北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)

合集下载

北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)

北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)

函数计算及运用专题 东城区22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A , ∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△∵=2ABC AOB S S △△, ∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分西城区22.如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为0()4,A -,与y 轴的交点为B ,线段AB 的中点M 在函数ky x=(0k ≠)的图象上 (1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,MB 的对应点分别为C ,N ,D .①当点D 落在函数ky x=(0x <)的图象上时,求n 的值. ②当MD MN ≤时,结合函数的图象,直接写出n 的取值范围.【解析】(1)如图.∵直线y x m =+与x 轴的交点为0()4,A -, ∴4m =.∵直线y x m =+与y 轴的交点为B , ∴点B 的坐标为(0,4)B . ∵线段AB 的中点为M , ∴可得点M 的坐标为(2,2)M -. ∵点M 在函数ky x=(0k ≠)的图象上, ∴4k =-.(2)①由题意得点D 的坐标为(,4)D n -, ∵点D 落在函数ky x=(0k ≠)的图象上, ∴44n -=-, 解得1n =.②n 的取值范围是2n ≥.海淀区22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数my x=.(1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值范围.22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分 当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值范围是:03m <≤,或4m ≥. ………………5分丰台区22.在平面直角坐标系xOy 中,反比例函数2y x=的图象与一次函数y kx b =+的图象的交点分别为P (m ,2),Q (-2,n ). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M 的坐标.22.(1)解: ∵反比例函数2y x=的图象经过点(,2)P m ,Q (-2,n ), ∴1m =,1n =-.∴点P ,Q 的坐标分别为(1,2),(-2,-1). …….…….…….……2分 ∵一次函数y kx b =+的图象经过点P (1,2),Q (-2,-1),∴2,2 1.k b k b +=⎧⎨-+=-⎩ 解得1,1.k b =⎧⎨=⎩ ∴一次函数的表达式为1y x =+. .…….…….…….……3分(2)点M 的坐标为(-2,)或(-2,)……………5分石景山区22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -.(1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥,求m 的取值范围.22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(242m m -+- 解得2m =-,8m =②当S △ABC =S △BCD -S △ABD =6时,如图2.可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分朝阳区22. 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xky =的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA =2,OD =1. (1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果 S △ABN =2S △OMN ,直接写出点M 的坐标.22. 解:(1)∵AO =2,OD =1,∴AD =AO+ OD =3. ………………………………………………1分 ∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,6tan =∠⋅=OAB AD CD ..∴C (1,-6). ……………………………………………………2分 ∴该反比例函数的表达式是xy 6-=. ……………………………………3分 (2)点M 的坐标为(-3,2)或(53,-10). ……………………5分 ∴OM 27=215 OM=715∴⊙O 的半径是715…………………………………6′门头沟区20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点)A a . (1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y x =、反比例函数ky x=的图象相交于点M 、N , 当MN =2时,画出示意图并直接写出b 的值.20.(本小题满分5分) (1)∵直线y x =与双曲线ky x=(k ≠0)相交于点)A a .∴a =1分∴A3k =………………………2分 (2)示意图正确………………………………3分 3b =或1 ………………………………5分大兴区22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2.(1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y , 若231x x x <<,结合函数的图象,直接写出123++x x x 的取值范围.22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分平谷区22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.22.(1)证明:∵BF 平分∠ABC ,∴∠ABF =∠CBF . (1)∵□ABCD ,∴AD ∥BC . ∴∠AFB =∠CBF .OF ODF∴∠ABF =∠AFB . ∴AB=AF . ∵AE ⊥BF ,∴∠ABF +∠BAO =∠CBF +∠BEO =90°. ∴∠BAO =∠BEO . ∴AB=BE . ∴AF=BE .∴四边形ABEF 是平行四边形.∴□ABEF 是菱形. (2)(2)解:∵AD=BC ,AF=BE ,∴DF=CE . ∴BE =2CE . ∵AB =4,∴BE =4. ∴CE =2.过点A 作AG ⊥BC 于点G . (3)∵∠ABC =60°,AB=BE , ∴△ABE 是等边三角形. ∴BG=GE =2.∴AF=CG =4. ········································································· 4 ∴四边形AGCF 是平行四边形. ∴□AGCF 是矩形. ∴AG=CF .在△ABG 中,∠ABC =60°,AB =4,∴AG =∴CF =怀柔区22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy的图象交于点A(3,-2). (1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标.y x–1–2–3–4–512345–1–2–3–4–512345O22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xmy =, 解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分延庆区22.在平面直角坐标系xOy 中,直(0)y kx b k =+≠ 与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0)my m x=≠的图象在第一象限交于点P (1,3),连接OP . (1)求反比例函数(0)my m x=≠的表达式; (2)若△AOB 的面积是△POB 的面积的2倍,求直线y kx b =+的表达式.-1-2-3-3-2-1y123456x54321O22.(1)3y x……1分错误!未找到引用源。

2018北京二次函数代数综合题例讲(解析版)

2018北京二次函数代数综合题例讲(解析版)

二次函数的图象和性质重点落实什么能力?2019北京中考26题重点题型------------ 必须会!!!!!!例1 在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A .(1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线2443(0)y ax ax a a =-+-≠交于B ,C 两点.①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的取值范围.代数变形能力:2443(0)y ax ax a a =-+-≠通过配方转化为2(2)(0)3y a x a =-≠- 几何作图能力:考点: 二次函数的性质 分析:(1)配方得到y=ax2-4ax+4a-3=a (x-2)2-3,于是得到结论;(2)①当a=2时,抛物线为y=2x2-8x+5,如图.令y=5得到2x2-8x+5=5,解方程即可得到结论;②令y=5得到ax2-4ax+4a-3=5,解方程即可得到结论. 解答:(1)∵y =ax 2−4ax +4a −3=a (x −2)2−3, ∴顶点A 的坐标为(2,−3);(2)①当a =2时,抛物线为y =2x 2−8x +5,如图。

令y =5,得 2x 2−8x +5=5,解得,x 1=0,x 2=4, ∴a2a4线段BC 的长为4, ②令y =5,得ax 2−4ax +4a −3=5, 解得,x 1=a a a 222 ,x 2=aaa 22-2∴线段BC 的长为a2a4 ∵线段BC 的长不小于6,∴a2a4≥6,∴0<a ≤8/9. 例2 已知:二次函数1422-++=m x x y ,与x 轴的公共点为A ,B .(1)如果A 与B 重合,求m 的值; (2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数; ②若设抛物线在点A ,B 之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,结合函数的图象,求m 的取值范围.代数变形能力:1422-++=m x x y 通过配方转化为22(1)3y x m =++-*考点:抛物线与x 轴的交点,二次函数图象上点的坐标特征 分析:(1)当A 、B 重合时,抛物线与x 轴只有一个交点,此时△=0,从可求出m 的值. (2)①m=1代入抛物线解析式,然后求出该抛物线与x 轴的两个交点的坐标,从而可求出线段AB 上的整点;②根据二次函数表达式可以用带m 表达出两根之差,根据1<两根之差<8,即可解题. 解答:(1)∵A 与B 重合,∴二次函数y =2x 2+4x +m −1的图象与x 轴只有一个公共点, ∴方程2x 2+4x +m −1=0有两个相等的实数根, ∴△=42−4×2(m −1)=24−8m =0, 解得:m =3.∴如果A 与B 重合,m 的值为3.(2)①当m =1时,原二次函数为y =2x 2+4x +m −1=2x 2+4x , 令y =2x 2+4x =0,则x 1=0,x 2=−2, ∴线段AB 上的整点有(−2,0)、(−1,0)和(0,0). 故当m =1时,线段AB 上整点的个数有3个。

北京市【中考真题】2018年全国各地中考数学真题汇编全系列13套,134页,含答案)

北京市【中考真题】2018年全国各地中考数学真题汇编全系列13套,134页,含答案)

中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h =﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案

【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案

北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。

北京市各区2018届九年级中考一模数学试卷精选汇编:代数综合专题

北京市各区2018届九年级中考一模数学试卷精选汇编:代数综合专题

朝阳区
20. 已知关于 x 的一元二次方程 x2 (k 1)x k 0 .
( 1)求证:方程总有两个实数根;
( 2)若该方程有一个根是正数,求 k 的取值范围 .
20. ( 1)证明:依题意,得
(k 1)2 4k ………………… 1 分
(k 1)2. ………………………………… 2 分
∵ (k 1)2 0 ,
∴方程总有两个实数根 . ……………………… 3 分
( 2)解:由求根公式,得 x1 1, x2
∵方程有一个根是正数,
∴ k 0. ∴ k 0 .……………………………… 5 分
k . ………………………… 4 分
3/ 7

2
m
2
2mm .
3
(2) b2 4ac 12m 5 .
∵ m 0,
∴ 12m 0 .

