四川省成都市天府新区2018-2019学年八年级(下)期末数学试卷(含解析)

合集下载

八年级(下)期末数学试卷 (解析版)

八年级(下)期末数学试卷  (解析版)

2018-2019学年四川省成都市高新区八年级(下)期末数学试卷一.选择题(共10小题)1.已知a<b,则下列不等式正确的是()A.a﹣3<b﹣3B.>C.﹣a<﹣b D.6a>6b2.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.等腰梯形C.正方形D.平行四边形3.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.54.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠5.计算()3÷的结果是()A.B.y2C.y4D.x2y26.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm7.一个多边形的内角和是1260°,这个多边形的边数是()A.6B.7C.8D.98.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程()A.=25%B.150﹣x=25%C.x=150×25%D.25%x=150 9.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是()A.4B.2C.1D.10.如图,已知直线11:y=﹣x+4与直线l2:y=3x+b相交于点P,点P的横坐标是2,则不等式﹣x+4≤3x+b的解集是()A.x<2B.x>2C.x≤2D.x≥2二.填空题11.因式分解:a2﹣4=.12.如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD =cm.13.已知,则的值是.14.如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=cm.三.解答题15.(1)因式分解:x2y﹣2xy2+y3(2)解不等式组:16.解方程:+=1.17.先化简,再求值:(﹣)•.其中a=3+.18.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)直接写出以C1、B1、B2为顶点的三角形的形状是.19.成都至西安的高速铁路(简称西成高铁)全线正式运营,至此,从成都至西安有两条铁路线可选择:一条是普通列车行驶线路(宝成线),全长825千米;另一条是高速列车行驶线路(西成高铁),全长660千米,高速列车在西成高铁线上行驶的平均速度是普通列车在宝成线上行驶的平均速度的3倍,乘坐普通列车从成都至西安比乘坐高速列车从成都至西安多用11小时,则高速列车在西成高铁上行驶的平均速度是多少?20.在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF 分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.B卷21.已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=.22.若不等式组的解集是x>3,则m的取值范围是.23.若关于x的方程﹣=m无解,则m的值为.24.如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=.25.如图所示,在菱形纸片ABCD中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:第一步:如图①,将菱形纸片ABCD折叠,使点A的对应点A′恰好落在边CD上,折痕EF分别与边AD、AB交于点E、F,折痕EF与对应点A、A′的连线交于点G.第二步:如图②,再将四边形纸片BCA′F折叠使点C的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N.第三步:展开菱形纸片ABCD,连接GC′,则GC′最小值是.26.某文具店准备购进A、B两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:书包型号进价(元/个)售价(元/个)A型200300B型100150购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的.(1)该文具店有哪几种进货方案?(2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)27.等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.28.在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC 交x轴负半轴于点C,∠BCA=30°,如图①.(1)求直线BC的解析式.(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.已知a<b,则下列不等式正确的是()A.a﹣3<b﹣3B.>C.﹣a<﹣b D.6a>6b【分析】利用不等式的性质判断即可.【解答】解:A、在不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,原变形正确,故本选项符合题意.B、在不等式a<b的两边同时除以2,不等式仍成立,即<,原变形错误,故本选项不符合题意.C、在不等式a<b的两边同时乘以﹣1,不等号方向改变,即﹣a>﹣b,原变形错误,故本选项不符合题意.D、在不等式a<b的两边同时乘以6,不等式仍成立,即6a<6b,原变形错误,故本选项不符合题意.