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title(' 已调信号 (In:red,Qn:green)');%傅里叶变换,求出已调信号的频谱n=length(y);y=fft(y)/n;y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04;y=20*log10(y);f1=m/n;f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title(' 已调信号频谱 '); xlabel('f/fb');%画出 16QAM 调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc);title(' 星座图 ');SNR_in_dB=8:2:24;%AWGN 信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc);% 对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N;% 统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在不同信道噪声强度下的误码率');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0,% 如果没有输入参数,则指定信息序列为10000 个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0;% 1/2 的概率输出为0elseinfo(i)=1;% 1/2 的概率输出为1endend;qam.mfunction [y ,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb;m=fs/fb;nn=length(x);dt=1/fs;t=0:dt:T-dt;%串/ 并变换分离出 I 分量、 Q 分量,然后再分别进行电平映射I=x(1:2:nn-1);[I,In]=two2four(I,4*m);Q=x(2:2:nn);[Q,Qn]=two2four(Q,4*m);if Kbase==2;I=bshape(I,fs,fb/4);% 基带成形滤波Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t);% 调制qamdet.m%QAM 信号解调function [xn,x]=qamdet(y ,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs);% 设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb;N=length(y)/m;n=(.6:1:N)*m;n=fix(n);In=I(n);Qn=Q(n);xn=four2two([In Qn]);%I分量Q 分量并/串转换,最终恢复成码元序列xnnn=length(xn);xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:);xn=xn';bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8;end;if nargin<5; alfa=0.5;end;if nargin<4; N=16;end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m%二进制转换成四进制function [y ,yn]=two2four(x,m);T=[0 1;3 2];n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5;y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; % 映射电平分别为-1.5 ;0.5;0.5;1.5four2two.m%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]); ymin=-abs(ymax);yn=(y-ymin)*3/(ymax-ymin);% 设置门限电平,判决I0=find(yn< 0.5);I1=find(yn>=0.5 & yn<1.5); I2=find(yn>=1.5 & yn<2.5);yn(I0)=zeros(size(I0)); yn(I1)=ones(size(I1)); yn(I2)=ones(size(I2))*2;I3=find(yn>=2.5);yn(I3)=ones(size(I3))*3; %一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:);xn=xn';constel.m%画出星座图function c=constel(x,fs,fb,fc);N=length(x);m=2*fs/fb;n=fs/fc;i1=m-n; i=1;ph0=(i1-1)*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n;c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:');hold off; axis equal;axis([-1.5 1.5 -1.5 1.5]); end;。

基于某Matlab地16QAM通信系统地设计与仿真.doc

淮海工学院课程设计报告书课程名称:通信系统的计算机仿真设计题目: 16QAM通信系统性能分析与MATLAB仿真系(院):电子工程学院学期: 2013-2014-2专业班级:姓名:学号:基于Matlab的16QAM通信系统的设计与仿真1.1 研究背景与研究意义应用MATLAB的编程方法和功能模块可以搭建各种仿真系统,还可以应用丰富的时间域、频率域、相位域的仿真测量仪器。

许多新一代通信系统的系统级仿真程序出现在MATLAB软件的演示实例中,这使得学习的效率大为提高,对技术与系统的理解已经从概念深入到电路方案和选取层面。

Simulink是Mathworks公司推出的基于Matlab平台的著名仿真环境。

Simulink作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。

QAM(Quadrature Amplitude Modulation):正交振幅调制。

正交振幅调制,这是近年来被国际上移动通信技术专家十分重视的一种信号调制方式。

QAM是数字信号的一种调制方式,在调制过程中,同时以载波信号的幅度和相位来代表不同的数字比特编码,把多进制与正交载波技术结合起来,进一步提高频带利用率。

正交调幅是一种将两种调幅信号汇合到一个信道的方法,因此会双倍扩展有效带宽。

正交调幅被用于脉冲调幅,特别是在无线网络应用。

1.2 课程设计的目的和任务随着现代通信技术的发展,特别是移动通信技术高速发展,频带利用率问题越来越被人们关注。

在频谱资源非常有限的今天,传统通信系统的容量已经不能满足当前用户的要求。

正交幅度调制QAM(Quadrature Amplitude Modulation)以其高频谱利用率、高功率谱密度等优势,成为宽带无线接入和无线视频通信的重要技术方案。

首先介绍了QAM调制解调原理,提出了一种基于MATLAB的16QAM系统调制解调方案,包括串并转换,2-4电平转换,抽样判决,4-2电平转换和并串转换子系统的设计,对16QAM的星座图和调制解调进行了仿真,并对系统性能进行了分析,进而证明16QAM 调制技术的优越性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.课程设计目的随着现代通信技术的发展,特别是移动通信技术高速发展,频带利用率问题越来越被人们关注。