12m 5 0 .
………………3 分 ………………4 分
∴此方程有两个不相等的实数根 .
丰台区
20.已知:关于 x 的一元二次方程 x2 - 4x + 2m = 0 有两个不相等的实数根. ( 1)求 m 的取值范围;
当 m=0 时,方程为 x2 4 x 0 ,解得方程的根为 x1 0 , x2 4 ,符合题意; 当 m=1 时,方程为 x2 4 x 2 0 , 它的根不是整数,不合题意,舍去 .
综上所述, m=0.
……………………… 5 分
2/ 7
石景山区
20.关于 x的一元二次方程 mx 2 (3m 2) x 6 0 . ( 1)当 m 为何值时,方程有两个不相等的实数根; ( 2)当 m 为何整数时,此方程的两个根都为负整数.
m3 m1

北京市各区2018届中考数学一模试卷精选汇编函数操作专题

北京市各区2018届中考数学一模试卷精选汇编函数操作专题
C
E
AD
B
小东根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
( 1)通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:
(说明:补全表格时相关数值保留一位小数) ( 2)在下面的平面直角坐标系 xOy 中,描出以补全后的表中各对对应值为坐标的点,画出 该函数的图象;
规律 .
( 1)通过取点、画图、测量,得到了 x 与 y 的几组对应值,如下表:
x/cm
0
0.40
0.55
1.00
1.80
2.29
2.61
3
y/cm
2
3. 68
3.84
3.65
3.13
2.70
2
( 2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的
图象;
( 3)结合画出的函数图象, 解决问题: 点 F 与点 O重合时, DE长度约为
(3) 在画出的函数图象上标出 x=2 时所对应的点,并写出 m=
(4) 结 合 函 数 的 图 象 , 写 出 该 函 数 的 一 条 性 质 :
____________

3 26. 解: (1) 当自变量是 -2 时,函数值是 2
( 2)如图 , 该函数的图象; ( 略)
………………………………… 1′ ………………………………… 3′
图5
( 3) 2.42 .
海淀区
25.在研究反比例函数
1 y 的图象与性质时,我们对函数解析式进行了深入分析
.
x
首先, 确定自变量 x 的取值范围是全体非零实数, 因此函数图象会被 y 轴分成两部分; 其次,

北京市各区2018届中考数学一模试卷精选汇编压轴题专题(附答案)

压轴题专题东城区28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN +∠MON=180°时,则称点 P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,2222M⎛⎫⎪⎪⎝⎭,2222N⎛-⎝⎭.在A(1,0),B(1,1),)2,0C三点中, 是线段MN关于点O的关联点的是;(2)如图3, M(0,1),N312⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E)3,m m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线323y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为);--------------5分③ 直线32y x =+交 y 轴于点K (0,2),交x 轴于点()3T ,0. ∴2OK =,23OT =. ∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG . ∵()M 0,1, ∴OM =1. ∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG 3∴33.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒. 又3OG 1ON =, ∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点. 经验证,点)31E,在直线32y =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤, ∴33F x ≤分 西城区28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 3b 的取值范围.图1CyxO A 1A 2Q【解析】(12(2)①如图,当1r =时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理), 连接CM ,则QM CM ⊥,x∵(1,0)Q -,(1,0)C ,1r =, ∴2CQ =,1CM =,∴MQ = 此时23MQk CQ== ②如图,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,x∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=, ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===,∴当k 3DQ = 此时221CD CQ DQ -, 假设⊙C 经过点Q ,此时2r =, ∵点Q 早⊙C 外,∴r 的取值范围是12r <≤. (3)33b <. 海淀区28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为32. 同理可求得点E ,F ,G 的横坐标分别为2232 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x的取值范围是≤xx .………………4分 (2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分 丰台区28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________; (2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.54411231213xOy6654327654326528.解:(1)点A 和线段BC(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动. 因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分石景山区28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... AB(1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线33y =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.xy xy①当0b >时,则点B 在第二象限.过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴322BE AE ==.∴323222B -(,. ②当0b <时,则点'B 在第四象限. 同理可得3232'22B -(. 综上所述,点B 的坐标为323222-(,或323222-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分朝阳区28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ;②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =b 的取值范围; (2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28. 解:(1)①线段AB的伴随点是:23,P P. …………………2分②如图1,当直线y=2x+b经过点(-3,-1)时,b=5,此时b取得最大值.…………………………………………4分如图2,当直线y=2x+b经过点(-1,1)时,b=3,此时b取得最小值.……………………………………………5分∴b的取值范围是3≤b≤5. ……………………………………6分(2)t的取值范围是-12.2t≤≤…………………………………………8分燕山区28.在Rt△ABC中, ∠ACB=90°,CD是AB边的中线,DE⊥BC于E, 连结CD,点P在射线CB上(与B,C不重合).(1)如果∠A=30°①如图1,∠DCB= °②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;( 2 )如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP, 将线段DP绕点逆时针旋转α2得到线段DF,连结BF, 请直接写出DE、BF、BP三者的数量关系(不需证明).图1图228.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF-BP=2DE ⋅tan α…………………………………8′门头沟区28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意..图直接...写出半径r 的取值范围.备用图1 备用图228.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y(2)当点F 在点E 左侧时: 大兴区28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图图2如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点与x 轴分别交于点B (3-,(0,)F m ,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围. 28.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r ,29<∴m .又0>m , 290<<∴m . ………………………………………………4分 方法二:0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x mx m y 912+-=.当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . ………………………………………………………………………………4分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………7分m ∴的取值范围为2424355m ≤≤…………………………………8分 平谷区28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”. (1)已知点A (2,0),B (3,则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式; (3)⊙O 2P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.解:(1)60; ····························· 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ............. 3 ∴直线CD 的表达式为1y x =+或3y x =-+. (5)(3)15m ≤≤或51m -≤≤-. ···················7怀柔区28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PAPB≤3,则点P 为⊙C 的“特征点”.(1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.yx–1–2–3–4–512345–1–2–3–4–512345O28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分yxE Hy=x+b 2y=x+b1–1–2–3–41234–1–2–3–41234OD②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt△DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22-≤b ≤22. …………………………………………………6分 (2)x>3或 3-<x . …………………………………………………………………………8分 延庆区28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点; D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分顺义区点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与图2C 2C 1N MO'直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.28.(1)是.。