故选:A.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.等腰梯形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念,即可求解.【解答】解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.3.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.5【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选:C.4.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【解答】解:分式有意义,则2x﹣3≠0,解得,x≠,故选:C.5.计算()3÷的结果是()A.B.y2C.y4D.x2y2【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=y2,故选:B.6.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm【分析】首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.7.一个多边形的内角和是1260°,这个多边形的边数是()A.6B.7C.8D.9【分析】设边数为n,由多边形内角和公式可列方程,可求得边数.【解答】解:设这个多边形的边数为n,由题意可得:(n﹣2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选:D.8.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程()A.=25%B.150﹣x=25%C.x=150×25%D.25%x=150【分析】利润率=利润÷成本=(售价﹣成本)÷成本.等量关系为:(售价﹣成本)÷成本=25%.【解答】解:利润为:150﹣x,利润率为:(150﹣x)÷x.所列方程为:=25%.故选A.9.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是()A.4B.2C.1D.【分析】证明△AOE≌△BOF(ASA),得出△AOE的面积=△BOF的面积,得出四边形AFOE的面积=正方形ABCD的面积=×22=1即可.【解答】解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故选:C.10.如图,已知直线11:y=﹣x+4与直线l2:y=3x+b相交于点P,点P的横坐标是2,则不等式﹣x+4≤3x+b的解集是()A.x<2B.x>2C.x≤2D.x≥2【分析】利用函数图象,写出直线l1不在直线l2上方所对应的自变量的范围即可.【解答】解:当x≥2时,﹣x+4≤3x+b,所以不等式﹣x+4≤3x+b的解集为x≥2.故选:D.二.填空题11.因式分解:a2﹣4=(a+2)(a﹣2).【分析】直接利用平方差公式分解因式得出即可.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD =2cm.【分析】根据含30°角的直角三角形的性质求出AB,再根据直角三角形斜边上的中线的性质求出CD即可.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,∴AB=2BC=4cm,∵Rt△ABC中,∠ACB=90°,点D是AB的中点,∴CD=AB=2cm,故答案为:2.13.已知,则的值是.【分析】根据比例设a=3k,b=2k(k≠0),然后代入比例式进行计算即可得解.【解答】解:∵=,∴设a=3k,b=2k(k≠0),则==.故答案为:.14.如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=5cm.【分析】先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.【解答】解:∵AE的垂直平分线为DG∴AF=EF,∠AFG=∠EFD=90°,DA=DE∵四边形ABCD是平行四边形∴DC∥AB,AD∥BC,DC=AB,∴∠DEA=∠BAE∵AE平分∠BAD交CD于点E∴∠DAE=∠BAE∴在△DEF和△GAF中∴△DEF≌△GAF(ASA)∴DE=AG又∵DE∥AG∴四边形DAGE为平行四边形又∵DA=DE∴四边形DAGE为菱形.∴AG=AD∵AD=4cm∴AG=4cm∵BG=1cm∴AB=AG+BG=4+1=5(cm)故答案为:5.三.解答题15.(1)因式分解:x2y﹣2xy2+y3(2)解不等式组:【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)原式=y(x2﹣2xy+y2)=y(x﹣y)2;(2),由①得:x<2,由②得:x>﹣3,则不等式组的解集为﹣3<x<2.16.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.17.先化简,再求值:(﹣)•.其中a=3+.【分析】原式利用乘法分配律计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•﹣•=2(a﹣1)﹣(a+1)=2a﹣2﹣a﹣1=a﹣3,当a=3+时,原式=3+﹣3=.18.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)直接写出以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.