在频谱资源非常有限的今天,传统通信系统的容量已经不能满足当前用户的要求。

正交幅度调制QAM(Quadrature Amplitude Modulation)以其高频谱利用率、高功率谱密度等优势,成为宽带无线接入和无线视频通信的重要技术方案。

首先介绍了QAM调制解调原理,提出了一种基于MATLAB的16QAM系统调制解调方案,包括串并转换,2-4电平转换,抽样判决,4-2电平转换和并串转换子系统的设计,对16QAM的星座图和调制解调进行了仿真,并对系统性能进行了分析,进而证明16QAM调制技术的优越性。

2.课程设计要求(1)设计一个16QAM调制与解调系统。

(2)设计程序时必须使得程序尽可能的简单。

(3)利用MATLAB进行程序编写并对系统进行仿真分析。

3.相关知识随着现代通信技术的发展,特别是移动通信技术高速发展,新的需求层出不穷,促使新的业务不断产生,因而导致频率资源越来越紧张。

在有限的带宽里要传输大量的多媒体数据,频谱利用率成为当前至关重要的课题,由于具有高频谱利用率、高功率谱密度等优势,16QAM技术被广泛应用于高速数据传输系统.在很多宽带应用领域,比如数字电视广播,Internet宽带接入,QAM系统都得到了广泛的应用。

QAM也可用于数字调制。

数字QAM有4QAM、8QAM、16QAM、32QAM 等调制方式。

其中,16QAM和32QAM广泛用于数字有线电视系统。

当今国际市场上出现了采用16QAM调制技术的卫通调制解调器,如美国COMTECH EF DATA公司新推出的CDM-600。

该卫通调制解调器支持速率高达20Mbps[1]。

无线通信技术的迅猛发展对数据传输速率、传输效率和频带利用率提出了更高的要求。

选择高效可行调制解调手段,对提高信号的有效性和可靠性起着至关重要的作用。

由于QAM已经成为宽带无线接入和无线视频通信的重要技术方案。

关于调制解调技术的仿真研究对于QAM理论研究和相关产品开发具有重要意义。

在简单分析QAM原理的基础上,以16QAM为例,提出了基MATLAB的16QAM 编解码系统仿真方案,设计了实际仿真模型。

仿真结果和分析表明,提出的方案可行,为QAM通信系统性能的研究提供了一种行之有效的分析方法。

本文旨在在熟悉QAM调制解调原理的基础上,完成通信系统的设计并实现16QAM调试过程的MATLAB仿真。

设计其中的各种实现模块的参数,对整个系统进行仿真,并绘出各个模块的输出信号的波形,设计出16QAM调试过程中的串并转换子系统,2-4电平转换子系统,抽样判决子系统,4-2电平转换子系统及并串转换子系统。

在此基础上,对QAM调制的性能进行分析。

4.课程设计分析4.1调制简介调制在通信系统中的作用至关重要。

所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。

广义的调制分为基带调制和带通调制(也称载波调制)。

载波调制,就是用调制信号去控制载波的参数的过程,即使载波的某一个或某几个参数暗中啊调制信号的规律而变化。

调制信号是指来自信源的消息信号(基带信号),这些信号可以是模拟的,也可以是数字的。

未受调制的周期性震荡信号称为载波,它可以是正弦波,也可以使非正弦波(如周期性脉冲序列)。

载波调制后称为已调信号,它含有调制信号的全部特征。

基带信号对载波的调制是为了实现下列一个或多个目标:第一,在无线传输中,信号是以电磁波的形式通过天线辐射到空间的。

为了获得较高的辐射效率,天线的尺寸必须与发射信号波长相比拟,而基带信号包含的较低频率分量的波长较长,只是天线过长而难以实现。

但若通过调制,把基带信号的频谱搬至较高的载波频率上,是已调信号的频谱与信道的带通特性相匹配,这样就可以提高传输性能,以较小的发送功率与较短的天线来辐射电磁波。

第二,把多个基带信号分别搬移到不同的载频处,以实现信道的多路复用,提高信道利用率。

第三,扩展信号带宽,提高系统抗干扰、抗衰落能力,还可实现传输带宽与信噪比之间的互换。

因此,调制对通信系统的有效性和可靠性有着很大的影响和作用。

解调(也称检波)则是调制的逆过程,其作用是将已调信号中的调制信号恢复出来。

解调的方法可分为两类:相干解调和非相干解调(包络检波)。

相干解调时,为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波。

本课题采用的是相干解调4.2正交振幅调制系统它是把2ASK和2PSK两种调制结合起来的调制技术,使得带宽得到双倍扩展。

QAM调制技术用两路独立的基带信号对频率相同、相位正交的两个载波进行抑制载波双边带调幅,并将已调信号加在一起进行传输。

nQAM代表n个状态的正交调幅,一般有二进制(4QAM)、四进制(16QAM)、八进制(64QAM)。

我们需要得到多进制的QAM信号,需将二进制信号转换为m电平的多进制信号,然后进行正交调制,最后相加输出。

输入2/m电平变化器)(tx串/并变换2/m电平变化器)(ty2/π载波发生器)(tSQAMtcωcostcωsinAB11•••01•••图4-1 QAM信号产生原理图QAM信号用正交相干解调方法进行解调,通过解调器将QAM信号进行正交相干解调后,用低通滤波器LPF滤除乘法器产生的高频分量,输出抽样判决后可恢复出的两路独立电平信号,最后将多电平码元与二进制码元间的关系进行2/m转换,将电平信号转换为二进制信号,经并/串变换后恢复出原二进制基带信号。