2018北京市中考数学一模分类27题二次函数及答案解析

2017年北京中考数学一模 27题“二次函数综合题”西城. 在平面直角坐标系xOy 中,二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤x ≤1时,函数值y 的取值范围是-6≤y ≤4-n ,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O . 设平移后的图象对应的函数表达式为k h x a y +-=2)(,当x <2时,y 随x 的增大而减小,求k 的取值范围东城.二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0, n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值; (3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.xy直线lCBA–1–21234–1–2–31234O朝阳.在平面直角坐标系中xOy 中,抛物线2211222y x mx m m =-++-的顶点在x 轴上. (1)求抛物线的表达式; (2)点Q 是x 轴上一点,①若在抛物线上存在点P ,使得∠POQ =45°,求点P 的坐标;②抛物线与直线y =2交于点E ,F (点E 在点F 的左侧),将此抛物线在点E ,F (包含点E 和点F )之间的部分沿x 轴平移n 个单位后得到的图象记为G ,若在图象G 上存在点P ,使得∠POQ =45°,求n 的取值范围.房山. 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线32-=x y 交于点C.(1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一公共点,求n 的取值范围.顺义.如图,已知抛物线28(0)y ax bx a =++≠与x 轴交于A (-2,0),B 两点,与y 轴交于C点,tan ∠ABC =2.(1)求抛物线的表达式及其顶点D 的坐标;(2)过点A 、B 作x 轴的垂线,交直线CD 于点E 、F ,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF (含线段端点)只有1个公共点.求m 的取值范围.平谷.直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C . (1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式;(3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.yx–2–112345–5–4–3–2–112O门头沟. 在平面直角坐标系xOy 中,抛物线()()13y a x x =+-与x 轴交于A ,B 两点,点A 在点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域”有______个整数点;(整数点就是横纵坐标均为整数的点)(2)求抛物线()()13y a x x =+-的顶点P 的坐标(用含a 的代数式表示); (3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围.海淀.平面直角坐标系xOy 中,抛物线2222y mx m x =-+交y 轴于A 点,交直线x =4于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示);(2)若AB ∥x 轴,求抛物线的表达式;(3)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点P (P x ,P y ),2P y ≤,求m 的取值范围.丰台.在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C ,如果直线AB 与y 轴交点的纵坐标 为-1,且抛物线顶点D 到点C 的 距离大于2,求m 的取值范围.石景山.在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A .(1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线 2443(0)y ax ax a a =-+-≠交于B ,C 两点. ①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的 取值范围.通州.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ).(1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.怀柔.已知二次函数122-++=a ax axy (a>0).(1)求证:抛物线与x 轴有两个交点; (2)求该抛物线的顶点坐标;(3)结合函数图象回答:当x ≥1时,其对应的函数值y 的最小值范围是2≤y ≤6,求a 的取值范围.西城.解:(1)∵ 二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个交点,∴≠0[]054122>)()+(---m m m解得 241->m 且m ≠0. ∴m 的取值范围是241->m 且m ≠0. ·············· 2分(2)①m 取满足条件的最小的整数,由(1)可知m =1.∴ 二次函数的表达式为234y x x =--. ··········· 3分② 图象的对称轴为直线23=x .当n ≤x ≤1<32时,函数值y∵ 函数值y 的取值范围是-6≤y ∴ 当x =1时,函数值为- 6. 当x =n 时,函数值为4-n.∴ n 2– 3n - 4 = 4-n.,解得n ∴ n 的值为- 2.③由①可知,a =1.又函数图像经过原点,∴k =-h 2,∵当x <2时,y 随x 的增大而减小, ∴h ≥ 2 ∴k ≤-4.··································· 7分 东城.解:(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分 ② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点. ∴5m =. …………5分(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩∴ m 的取值范围是21m -<≤. …………7分朝阳.解:(1)222111-2()2222y x mx m m x m m =++-=-+-. 由题意,可得m -2=0. ∴2m =. ∴21(2)2y x =-. (2)①由题意得,点P 是直线y x =与抛物线的交点.∴21-222x x x =+. 解得 135x =+,235x =-. ∴P 点坐标为(35,35)++或 (35,35)--.②当E 点移动到点(2,2)时,n =2.当F 点移动到点(-2,2)时,n =-6. 由图象可知,符合题意的n 的取值范围是26-≤≤n .房山解:(1)∵直线y=2x-3与y 轴交于点A (0,-3) ------1分 ∴点A 关于x 轴的对称点为B (0,3),l 为直线y=3 ∵直线y=2x-3与直线l 交于点C ,∴点C 的坐标为(3,3) ------2分(2)∵抛物线n nx nx y 542+-= (n >0) ∴y = nx2-4nx+4n+n = n(x-2)2+n∴抛物线的对称轴为直线x=2,顶点坐标为(2,n ) ------3分 ∵点B (0,3),点C (3,3)①当n >3时,抛物线最小值为n >3,与线段BC 无公共点; ②当n=3时,抛物线顶点为(2,3),在线段BC 上,此时抛物线与线段BC 有一个公共点; ------4分 ③当0<n <3时,抛物线最小值为n ,与直线BC 有两个交点如果抛物线y=n(x-2)2+ n 经过点B (0,3),则3=5n ,解得53=n由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3)点(4,3)不在线段BC 上,此时抛物线与线段BC 有一个公共点B ------5分如果抛物线y=n(x-2)2+ n 经过点C (3,3),则3=2n ,解得23=n 由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3)点(1,3)在线段BC 上,此时抛物线与线段BC 有两个公共点 ------6分综上所述,当53≤n <23或n=3时,抛物线与线段BC 有一个公共点. ------7分 顺义27.解:(1)由抛物线的表达式知,点C (0,8),即 OC =8;Rt△OBC 中,OB =OC •tan∠ABC =8×12=4, 则点B (4,0). ………………………… 1分 将A 、B 的坐标代入抛物线的表达式中,得:428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩, ∴抛物线的表达式为228y x x =-++.…… 3分∵2228(1)9y x x x =-++=--+ ,∴抛物线的顶点坐标为D (1,9). ………… 4分(2)设直线CD 的表达式为y =kx +8,∵点D (1,9),∴直线CD 表达式为y =x +8.∵过点A 、B 作x 轴的垂线,交直线CD 于点E 、F , 可得:E (-2,6),F (4,12). ………… 6分 设抛物线向上平移m 个单位长度(m >0),则抛物线的表达式为:2(1)9y x m =--++;当抛物线过E (-2,6)时,m =6,当抛物线过F (4,12)时,m =12, ∵抛物线与线段EF (含线段端点)只有1个公共点,∴m 的取值范围是6<m ≤12. ………………………………………… 7分平谷27.解:(1)令y =0,得x =1.∴点A 的坐标为(1,0). ······················ 1 ∵点A 关于直线x =﹣1对称点为点C , ∴点C 的坐标为(﹣3,0). ······ 2 (2)令x =0,得y =3.∴点B 的坐标为(0,3). ∵抛物线经过点B ,∴﹣3m =3,解得m =﹣1. ······· 3 ∵抛物线经过点A , ∴m+n ﹣3m =0,解得n =﹣2.∴抛物线表达式为223y x x =--+. ·· 4 (3)由题意可知,a <0.根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a =﹣3, ·· 5 此时抛物线顶点在y 轴上,不符合题意.当抛物线经过(﹣3,0)时,开口最大,a =﹣1. ............. 6 结合函数图像可知,a 的取值范围为31a -<≤-. (7)门头沟27. (1)()()3a 1113=+- ……………1分解得:34a =-………………………2分 6个 ………………………3分 (2)由()()y a 13x x =+-配方或变形()()()2y a 13=14x x a x a =+--- .所以顶点P 的坐标为(1,-4a ). ……………………………………5分2132a --≤<(3) a <0时, ; ………………………………………6分a >0时, . 7分 .m ;------- 2分(2)∵ 抛物线2222y mx m x =-+与y 轴交于A 点, ∴A (0,2).------------------------------------------------------------------------------------- 3分∵ AB ∥x 轴,B 点在直线x =4上, ∴B (4,2),抛物线的对称轴为直线x =2.--------------------------------------------- 4分 ∴ m =2. ∴抛物线的表达式为2282y x x =-+. --------------------------------------------------- 5分(3)当0m >时,如图1.∵()02A ,,∴要使04P x ≤≤时,始终满足2P y ≤,只需使抛物线2222y mx m x =-+的对称轴与直线图112a <≤x=2重合或在直线x=2的右侧.∴2m ≥. -------------------------------------------- 6分当0m <时,如图2,m <时,2P y ≤恒成立. ------------------- 7分综上所述,0m <或2m ≥.丰台27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x = 2.…………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称,∵A (﹣1,-2) ,∴B (5,-2).……………………………………………3分②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). …………………………………………………4分∵直线AB 与y 轴交点的纵坐标为-1,∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2,∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.………………………………………………………… 7分石景山27.解:(1)解法一: ∵2443y ax ax a =-+-2(2)3a x =--, ………………………………… 1分∴顶点A 的坐标为(2,3)-. ………………………………… 2分 解法二:图2∵244(43)(4)2,324a a a a aa-⨯----==-,∴顶点A 的坐标为(2,3)-. ………………………………… 2分(2)①当2a =时,抛物线为2285y x x =-+,如图. 令5y =,得22855x x -+=, ……………… 3分 解得,1204x x ==,.……………… 4分∴线段BC 的长为4. ……………… 5分② 80<9a ≤. ……………… 7分通州27. 解:(1)D (m ,-m +2) (2)m =3或m =1 ……………………..(5分) (3)1≤m ≤3 ……………………..(7分)怀柔27.解:(1)令y=0.∴0122=-++a ax ax .∵△=)1(442--a a a=4a,……………………………1分 ∵a>0,∴4a>0.∴△>0.∴抛物线与x 轴有两个交点. …………………2分 (2)212ax a=-=-.……………………………3分 把x=-1代入122-++=a ax ax y .∴y=-1.∴顶点坐标(-1,-1).…………………4分 (3)①把(1,2)代入122-++=a ax ax y . ∴43=a .……………………………5分 ②把(1,6)代入122-++=a ax axy . ∴74a =.……………………………6分 ∴由图象可知:43≤a ≤74.……………………………7分 y xB x =2–1–2–3–4–512345–1–2–3–41234567CA (2,-3)O。

北京市各区2018届九年级中考一模数学试卷精选汇编:函数计算及运用专题(有答案)

函数计算及运用专题 东城区22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B.若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.22.解:(1)∵点()3,A n 在函数()30y xx=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A , ∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△∵=2ABC AOB S S △△, ∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分西城区22.如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为0()4,A -,与y 轴的交点为B ,线段AB 的中点M 在函数ky x=(0k ≠)的图象上 (1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,MB 的对应点分别为C ,N ,D . ①当点D 落在函数ky x=(0x <)的图象上时,求n 的值. ②当MD MN ≤时,结合函数的图象,直接写出n 的取值范围.【解析】(1)如图.∵直线y x m =+与x 轴的交点为0()4,A -, ∴4m =.∵直线y x m =+与y 轴的交点为B , ∴点B 的坐标为(0,4)B . ∵线段AB 的中点为M , ∴可得点M 的坐标为(2,2)M -. ∵点M 在函数ky x=(0k ≠)的图象上, ∴4k =-.(2)①由题意得点D 的坐标为(,4)D n -, ∵点D 落在函数ky x=(0k ≠)的图象上, ∴44n -=-, 解得1n =.②n 的取值范围是2n ≥.海淀区22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数my x=. (1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+.(2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值范围.22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时,解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分 当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值范围是:03m <≤,或4m ≥. ………………5分丰台区22.在平面直角坐标系xOy 中,反比例函数2y x=的图象与一次函数y kx b =+的图象的交点分别为 P(m ,2),Q(-2,n). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M 的坐标.22.(1)解: ∵反比例函数2y x=的图象经过点(,2)P m ,Q(-2,n), ∴1m =,1n =-.∴点P ,Q 的坐标分别为(1,2),(-2,-1). …….…….…….……2分 ∵一次函数y kx b =+的图象经过点P(1,2),Q(-2,-1),∴2,2 1.k b k b +=⎧⎨-+=-⎩ 解得1,1.k b =⎧⎨=⎩ ∴一次函数的表达式为1y x =+. .…….…….…….……3分(2)点M 的坐标为(-2,-2,分石景山区22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -.(1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC6≥,求m 的取值范围.22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(242m -+- 解得2m =-,8m =②当S △ABC =S △BCD -S △ABD =6时,如图2. 可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S△ABC6≥. ………………5分朝阳区22. 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xky =的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA =2,OD =1.(1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M 作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果 S △ABN =2S △OMN ,直接写出点M 的坐标.22. 解:(1)∵AO =2,OD =1,∴AD =AO+ OD =3. ………………………………………………1分 ∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,6tan =∠⋅=OAB AD CD ..∴C (1,-6). ……………………………………………………2分 ∴该反比例函数的表达式是xy 6-=. ……………………………………3分 (2)点M 的坐标为(-3,2)或(53,-10). ……………………5分 ∴OM 27=215 OM=715∴⊙O 的半径是715…………………………………6′ 门头沟区20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数k y x=(k ≠0)的图象相交于点)A a .(1)求a 、k 的值;(2)直线x=b (0b >)分别与一次函数y x =、反比例函数k y x=的图象相交于点M 、N ,当MN=2时,画出示意图并直接写出b 的值.20.(本小题满分5分)(1)∵直线y x =与双曲线ky x=(k ≠0)相)A a .∴a =1分 ∴A 3k =………………………2分 (2)示意图正确………………………………3分 3b =或1 ………………………………5分大兴区22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2. (1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y ,若231x x x <<,结合函数的图象,直接写出123++x x x 的取值范围.22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又 点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分平谷区22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF . (1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.22.(1)证明:∵BF 平分∠ABC ,∴∠ABF=∠CBF . (1)∵□ABCD ,∴AD ∥BC . ∴∠AFB=∠CBF . ∴∠ABF=∠AFB . ∴AB=AF . ∵AE ⊥BF ,∴∠ABF+∠BAO=∠CBF+∠BEO=90°. ∴∠BAO=∠BEO . ∴AB=BE . ∴AF=BE .∴四边形ABEF 是平行四边形.∴□ABEF 是菱形. (2)(2)解:∵AD=BC ,AF=BE ,∴DF=CE . ∴BE=2CE . ∵AB=4,∴BE=4. ∴CE=2.过点A 作AG ⊥BC 于点G . (3)∵∠ABC=60°,AB=BE , ∴△ABE 是等边三角形. ∴BG=GE=2.∴AF=CG=4. ························ 4 ∴四边形AGCF 是平行四边形. ∴□AGCF 是矩形. ∴AG=CF .在△ABG 中,∠ABC=60°,AB=4,∴AG=∴CF=怀柔区22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy 的图象交于点A(3,-2).(1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标.y x–1–2–3–4–512345–1–2–3–4–512345O22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xmy =, 解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分延庆区22.在平面直角坐标系xOy 中,直(0)y kx b k =+≠ 与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0)my m x=≠的图象在第一象限交于点P (1,3),连接OP . (1)求反比例函数(0)my m x=≠的表达式; (2)若△AOB 的面积是△POB 的面积的2倍,求直线y kx b =+的表达式.22.(1)3y x ……1分(2) 如图22(1):∵∴OA=2PE=2∴A(2,0) ……2分将A (2,0),P (1,3)代入y=kx+b可得∴ ……3分 图22(1)∴直线AB 的表达式为:y=-3x+6同理:如图22(2)直线AB 的表达式为:y=x+2 ……4分综上:直线AB 的表达式为y=-3x+6或y=x+2 ……5分图22(2)顺义区22.如图,在平面直角坐标系xOy 中,直线24y x =+与双曲线ky x =(k ≠0)相交于A (-3,a ),B 两点.(1)求k 的值;(2)过点P (0,m )作直线l ,使直线l 与y 轴垂直,直线l 与直线AB 交于点M ,与双曲线ky x =交于点N ,若点P 在点M 与点N 之间,直接写出m 的取值范围.22.解:(1)∵点A (-3,a )在直线24y x =+上,∴2(3)42a =⨯-+=-.∴点A 的坐标为(-3,-2). …………………………………… 1分 ∵点A (-3,-2)在双曲线ky x =上,∴23k-=-, ∴6k =. …………………………………… 3分(2)m 的取值范围是 04m <<. ……………………………… 5分。