【分析】(1)利用点平移的坐标特征写出点A1,B1,C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2得到△A2B2C2;(3)利用勾股定理的逆定理进行判断.【解答】解:(1)如图,△A1B1C1为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)(2)如图,△A2B2C2为所作.(3)∵C1B12=5,C1B22=5,B1B22=10,∴C1B12+C1B22=B1B22,C1B1=C1B2,∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.故答案为等腰直角三角形.19.成都至西安的高速铁路(简称西成高铁)全线正式运营,至此,从成都至西安有两条铁路线可选择:一条是普通列车行驶线路(宝成线),全长825千米;另一条是高速列车行驶线路(西成高铁),全长660千米,高速列车在西成高铁线上行驶的平均速度是普通列车在宝成线上行驶的平均速度的3倍,乘坐普通列车从成都至西安比乘坐高速列车从成都至西安多用11小时,则高速列车在西成高铁上行驶的平均速度是多少?【分析】设普通列车的平均速度为v km/h,根据题意列出方程即可求出答案.【解答】解:设普通列车的平均速度为v km/h,∴高速列车的平均速度为3vkm/h,∴由题意可知:=+11,∴解得:v=55,经检验:v=55是原方程的解,∴3v=165,答:高速列车在西成高铁上行驶的平均速度为165 km/h.20.在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF 分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.【分析】(1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得结论;(2)①由等腰三角形的性质可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性质可求BN的长,即可求解;②如图,过点H作HM⊥BC于点M,由“AAS”可证△HMC≌△CND,可得HM=CN,由等腰直角三角形的性质可得BH=HM,即可得结论.【解答】证明:(1)∵平行四边形ABCD中,点O是对角线BD中点,∴AD∥BC,BO=DO,∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,∴△BOE≌△DOF(ASA)∴DF=BE,且DF∥BE,∴四边形BEDF是平行四边形;(2)①如图2,过点D作DN⊥EC于点N,∵DE=DC=6,DN⊥EC,∴EN=CN=2,∴DN===4,∵∠DBC=45°,DN⊥BC,∴∠DBC=∠BDN=45°,∴DN=BN=4,∴BE=BN﹣EN=4﹣2;②AF=BH,理由如下:如图,过点H作HM⊥BC于点M,∵DN⊥EC,CG⊥DE,∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,∴∠EDN=∠ECG,∵DE=DC,DN⊥EC,∴∠EDN=∠CDN,EC=2CN,∴∠ECG=∠CDN,∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,∴∠CDB=∠DHC,∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,∴△HMC≌△CND(AAS)∴HM=CN,∵HM⊥BC,∠DBC=45°,∴∠BHM=∠DBC=45°,∴BM=HM,∴BH=HM,∵AD=BC,DF=BE,∴AF=EC=2CN,∴AF=2HM=BH.21.已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=﹣2.【分析】先运用提公因数法把多项式x3y+x2y2+xy3因式分解,再根据完全平方公式因式分解即可求解.【解答】解:∵xy=﹣1,x+y=2,∴x3y+x2y2+xy3====﹣2.故答案为:﹣2.22.若不等式组的解集是x>3,则m的取值范围是m≤3.【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,根据同大取大得到m≤3.【解答】解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.23.若关于x的方程﹣=m无解,则m的值为.【分析】分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.【解答】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=②当2m﹣1≠0时,x=,x=时,原分式方程无解;即=m=﹣故答案为:24.如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=.【分析】由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP 绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.【解答】解:如图,作CG⊥CP交DF的延长线于G.则∠PCF+∠GCF=∠PCG=90°,∵四边形ABCD是边长为2的正方形,∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,∵E、F分别为CD、BC中点,∴DE=CE=CF=BF=1,∴AE=DF=,∴DP==,∴PE=,PF=,在△ADE和△DCF中:∴△ADE≌△DCF(SAS),∴∠AED=∠DFC,∴∠CEP=∠CFG,∵∠ECP+∠PCF=∠DCB=90°,∴∠ECP=∠FCG,在△ECP和△FCG中:∴△ECP≌△FCG(ASA),∴CP=CG,EP=FG,∴△PCG为等腰直角三角形,∴PG=PF+FG=PF+PE==CP,∴CP=.