16QAM调制框图:二进制二进制变换为四进制串/并变换成型滤波器tc ωcos tc ωsin }{2n a }{12-n a }{k a 成型滤波器四进制幅度序列四进制幅度序列二进制变换为四进制)(t L )(t Q 信号QAM 16图4-2 6QAM 信号调制框图16QAM 最佳接收框图:串/并变换)(x r )(1t f ⎰0(_)dtTs ⎰0(_)dtTs )(2t f 判决器判决器输出TsTs1r 2r图4-3 16QAM 最佳接收框图(1)首先生成一个随机且长度为10000的二进制比特流,并画出了前50个比特的信号图(如图17所示)。

(2)在MATLAB 中16QAM 调制器要求输入的信号为0-15这16个值,所以需要用函数reshape 和bi2de 将二进制的比特流转换为对应的十六进制信号。

(3)利用MATLAB 中的modem.qammod 函数生成16QAM 调制器,再通过其对信号进行调制并画出信号的星座图。

(4)通过awgn 信道在16QAM 信号中加入高斯白噪声(假设Eb/No=15db )。

(5)利用MATLAB 中的scatterplot 函数画出通过信道后接受到的信号的星座图。

(6)利用MATLAB 中的eyediagram 函数生成经过信道后的眼图。

(7)利用MATLAB中的demodulate和modem.qamdemod函数生成解调器对16QAM信号的解调,并将十六进制信号转化成二进制比特流信息。

(8)用得到比特流信息除以原始发送的比特流信息来计算误码率。

5.仿真程序如下:M=16;k=log2(M);n=100000; %比特序列长度samp=1; %过采样率x=randint(n,1); %生成随机二进制比特流stem(x(1:50),'filled'); %画出相应的二进制比特流信号title('二进制随机比特流');xlabel('比特序列');ylabel('信号幅度');x4=reshape(x,k,length(x)/k); %将原始的二进制比特序列每四个一组分组,并排列成k行length(x)/k列的矩阵xsym=bi2de(x4.','left-msb'); %将矩阵转化为相应的16进制信号序列figure;stem(xsym(1:50)); %画出相应的16进制信号序列title('16进制随机信号');xlabel('信号序列');ylabel('信号幅度');y=modulate(modem.qammod(M),xsym); %用16QAM调制器对信号进行调制scatterplot(y); %画出16QAM信号的星座图text(real(y)+0.1,imag(y),dec2bin(xsym));axis([-5 5 -5 5]);EbNo=15;snr=EbNo+10*log10(k)-10*log10(samp); %信噪比yn=awgn(y,snr,'measured'); %加入高斯白噪声h=scatterplot(yn,samp,0,'b.'); %经过信道后接收到的含白噪声的信号星座图hold on;scatterplot(y,1,0,'k+',h); %加入不含白噪声的信号星座图title('接收信号星座图');legend('含噪声接收信号','不含噪声信号');axis([-5 5 -5 5]);hold on;eyediagram(yn,2); %眼图yd=demodulate(modem.qamdemod(M),yn); %此时解调出来的是16进制信号z=de2bi(yd,'left-msb'); %转化为对应的二进制比特流z=reshape(z.',numel(z),1');[number_of_errors,bit_error_rate]=biterr(x,z)运行结果:number_of_errors =0bit_error_rate =06.仿真结果:图6-1 二进制随机比特流图6-2 16QAM信号序列图6-3 16QAM信号的星座图图6-4 含白噪声的信号星座图图6-5 不含白噪声的信号星座图图6-6 眼图6.主要仪器与设备装有MATLAB的PC机一台。

7. 设计体会课程设计做完了,总结一下,我想我还是收获了不少。

从一开始选题时的不自信(怕自己做不出)到最后我比较圆满的完成这次课程设计,正好应征了一句老话:“功夫不负有心人”。

选完题后,我并不知道该如何动手,所以我只有看书。

通过看书,我掌握了16QAM调制与解调的原理并决定从星座图开始入手。

从而最终将系统程序编写出来。

除了掌握了课本上的知识外,通过这次课程设计我更加熟练了MATLAB的使用方法。

从以前一看到MATLAB就郁闷到现在渐渐地喜欢上MATLAB编写程序,我知道了学习的乐趣。

相关文档
最新文档