(8)2018-2020年北京中考数学复习各地区模拟试题分类(8)——二次函数参考答案

(8)——二次函数参考答案与试题解析一.选择题(共2小题)1.【解答】解:由图象可得,该函数的对称轴x >18+542且x <54,∴36<x <54,故选:C .2.【解答】解:∵y =﹣n 2+14n ﹣24=﹣(n ﹣2)(n ﹣12),1≤n ≤12且n 为整数,∴当y =0时,n =2或n =12,当y <0时,n =1,故选:D .二.填空题(共5小题)3.【解答】解:(1)∵y =kx 2+(2k +1)x +1(k 为实数).∴当x =﹣2时,y =4k +(2k +1)×(﹣2)+1=﹣1,当x =0时,y =0+0+1=1,∴对于任意实数k ,函数图象一定经过点(﹣2,﹣1)和点(0,1),故答案为:(0,1);(2)∵k 为任意正实数,∴k >0,∴函数图象开口向上,∵函数y =kx 2+(2k +1)x +1的对称轴为x=−2k+12k =−1−12k <−1,∴在对称轴右侧,y 随x 的增大而增大,∵x >m 时,y 随x 的增大而增大,∴m ≥﹣1−12k ,故m =0时符合题意.(答案不唯一,m ≥﹣1即可).故答案为:0.4.【解答】解:将点A 、B 、C 的坐标代入抛物线表达式得:−2=4a −2b +c c =33=9a +3b +c ,解得:a =−12b =32c =3,故抛物线y 1的表达式为:y 1=−12x 2+32x +3,顶点(32,338);同理可得:y 2=−54x 2+154x +3,顶点坐标为:(32,9316);y 3=−58x 2+54x +3,顶点坐标为(1,298);y 4=﹣x 2+2x +6,与y 轴的交点为:(0,6);①由函数表达式知,四条抛物线的开口方向均向下,故正确,符合题意;②当x <0时,y 3随x 的增大而增大,故错误,不符合题意;③由顶点坐标知,抛物线y 1的顶点在抛物线y 2顶点的下方,错误,不符合题意;④抛物线y 4与y 轴的交点(0,6)在B 的上方,正确,符合题意.故答案为:①④.5.【解答】解:y =x 2﹣3x +2,答案不唯一.故答案为:y =x 2﹣3x +2,答案不唯一.6.【解答】解:符合的表达式是y =(x ﹣1)2,故答案为:(x ﹣1)2.7.【解答】解:y =3x 2+2=3(x +0)2+2,所以将抛物线y =3(x +2)2﹣1先向右平移2个单位长度,再向上平移3个单位长度得到抛物线y =3x 2+2.故答案为:将抛物线y =3(x +2)2﹣1先向右平移2个单位长度,再向上平移3个单位长度得到抛物线y=3x 2+2三.解答题(共32小题)8.【解答】解:(1)∵抛物线的对称轴是直线x =1,∴m 2=1,∴m =2,∴抛物线的解析式为y =﹣x 2+2x +3,令y =0,则﹣x 2+2x +3=0,∴x =﹣1或x =3,∴A (﹣1,0),B (3,0),画出图象如图1所示;(2)∵P (m ,2),Q (﹣m ,2m ﹣1),当x =m 时,y =﹣m 2+m 2+3=3,∴点P 在抛物线与x 轴围成的图象的内部,∵当x =﹣m 时,y =﹣m 2﹣m 2+3=﹣2m 2+3,当m ≥0时,点P 在第一象限内,∴点P 在抛物线与x 轴围成的图象的内部,∴线段PQ 只有和在x =m 左侧的抛物线相交,∵抛物线与线段PQ 恰有一个公共点,∴﹣2m 2+3≤2m ﹣1,∴m ≤﹣2或m ≥1,∵m ≥0,∴m ≥1,当m <0时,点P 在第二象限内,∴点P 在抛物线与x 轴围成的图象的内部,∴线段PQ 只有和在x =m 右侧的抛物线相交,∵抛物线与线段PQ 恰有一个公共点,∴﹣2m 2+3≤2m ﹣1,∴m ≤﹣2或m ≥1,∵m <0,∴m ≤﹣2,即满足条件的m 的范围为m ≤﹣2或m ≥1.9.【解答】(1)x 取任意实数;故答案为:x 取任意实数;(2)把x =1代入y=12x 3﹣4x +1得,y=12−4+1=−52,故答案为:−52;(3)根据列表、描点、连线得出函数y=12x 3−4x +1的图象,所画的图象如图所示:(4)通过图象直观得出函数的图象与x 轴正半轴交点的横坐标.故答案为:0.3或2.7.10.【解答】解:(1)∵y=x2﹣2ax+a2=(x﹣a)2,∴顶点A(a,0);(2)①当a=0时,则抛物线y=x2,如图所示,观察图形,可知:区域W内的整点个数是4;②如图所示:当抛物线经过(0,2),区域W内有1个整点;当抛物线经过(0,1),区域W内有3个整点;观察图形,可知:如果区域W 内有2个整点,a 的取值范围为−2<a ≤﹣1.11.【解答】解:(1)∵抛物线y =ax 2+a 2x +c 与y 轴交于点(0,2),∴c 的值为2;(2)当a =2时,抛物线为y =2x 2+4x +2=2(x +1)2,∴抛物线顶点的坐标为(﹣1,0);(3)当a >0时,①当a =2时,如图1,抛物线与AB 只有一个交点;②当a =1+2时,如图2,抛物线与线段AB 有两个交点,结合函数图象可知:2<a ≤1+2;当a <0时,抛物线与线段AB 只有一个交点或没有交点,综上所述,a 的取值范围为2<a ≤1+2.12.【解答】解:(1)把m =3代入y =mx 2﹣3(m ﹣1)x +2m ﹣1中,得y =3x 2﹣6x +5=3(x ﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x =1时,y =m ﹣3(m ﹣1)+2m ﹣1=m ﹣3m +3+2m ﹣1=2.∵点A (1,2),∴抛物线总经过点A .(3)∵点B (0,2),由平移得C (3,2).①当抛物线的顶点是点A (1,2)时,抛物线与线段BC 只有一个公共点.由(1)知,此时,m =3.②当抛物线过点B (0,2)时,将点B (0,2)代入抛物线表达式,得2m ﹣1=2.∴m=32>0.此时抛物线开口向上(如图1).∴当0<m <32时,抛物线与线段BC 只有一个公共点.③当抛物线过点C (3,2)时,将点C (3,2)代入抛物线表达式,得9m ﹣9(m ﹣1)+2m ﹣1=2.∴m =﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m <0时,抛物线与线段BC 只有一个公共点.综上,m 的取值范围是m =3或0<m <32或﹣3<m <0.13.【解答】解:(1)∵抛物线y =x 2+2x +m +1=(x +1)2+m ,∴抛物线的顶点(﹣1,m ),(2)∵抛物线经过点A (m ,m +1),∴m +1=m 2+2m +m +1,解得m =0或﹣2,∴抛物线的解析式为y =x 2+2x +1或y =x 2+2x ﹣1.(3)当m ≥0时,如图1中,观察图象可知:m+1≤m2+2m+m+1≤m+3,∴m2+2m≥0且m2+2m﹣2≤0,解得0≤m≤﹣1+3.当m<0时,如图2中,观察图象可知:m+1≤m2+2m+m+1≤m+3,∴m2+2m≥0且m2+2m﹣2≤0,解得﹣1−3≤m≤﹣2,综上所述,满足条件的m的值为:0≤m≤﹣1+3或﹣1−3≤m≤﹣2.14.【解答】解:(1)∵抛物线y=ax2+bx﹣1交y轴于点P,∴点P(0,﹣1),∵PQ=4,PQ∥x轴,∴点Q(4,﹣1),(﹣4,﹣1)当点Q为(4,﹣1),∴﹣1=16a+4b﹣1,∴ba=−4,当点Q(﹣4,﹣1)∴﹣1=16a﹣4b﹣1,∴ba=4;(2)当a<0时,当抛物线过点(2,2)时,a=−34,当抛物线过点(2,3)时,a =﹣1,∴﹣1≤a <−34,当a >0时,当抛物线过点(2,﹣2)时,a=14,当抛物线过点(1,﹣2)时,a=13,∴14<a ≤13;综上所述:14<a ≤13或﹣1≤a <−34.15.【解答】解:(1)抛物线的对称轴为:x =2,故答案为:x =2;(2)解:∵抛物线的对称轴直线为x =2,∴顶点在1≤x ≤5范围内,∵y 的最小值是﹣1,∴顶点坐标为(2,﹣1).∵a >0,开口向上,∴当x >2时,y 随x 的增大而增大,即x =5时,y 有最大值,∴把顶点(2,﹣1)代入y =ax 2﹣4ax +1,∴4a ﹣8a +1=﹣1,解得a=12,∴y=12x 2﹣2x +1,∴当x =5时,y=72,即y 的最大值是72;(3)当x =﹣2时,P (﹣2,5),把P (﹣2,5)代入y =ax 2﹣4ax +1,∴4a +8a +1=5,解得a=13,当x 1=﹣1时,P (﹣1,4),把P (﹣1,4)代入y =ax 2﹣4ax +1,∴a +4a +1=4,解得a=35,∴13≤a <35.16.【解答】解:(1)∵点A (﹣1,0)在抛物线y =ax 2+bx ﹣3a (a ≠0)上,∴a ﹣b ﹣3a =0,即b =﹣2a ,∴y =ax 2﹣2ax ﹣3a =a (x ﹣1)2﹣4a ,∴抛物线的顶点坐标为(1,﹣4a );(2)∵y =ax 2﹣2ax ﹣3a =a (x 2﹣2x ﹣3)=a (x +1)(x ﹣3),∴抛物线与x 轴交于点A (﹣1,0),D (3,0),与y 轴交于点E (0,﹣3a ).由题意得,点C (0,4),又∵B (3,4),如图,当a >0时,显然,抛物线与线段BC 无公共点,当a <0时,若抛物线的顶点在线段BC 上,则顶点坐标为(1,4),∴﹣4a =4,∴a =﹣1.若抛物线的顶点不在线段BC 上,由抛物线与线段BC 恰有一个公共点,得﹣3a >4,∴a <−43,综上,a 的取值范围是a <−43,或a =﹣1.17.【解答】解:(1)①当G 在原点下方时,b =﹣3,②当G 在原点上方时,(x −0)2+(x 2−b)2=3,整理得:x 4+(1﹣2b )x 2+b 2﹣9=0,△=(1﹣2b )2﹣4(b 2﹣9)=0,解得:b=374(舍去),故答案为:﹣3;(2)如图1,作直线y=x+3与x轴交于点B(﹣3,0),过点M作MN⊥BN交于点N,则MN的长度为所求值,则△BMN为等腰直角三角形,故MN==32,故点M(3,0)到直线y=x+3的距离为32;(3)①当点N在直线BH和x=2的交点下方时,如图2,作直线y=x+4交x轴于点B,过点N作NH⊥BH于点H,过点N作MN∥x轴交直线BH于点M,则HN=4,由(2)同理可知,△HMN为等腰直角三角形,MN=2HN=42,故x M=2﹣42,y M=x M+4=6﹣42=y N,故点N的坐标为:(2,6﹣42);②当点N在直线BH和x=2的交点上方时,同理可得:点N的坐标为:(2,6+42);综上,点N的坐标为:(2,6﹣42)或(2,6+42).18.【解答】解:(1)把点A(0,﹣4)和B(﹣2,2)分别代入y=ax2+bx+c中,得c=﹣4,4a﹣2b+c=2.∴b=2a﹣3;(2)当a<0时,依题意抛物线的对称轴需满足−2a−32a≤−2,解得−32≤a<0.当a>0时,依题意抛物线的对称轴需满足−2a−32a≥0,解得0<a ≤32.∴a 的取值范围是−32≤a <0或0<a ≤32;(3)设直线AB 的表达式为:y =mx +n ,则n =−42=−2m +n ,解得:m =−3n =−4,故直线AB 表达式为y =﹣3x ﹣4,把C (m ,5)代入得m =﹣3.∴C (﹣3,5),由平移得D (1,5).①当a >0时,若抛物线与线段CD 只有一个公共点(如图1),y =ax 2+bx +c =ax 2+(2a ﹣3)x ﹣4,当x =1时,y =3a ﹣7,则抛物线上的点(1,3a ﹣7)在D 点的下方,∴a +2a ﹣3﹣4<5.解得a <4.∴0<a <4;②当a <0时,若抛物线的顶点在线段CD 上,则抛物线与线段只有一个公共点(如图2),∴4ac−b 24a =5.即4a×(−4)−(2a−3)24a =5.解得a =−3+a =−3−综上,a 的取值范围是0<a <4或a =−3−19.【解答】解:(1)当x =0时,则y=1m x 2﹣2x +1=1,∴A (0,1),∵y=1m x 2﹣2x +1=1m (x −m)2+1−m ,∴B (m ,1﹣m ),故答案为(0,1);(m ,1﹣m );(2)当m >0时,1﹣m <1,∴抛物线的对称轴在y 轴右边,顶点在y =4的下方,若抛物线与线段MN ×(−6)2−2×(−6)+1≥4×32−2×3+1<4,解得,m >1;当m <0时,1﹣m >1,若1<1﹣m <4,即﹣3<m <0时,抛物线开口向下,顶点在直线y =4的下方,则抛物线与线段MN 无交点;若1﹣m =4,即m =﹣3时,抛物线的顶点在线段MN 上,此时抛物线与线段MN 只有一个公共点;若1﹣m >4,即m <﹣3时,抛物线的对称轴在直线x =﹣3的左边,顶点在直线y =4的上方,若抛物线与线段MN ×(−6)2−2×(−6)+1>4×32−2×3+1≤4,解得,m <﹣4,综上,m <﹣4或m =﹣3或m >1.20.【解答】解:(1)①如图1,∵矩形ACBD 是点A ,B 的“相关矩形”,∴AD ∥CB ,∵点A (1,0),B (2,5),∴点C (2,0),BC =5,∴AC =2﹣1=1,∴点A ,B 的“相关矩形”的周长为2(AC +BC )=2×(1+5)=12;②如图2,∵点C 在直线x =3上,∴点C 的横坐标为3,∵点A (1,0),C 的“相关矩形”为正方形,∴BC ∥AD ,AB =BC ,∴点B 的坐标为(3,0),∴BC =AB =3﹣1=2∴点C 的坐标为(3,2)或(3,﹣2),∵抛物线y =x 2+mx +n 经过点A 和点C ,∴1+m +n =09+3m +n =2或1+m +n =09+3m +n =−2∴m =−3n =2或m =−5n =4∴抛物线的解析式为y =x 2﹣3x +2或y =x 2﹣5x +4,令x =0,则y =0,或y =4∴点D 的坐标为(0,2)或(0,4);(2)如图3,当点F 在y 轴的右侧时,点E 在点M 的右侧时,点E 的横坐标大,连接OM ,OF ,设OG =m ,∵点E ,F 的“相关矩形”为正方形,∴FM =ME ,∵点E 在直线y =3上,∴MG =3,在Rt △OGF 中,FG=OF 2−OG 2=16−m 2,∴点E 的横坐标为OG +ME =OG +MF =OG +MG +FG =OG +3+FG=m+16−m 2+3=(m )2+16−m 2)2﹣2m 16−m 2+2m 16−m 2+3=(m −16−m 2)2+2m 16−m 2+3≥2m 16−m 2+3(当且仅当m =16−m 2时,取等号),即m =22时,点E 的横坐标为(OG +ME )最大=(m+16−m 2)最大+3=42+3,∴点E 的横坐标最大是42+3,由圆的对称性得,点E 的横坐标的最小值为﹣(42+3),即点E 的横坐标的范围是大于等于﹣(42+3)而小于等于(42+3).21.【解答】解:(1)∵二次函数y =ax 2﹣2kx +k 2+k 图象的对称轴为直线x =k ,∴−−2k 2a =k ,∴a =1;(2)把a =1代入y =ax 2﹣2kx +k 2+k 得,y =x 2﹣2kx +k 2+k ,当x =k 时,y =k 2﹣2k 2+k 2+k =k ,∴顶点P (k ,k );(3)∵函数y =ax 2﹣2kx +k 2+k =x 2﹣2kx +k 2+k =(x ﹣k )2+k ,∴抛物线的开口向上,抛物线的对称轴为x =k ,顶点为(k ,k ),∵点A (0,1),B (2,1),∴①当k >1时,抛物线的顶点在直线AB 的上方,抛物线与直线AB 没有公共点,则函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 没有公共点;②当k =1时,顶点(1,1)在线段AB 上,即函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB恰有一个公共点;③当k <0时,则x =k +1或k ﹣1时,y =1+k <1,函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象在线段AB 下方,没有公共点;④当k =0时,函数y =ax 2﹣2kx +k 2+k =x 2,与线段AB 恰有一个公共点(1,1);⑤当0<k <1时,若函数图象过A (0,1)时,k 2+k =1,解得k=0(舍去),或k=∵01,∴根据抛物线的对称性知,当−1+52≤k <1时,函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 有两个公共点,当0<k y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点;综上所述:若函数y =ax 2﹣2kx +k 2+k (k ﹣1≤x ≤k +1)的图象与线段AB 恰有一个公共点,则0≤k 或k =1;22.【解答】解:(1)∵x 轴是图形l ,△PAB 是边长为2的等边三角形,∴P 点纵坐标为±3,y =x 上存在点(3,3)或(−3,−3)是x 轴的“美好点”,y=1x 上存在点(33,3)或(−−3)是x 轴的“美好点”y =x 2+2中y 的最小是2,∴y =x 2+2上不存在x 轴的“美好点”,故选A 、B ;(2)①∵M (3n ,0),N (0,n ),n >0,设直线MN 的解析式为y =kx +b ,则有b =n 0=3nk +b ,解得b =nk =−∴y=−+n ,如图1:∵M (3n ,0),N (0,n ),其中n >0,∴∠MNO =60°,∵△ABD 与△ACB 是边长为2的等边三角形,∴∠BAD =60°,∴AD ∥BC ∥y 轴,设过点C 与MN 平行的直线为y=+c ,过点D 与MN 平行的直线为y=+d ,当直线y=+c 与⊙O 相切时,c =4,∴n =4+2=6,此时⊙O 上恰好存在1个直线MN 的“美好点”,如图2:当直线y=+d 与⊙O 相切时,d =4,∴n =4﹣2=2,此时当直线y=−+c 经过原点O ,则c =0,∴此时⊙O 上恰好存在3个直线MN 的“美好点”,∴2<n <6时,⊙O 上恰好存在2个直线MN 的“美好点”;②如图3:∵n =4,∴M (43,0),N (0,4),∴∠OMN =30°,设AB =2在圆O 上,C 与D 是MN 上的点,则△ABC与△ABD是边长为2的等边三角形,当MN与D点所在圆相切时,OD=23,∴r=2,此时线段MN上存在⊙O的“美好点”,如图4:当OC=OM时,OC=43,∴MH=3,AH=1,∴OA=219,此时线段MN上存在⊙O的“美好点”,∴2≤r≤219,线段MN上存在⊙O的“美好点”.23.【解答】解:(1)令y =0,即0=ax 2﹣4ax ,解得x 1=0,x 2=4,∴A (0,0),B (4,0).答:点A 、B 的坐标为:(0,0),(4,0);(2)①设直线PC 解析式为y =kx +b ,将点C (2,1),P (1,−32a )代入解得:k =1+32a ,b =﹣3a ﹣1,∴直线PC 解析式为y =(1+32a )x ﹣3a ﹣1,当x =4时,y =3a +3,所以点Q 的纵坐标为3a +3.②∵当点Q 在B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,3a +3≥0,∴a ≥﹣1∴当a <0时,抛物线开口向下,抛物线只能与点Q 相交,∴﹣1≤a <0当a >0时,抛物线开口向上,只能与点P 相交,当x =1时,y=−32a ,y =﹣3a ,所以抛物线与点P 不相交.综上:a 的取值范围是:﹣1≤a <024.【解答】解:(1)根据题意量取数据m 为2.6,故答案为:2.6(2)根据已知数据描点连线得(3)①由图象可得,当0.8<x <3.5时,y >2.故答案为:0.8<x <3.5②不存在,理由如下:若BQ =BP∴∠BPQ =∠BQP∵∠BQP =∠APQ +∠PAQ >90°∴∠BPQ +∠BQP +∠QBP >180°与三角形内角和为180°相矛盾.∴不存在点P ,使得BQ =BP .故答案为不存在.25.【解答】解:(1)观察对应数值表可知:m =0,(2)用平滑的曲线依次连接图中所描的点,如下图所示:(3)观察函数图象,发现该函数图象关于y 轴对称,(答案不唯一),故答案为:函数图象关于y 轴对称;(4)①∵函数的图象与x 轴有4个交点,∴方程x 4﹣5x 2+4=0有4互不相等的实数根,故答案为4;②函数图象可知,当x 2>x 1>2时,y 1<y 2;故答案为<;③观察函数图象,结合对应数值表可知:﹣2.2<a <4,故答案为:﹣2.2<a <4.26.【解答】解:(1)根据顶点坐标公式得:x=−b 2a =−−2n 2n =1,y =n ﹣2n +n +2=2;∴顶点D (1,2);答:D 点坐标为(1,2).(2)直线y =kx +b 经过点D (1,2)和点C (0,1),∴k +b =2b =1,解得:k =1,b =1;∴直线的解析式为y =x +1.答:直线CD 的解析式为y =x +1.(3)如图所示,∵x 1+x 2=3,∴P 、Q 关于直线x=32对称,当t =1时,P 在C 处,即x 1=0,∵x 1+x 2=3,∴x 2=3,∴Q (3,1),代入抛物线y =nx 2﹣2nx +n +2中得:9n ﹣6n +n +2=1,n=−14,当t =﹣1时,y =﹣1=x +1,即x 1=﹣2,∵x 1+x 2=3,∴x 2=5,∴Q (5,﹣1),代入抛物线y =nx 2﹣2nx +n +2中得:25n ﹣10n +n +2=﹣1,n=−316,∵抛物线的顶点不变,且开口向下,随Q 的移动开口大小不改变,答:n 的取值范围是:−14<n <−316.27.【解答】解:(1)∵抛物线M :y =ax 2﹣4ax +a ﹣1(a ≠0),∴抛物线的对称轴直线为:x=−b 2a =−−4a 2a =2.故答案为:x =2.(2)∵抛物线M :y =ax 2﹣4ax +a ﹣1(a ≠0)的对称轴为直线,抛物线M 与x 轴的交点为点A ,点B ,(点A 在点B 的左侧),AB =2∴点A 、B 的坐标分别为(1,0),(3,0),∵点A 在抛物线M 上,∴将A 的坐标代入抛物线的函数表达式,得a ﹣4a +a ﹣1=0,解得a=−12,∴抛物线M 的解析式为:y=−12x 2+2x −32,∴直线l 与y 轴的交点在y 轴的上方,∴b >2,k <0∵抛物线M 的解析式为:y=−12x 2+2x −32=−12(x ﹣2)2+12∴顶点坐标D 为(2,12).(3)如图,由(2)知点D 的坐标为(2,12).∵直y =n 与直线l 的交点横坐标记为x 3,(x 3<4),且当﹣2≤n ≤﹣1时,总有x 1﹣x 3<x 3﹣x 2<0,∴可以得出x 1<x 3x 3<x 2,∵x 3<4∴2<x 3<4当直线l :y =kx +b (k ≠0)经过抛物线的顶点D (2,12)和(4,﹣2)时,2k +b =124k +b =−2,解得k=−54故k 的取值范围:k <−54.28.【解答】解:(1)抛物线y =ax 2﹣2a 2x 的对称轴是直线x =−−2a 22a=a ,∴点P 的坐标是(a ,0);(2)由题意可知图形M 为线段AB ,A (﹣1,3),B (3,0).当抛物线经过点A 时,解得a =−32或a =1;当抛物线经过点B 时,解得a =32.……………………………………………………(3分)如图1,当a =−32时,抛物线与图形M 恰有一个公共点.如图2,当a =1时,抛物线与图形M 恰有两个公共点.如图3,当a =32时,抛物线与图形M 恰有两个公共点.结合函数的图象可知,当a ≤−32或0<a <1或a >32时,抛物线与图形M 恰有一个公共点.29.【解答】解:(1)∵抛物线y =mx 2+2mx ﹣3(m >0)的顶点D 的纵坐标是﹣4,∴−12m−4m 24m =−4,解得m =1,∴y =x 2+2x ﹣3,令y =0,则x =﹣3或1,∴A (﹣3,0)B (1,0);(2)∵y =x 2+2x ﹣3=(x +1)2﹣4,∴抛物线的对称轴为x =﹣1,∵点C (0,﹣3)关于抛物线的对称轴的对称点坐标是E (﹣2,﹣3),点A (﹣3,0)关于该抛物线的对称轴的对称点坐标是B (1,0),设直线的表达式为y =kx +b ,∵点E (﹣2,﹣3)和点B (1,0)在直线上∴−2k +b =−3k +b =0,解得k =1b =−1,∴直线的表达式为y =x ﹣1;(3)由对称性可知x 1+x 22=−1,∴x 1+x 2=﹣2,∵x 1<x 3<x 2,∴﹣2<x 3<1,∴﹣4<x 1+x 2+x 3<﹣1.30.【解答】解:(1)函数的对称轴为:x=−b 2a=m ;(2)函数对称轴为x =m ,函数开口向上,x =m 时函数取得最小值,故:y 3>y 1>y 2;(3)把点A 的坐标代入y =﹣x +b 的表达式并解得:b =3,则点B (0,3),直线表达式为:y =﹣x +3,当y =3时,y =x 2﹣2mx +m 2﹣1=3,则x =m ±2,则点P (m +2,3),当△OAP 为钝角三角形时,则m +2<0或m +2>3,解得:m <﹣2或m >1.31.【解答】解:(1)∵y =x 2﹣2ax +a 2+2=(x ﹣a )2+2,∴抛物线顶点C 的坐标为(a ,2).(2)∵1>0,∴抛物线开口向上,又∵点C (a ,2)到直线l 的距离为2,直线l 垂直于y 轴,且与抛物线有交点,∴直线l 的解析式为y =4.当y =4时,x 2﹣2ax +a 2+2=4,解得:x 1=a −2,x 2=a+2,∴点E 的坐标为(a −2,4),点F 的坐标为(a+2,4),∴EF =a+2−(a −2)=22.(3)当y =t 时,x 2﹣2ax +a 2+2=t ,解得:x 1=a −t −2,x 2=a+t −2,∴EF =2t −2.又∵存在实数m ,使得x 1≥m ﹣1且x 2≤m +5成立,∴t −2>02t −2≤6,解得:2<t ≤11.32.【解答】解:(1)∵抛物线y =ax 2+bx +c (a >0)经过点A (0,﹣3)和B (3,0).∴−3=c 0=9a +3b +c ,∴c =﹣3,3a +b ﹣1=0.(2)由1可得:y =ax 2+(1﹣3a )x ﹣3,对称轴为x=−1−3a 2a ,∵抛物线在A 、B 两点间从左到右上升,当a >0时,对称轴在A 点左侧,如图:即:−1−3a 2a ≤0,解得:a ≤13,∴0<a ≤13.A 、B 两点间从左到右上升,∴当0<a ≤13时,抛物线在A 、B 两点间从左到右上升,(3)抛物线不能同时经过点M (﹣1+m ,n )、N (4﹣m ,n ).理由如下:若抛物线同时经过点M (﹣1+m ,n )、N (4﹣m ,n ).则对称轴为:x =(−1+m)+(4−m)2=32,由抛物线经过A 点可知抛物线经过(3,﹣3),与抛物线进过B (3,0)相矛盾,故:抛物线不能同时经过点M (﹣1+m ,n )、N (4﹣m ,n )33.【解答】解:(1)∵y =kx ﹣4k +4=k (x ﹣4)+4,即k (x ﹣4)=y ﹣4,而k 为任意实数,∴x ﹣4=0,y ﹣4=0,解得x =4,y =4,∴直线过定点(4,4);(2)当k=−12时,直线解析式为y=−12x +6,解方程组y =−12x +6y =14x 2−x 得x =−4y =8或x =6y =3,则A (6,3)、B (﹣4,8);①如图1,作PQ ∥y 轴,交AB 于点Q ,设P (x ,14x 2﹣x ),则Q (x ,−12x +6),∴PQ =(−12x +6)﹣(14x 2﹣x )=−14(x ﹣1)2+254,∴S △P AB =12(6+4)×PQ=−54(x ﹣1)2+1254=20,解得x 1=﹣2,x 2=4,∴点P 的坐标为(4,0)或(﹣2,3);②设P (x ,14x 2﹣x ),如图2,由题意得:AO =35,BO =45,AB =55,∵AB 2=AO 2+BO 2,∴∠AOB =90°,∵∠AOB =∠PCO ,∴当CP CO =OA OB 时,△CPO ∽△OAB ,即|14x 2−x||x|=35,整理得4|14x 2﹣x |=3|x |,解方程4(14x 2﹣x )=3x 得x 1=0(舍去),x 2=7,此时P 点坐标为(7,214);解方程4(14x 2﹣x )=﹣3x 得x 1=0(舍去),x 2=1,此时P 点坐标为(1,−34);当CP OC =OB OA 时,△CPO ∽△OBA ,即|14x 2−x||x|=45,整理得3|14x 2﹣x |=4|x |,解方程3(14x 2﹣x )=4x 得x 1=0(舍去),x 2=283,此时P 点坐标为(283,1129);解方程3(14x 2﹣x )=﹣4x 得x 1=0(舍去),x 2=−43,此时P 点坐标为(−43,169)综上所述,点P 的坐标为:(7,214)或(1,−34)或(−43,169)或(283,1129).34.【解答】(1)证明:△=(5﹣m )2﹣4×(﹣1)(6﹣m )=m 2﹣14m +49=(m ﹣7)2≥0,∴该抛物线与x 轴总有交点;(2)解:由(1)△=(m ﹣7)2,根据求根公式可知,方程的两根为:x =m−5±(m−7)2−2,即x 1=﹣1,x 2=﹣m +6,由题意,有3<﹣m +6<5,∴1<m <3;(3)解:令x =0,y =﹣m +6,∴M (0,﹣m +6),由(2)可知抛物线与x 轴的交点为(﹣1,0)和(﹣m +6,0),它们关于直线y =﹣x 的对称点分别为(0,1)和(0,m ﹣6),由题意,可得:﹣m +6=1或﹣m +6=m ﹣6,∴m =5或m =6.35.【解答】解:(1)∵二次函数y =ax 2﹣2ax ﹣2(a ≠0),∴该二次函数图象的对称轴是直线x=−−2a 2a =1,故答案为:x =1;(2)∵该二次函数的图象开口向上,对称轴为直线x =1,﹣1≤x ≤5,∴当x =5时,y 取得最大值,即M (5,112),∴112=a ×52−2a ×5−2,得a=12,∴该二次函数的表达式为y =ax 2﹣2ax ﹣2=a (x ﹣1)2﹣a ﹣2=12(x ﹣1)2−52,即点N 的坐标为(1,−52).(3)当a >0时,该函数的图象开口向上,对称轴为直线x =1,无法保证t ≤x 1≤t +1,当x 2≥3时,具有y 1≥y 2;当a <0时,该函数的图象开口向下,对称轴为直线x =1,∵t ≤x 1≤t +1,当x 2≥3时,具有y 1≥y 2,点A (x 1,y 1)B (x 2,y 2)在该函数图象上,∴t +1≤3t ≥1−(3−1),∴﹣1≤t ≤2.36.【解答】解:(1)∵抛物线y =ax 2+4x +c (a ≠0)经过点A (3,﹣4)和B (0,2),可得:9a +12+c =−4c =2解得:a =−2c =2∴抛物线的表达式为y =﹣2x 2+4x +2.∵y =﹣2x 2+4x +2=﹣2(x ﹣1)2+4,∴顶点坐标为(1,4);(2)设点B (0,2)关于x =3的对称点为B ′,则点B ′(6,2).若直线y =kx +b 经过点C (9,4)和B '(6,2),可得b =﹣2.若直线y =kx +b 经过点C (9,4)和A (3,﹣4),可得b =﹣8.直线y =kx +b 平行x 轴时,b =4.综上,﹣8<b <﹣2或b =4.37.【解答】解:(1)根据题意得△=(﹣4)2﹣4(2m ﹣1)>0,解得m <52;(2)m 的最大整数为2,抛物线解析式为y =x 2﹣4x +3,当y =0时,x 2﹣4x +3=0,解得x 1=1,x 2=3,所以A (1,0),B (3,0).38.【解答】解:∵抛物线y =x 2﹣2ax +b 的顶点在x 轴上,∴4b−(−2a)24=0,∴b =a 2.(1)∵a =1,∴b =1,∴抛物线的解析式为y =x 2﹣2x +1.①∵m =b =1,∴x 2﹣2x +1=1,解得:x 1=0,x 2=2.②设平移后的抛物线为y =(x ﹣1)2+k .∵抛物线的对称轴是x =1,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点,∴(3﹣1)2+k =0,即k =﹣4,∴变化过程是:将原抛物线向下平移4个单位.(2)∵x 2﹣2ax +a 2=m ,解得:x 1=a −m ,x 2=a+m ,∴PQ =2m .又∵x 1≤c ﹣1,x 2≥c +7,∴2m ≥(c +7)﹣(c ﹣1)=8,∴m ≥16.39.【解答】解:(1)①∵OE=12+12=2,OF==1,OM=22+22=22,∴点F 在⊙上,而点F 的横坐标和纵坐标相等∴⊙O 的“梦之点”为点F ;故答案为F 点;②∵⊙O 的半径为1.∴⊙O 的“梦之点”坐标为(−−)和(22,22),又∵双曲线y=k x (k ≠0)与直线y =x 的交点均为双曲线的“梦之点”,∴将(−−k=−(=12,∵点P 位于⊙O 内部.∴0<k <12;(2)设P (x ,x ),∵点C 的坐标为(1,t ),⊙C 的半径为2,∴(x ﹣1)2+(x ﹣t )2=2,整理得2x 2﹣2(t +1)x +t 2﹣1=0,∵△=4(t +1)2﹣4•2•(t 2﹣1)≥0,∴﹣1≤t ≤3;(3)由“梦之点”定义可得:A (x 1,x 1),B (x 2,x 2).则x =ax 2﹣ax +1.整理得ax 2﹣(a +1)x +1=0解得x 1=1,x 2=1a ,把两个根代入|x 1﹣x 2|=2中得|1−1a |=2,解得,a 1=﹣1,a 2=13,当a =﹣1时,y =﹣x 2+x +1=﹣(x −12)2+54,其顶点坐标为(12,54);当a=13时,y=13x 2−13x +1=13(x −12)2+1112,其顶点坐标为(12,1112).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数综合专题 东城区26.在平面直角坐标系xOy 中,抛物线()02342≠-+-=a a ax ax y 与x 轴交于A ,B 两点(点A 在点B 左侧). (1)当抛物线过原点时,求实数a 的值; (2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a 的代数式表示); (3)当AB ≤4时,求实数a 的取值范围.26.解:(1) ∵点()0,0O 在抛物线上,∴320a -=,23a =.--------------------2分(2)①对称轴为直线2x =;②顶点的纵坐标为 2a --.--------------------4分 (3) (i )当0a >时,依题意,-20320.a a -⎧⎨-⎩<,≥解得2.3a ≥(ii )当0a <时, 依题意,-20320.a a -⎧⎨-⎩>,≤解得a <-2.综上,2a -<,或23a ≥. --------------------7分西城区26.在平面直角坐标系xOy 中,抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C ,抛物线G 的顶点为D ,直线:1(0)y mx m m =+-≠.(1)当1m =时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.x【解析】(1)当1m =时,抛物线G 的函数表达式为22y x x =+,直线的函数表达式为y x =,直线被抛物线Gx(2)∵抛物线G :221(0)y mx mx m m =++-≠与y 轴交于点C , ∴点C 的坐标为(0,1)C m -,∵2221(1)1y mx mx m m x =++-=+-, ∴抛物线G 的顶点D 的坐标为(1,1)--, 对于直线:1(0)y mx m m =+-≠, 当0x =时,1y m =-,当1x =-时,(1)11y m m =⨯-+-=-, ∴无论m 取何值,点C ,D 都在直线上. (3)m的取值范围是m ≤m .海淀区26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在 x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点.(1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程;(2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是 .26.解:抛物线22y x ax b =-+的顶点在x 轴上,24(2)04b a --∴=.2b a ∴=. ………………1分(1)1a =,1b ∴=.∴抛物线的解析式为221y x x =-+.①1m b ==,2211x x ∴-+=,解得10x =,22x =. ………………2分②依题意,设平移后的抛物线为2(1)y x k =-+.抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.2(31)0k ∴-+=,即4k =-.∴变化过程是:将原抛物线向下平移4个单位. ………………4分(2)16m ≥. ………………6分丰台区26.在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2.(1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.)22a -,∴对称轴为x = 2.………………………………………1分 ∵抛物线最高点的纵坐标是2,∴a = -2. ………………………………………2分∴抛物线的表达式为2286y x x =-+-. ……………3分(2)由图象可知,2b = 或-6≤b <0.………………6分由图象的对称性可得:x 1+x 2=2. ……………… 7分石景山区26.在平面直角坐标系xOy 中,将抛物线21G y mx =+:(0m ≠位长度后得到抛物线2G ,点A 是抛物线2G 的顶点.xy(1)直接写出点A 的坐标;(2)过点0(且平行于x 轴的直线l 与抛物线2G 交于B ,C 两点.①当=90BAC ∠°时,求抛物线2G 的表达式;②若60120BAC <∠<°°,直接写出m 的取值范围.26.解:(1)()A. ………………………………… 2分(2)①设抛物线2G的表达式为2(y m x =-+,如图所示,由题意可得AD ==∵=90BAC ∠°,AB AC =, ∴=45ABD ∠︒.∴BD AD ==∴点B的坐标为. ∵点B 在抛物线2G 上,可得3m =.∴抛物线2G的表达式为23y x =-+,即223y x x =-+ ………………… 5分②m <<-. ………………… 7分 朝阳区26. 在平面直角坐标系xOy 中,抛物线()2440y ax ax a =--≠与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)若方程()244=00ax ax a --≠有两个不相等的实数根,且两根都在1,3之间(包括1,3),结合函数的图象,求a 的取值范围.26.解:(1)44)2(4422---=--=a x a ax ax y .∴A (0,-4),B (2,0).……………………………………2分 (2)当抛物线经过点(1,0)时,34-=a .…………………… 4分 当抛物线经过点(2,0)时,1-=a . …………………………6分 结合函数图象可知,a 的取值范围为134<≤-a .……………… 7分燕山区24.如图,在平面直角坐标系中,直线l : y=kx+k (k ≠0)与x 轴,y 轴分别交于A,B 两点,且点B(0,2),点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y=t . (1)求 k 的值和点A 的坐标;(2)当t=4时,直线y=t 与直线l 交于点M ,反比例函数xny =(n ≠0)的图象经过点M ,求反比例函数的解析式; (3)当t<4时,若直线y=t 与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.24.解:(1)∵直线l :y=kx+k 经过点B(0,2),∴k=2∴ y=2x+2∴A(-1,0) ……………………….2′(2)当t=4时,将y=4代入y=2x+2得,x=1∴M(1,4)代入xny =得,n=4 ∴xy 4=……………………….2′ (3)当t=2时,B(0,2) 即C(0,2),而D(2,2)如图,CD=2,当y=t 向下运动但是不超过x 轴时,符合要求∴ t 的取值范围是 0 <t ≤2 ……………………….5′门头沟区26.有一个二次函数满足以下条件:①函数图象与x 轴的交点坐标分别为(1,0)A ,22(,)B x y (点B 在点A 的右侧); ②对称轴是3x =; ③该函数有最小值是-2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象2x x >的部分图象向下翻折与原图象未翻折的部分组成图象“G ”, 平行于x 轴的直线与图象“G ”相交于点33(,)C x y 、44(,)D x y 、55(,)E x y (345x x x <<),结合画出的函数图象求345x x x ++的取值范围.26. (本小题满分7分)(1)解:有上述信息可知该函数图象的顶点坐标为: (3,2)- 设二次函数表达式为:2(3)2y a x =-- ……………1分 ∵该图象过(1,0)A∴20(13)2a =--,解得12a = ……………2分∴表达式为21(3)22y x =-- (2)图象正确………………………………………………………3分 由已知条件可知直线与图形“G ”要有三个交点① 当直线与x 轴重合时,有2个交点,由二次函数的轴对称性可求 346x x += ……………………………………4分 ∴34511x x x ++> ……………………………………5分 ②当直线过21(3)22y x =--的图象顶点时,有2个交点, 由翻折可以得到翻折后的函数图象为21(3)22y x =--+ ∴令21(3)222x --+=-时,解得3x =±3x =-6分∴3459x x x +++<综上所述345x x x ++11<<…………7分大兴区26. 在平面直角坐标系xOy 中,抛物线22(31)2(0)y x m x m m m =-+++>,与y 轴交于点C ,与x 轴交于点A 1(,0)x ,B 2(,0)x ,且12x x <.(1)求1223-+x x 的值;(2)当m=1223-+x x 时,将此抛物线沿对称轴向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边),求n 的取值范围(直接写出答案即可).26.(1) 解关于x 的一元二次方程,()223120x m x m m -+++=得x =2m +1, x =m ………………………………………………………2分 ∵m >0, x 1<x 2∴x 1=m , x 2=2m+1. …………………………………………………… 3分 2x 1-x 2+3=2m -2m -1+3=2 …………………………………………… 4分(2)符合题意的n 的取值范围是. …………………………………7分平谷区26.在平面直角坐标系xOy 中,抛物线223y x bx =-+-的对称轴为直线x =2. (1)求b 的值;(2)在y 轴上有一动点P (0,m ),过点P 作垂直y 轴的直线交抛物线于点A (x 1,y 1),B (x 2 ,y 2),其中 12x x <.①当213x x -=时,结合函数图象,求出m 的值;②把直线PB 下方的函数图象,沿直线PB 向上翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在0≤x ≤5 时,44y -≤≤,求m 的取值范围.26.解:(1)∵抛物线223y x bx =-+-的对称轴为直线x =2,∴b =2. ················································· 1 (2)①∴抛物线的表达式为243y x x =-+-. ∵A (x 1,y ),B (x 2 ,y ), ∴直线AB 平行x 轴.∵213x x -=, ∴AB =3. ∵对称轴为x =2, ∴AC =12. ············································· 2 ∴当12x =时,54y m ==-. ................... 3 ②当y =m =-4时,0≤x ≤5时,41y -≤≤; (4)当y =m =-2时,0≤x ≤5 时,24y -≤≤;..... 5 ∴m 的取值范围为42m -≤≤-. (6)怀柔区26.在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A .(1)求抛物线顶点M 的坐标;(2)若点A 的坐标为(0,3),AB ∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线m x y +=21与图象G 有一个交点,结合函数的图象,求m 的取值范围. yx –1–2–3–4–512345–1–2–3–4–512345O26.(1)M(2,-1); ………………………………………………………………………………2分(2)B(4,3); …………………………………………………………………………………3分(3)∵抛物线y=mx 2-4mx+4m-1(m ≠0)与y 轴交于点A (0,3),∴4n-1=3.∴n=1. ……………………………………………………………………………………4分 ∴抛物线的表达式为342+-=x x y .由34212++=+x x m x . 由△=0,得: 161-=m ……………………………………………………………………5分 ∵抛物线342+-=x x y 与x 轴的交点C 的坐标为(1,0),∴点C 关于y 轴的对称点C 1的坐标为(-1,0).把(-1,0)代入m x y +=21,得:21=m .……………………………………………6分 把(-4,3)代入m x y +=21,得:5=m . ∴所求m 的取值范围是161-=m 或21<m ≤ 5. …………………………………………7分延庆区26.在平面直角坐标系xOy 中,抛物线y =ax 2-4ax +3a (a >0)与x 轴交于A ,B 两点(A 在B 的左侧).(1)求抛物线的对称轴及点A ,B 的坐标;(2)点C (t ,3)是抛物线243(0)y ax ax a a =-+>上一点,(点C 在对称轴的右侧),过点C 作x 轴的垂线,垂足为点D .①当CD AD =时,求此时抛物线的表达式;②当CD AD >时,求t 的取值范围.26.(1)对称轴:x =2 ……1分A (1,0)或B (3,0) ……1分(2)①如图1,∵AD =CD∴AD =3∴C 点坐标为(4,3) ……3分将C (4,3)代入243y ax ax a =-+∴316163a a a =-+∴a =1∴抛物线的表达式为:243y x x =-+ ……4分②34t << ……6分过程略顺义区26.在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是-1,且与y 轴交于点B (0,-1),点P 为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q .如果OP =OQ ,求点Q 的坐标.26.解:(1)依题意12-=-b ,b =2, 由B (0,-1),得c=-1,∴抛物线的表达式是221=+-y x x .…………………… 2分4(2)向下平移4个单位得到225=+-y x x ,……………………… 3分 ∵OP =OQ ,∴P 、Q 两点横坐标相同,纵坐标互为相反数.∴2221250+-++-=x x x x .∴13=-x ,21=x .………………………………………………… 5分 把13=-x ,21=x 分别代入225=+-y x x .得出Q 1(-3,-2),Q 2(1,-2).………………………………… 7分。

相关文档
最新文档