故答案为.25.如图所示,在菱形纸片ABCD中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:第一步:如图①,将菱形纸片ABCD折叠,使点A的对应点A′恰好落在边CD上,折痕EF分别与边AD、AB交于点E、F,折痕EF与对应点A、A′的连线交于点G.第二步:如图②,再将四边形纸片BCA′F折叠使点C的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N.第三步:展开菱形纸片ABCD,连接GC′,则GC′最小值是.【分析】注意到G为AA'的中点,于是可知G点的高度终为菱形高度的一半,同时注意到G在∠AF A'的角平分线上,因此作GH⊥AB于H,GP⊥A'F于P,则GP=GH,根据垂线段最短原理可知GH就是所求最小值.【解答】解:如图,作GH⊥AB于H,DR⊥AB于R,GP⊥A'F于P,A'Q⊥AB于Q.∵四边形ABCD是菱形,∴DA=AB=BC=CD=4,AB∥CD,∴A'Q=DR,∵∠BAD=60°,∴A'Q=DR=AD=2,∵A'与A关于EF对称,∴EF垂直平分AA',∴AG=A'G,∠AFE=∠A'FE,∴GP=PH,又∵GH⊥AB,A'Q⊥AB∴GH∥A'B,∴GH=A'Q=DR=,所以GC'≥GP=,当且仅当C'与P重合时,GC'取得最小值.故答案为.26.某文具店准备购进A、B两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:书包型号进价(元/个)售价(元/个)A型200300B型100150购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的.(1)该文具店有哪几种进货方案?(2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)【分析】(1)设购进A型书包x个,则B型(50﹣x)个,由题意得关于x的不等式组,解得x的范围,再根据x为正整数,可得x及(50﹣x)的值,则进货方案可得.(2)设获利y元,根据利润等于(A的售价﹣进价)×A的购进数量+(B的售价﹣进价)×B的购进数量,列出函数关系式,根据一次函数的性质可得答案.【解答】解:(1)设购进A型书包x个,则B型(50﹣x)个,由题意得:,解得:20≤x≤23.∴A型书包可以购进20,21,22,23个;B型书包可以购进(50﹣x)个,即30,29,28,27个.答:有4种进货方案,分别是:①A,20个,B,30个;②A,21个,B,29个;③A,22个,B28个;④A,23个,B27个.(2)设获利y元,由题意得:y=(300﹣200)x+(150﹣100)(50﹣x)=100x+50(50﹣x)=50x+2500.∵50>0,∴y随x的增大而增大.∴当x=23时,y最大,y最大值=50×23+2500=3650.答:购进A型23个,B型27个获利最大,最大利润为3650元.27.等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.【分析】(1)直接利用直角三角形斜边的中线等于斜边的一半,即可得出结论;(2)①先判断出△CDM≌△TBM得出CM=TM,DC=BT=OC,进而判断出△OAC≌△BAT,得出AC=AT,即可得出结论;②先利用等腰直角三角形的性质求出再求出OD,DC=CO=,再用勾股定理得出CT,进而判断出CM=AM,得出AM=OM,进而求出ON,再根据勾股定理求出MN,即可得出结论.【解答】解:(1)证明:∵∠OAB=90°,∴△ABD是直角三角形,∵点M是BD的中点,∴AM=BD,∵DC⊥OB,∴∠BCD=90°,∵点M是BD的中点,∴CM=BD,∴AM=CM;(2)①如图②,在图①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延长CM交OB于T,连接AT,由旋转知,∠COB=90°,DC∥OB,∴∠CDM=∠TBM,∵点M是BD的中点,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如图③,在Rt△AOB中,AB=4,∴OA=4,OB=AB=4,在图①中,点D是OA的中点,∴OD=OA=2,∵△OCD是等腰直角三角形,∴DC=CO==,由①知,BT=CD,∴BT=,∴OT=OB﹣TB=3,在Rt△OTC中,CT==2,∵CM=TM=CT==AM,∵OM是Rt△COT的斜边上的中线,∴OM=CT=,∴AM=OM,过点M作MN⊥OA于N,则ON=AN=OA=2,根据勾股定理得,MN==1,∴S△AOM=OA•MN=×4×1=2.28.在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC 交x轴负半轴于点C,∠BCA=30°,如图①.(1)求直线BC的解析式.(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)求出B,C的坐标,由待定系数法可求出答案;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.分两种情况:(Ⅰ)当点M在线段AB上运动时,(Ⅱ)当点M在线段AB的延长线上运动时,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;(3)设点M(a,﹣a+2),N(b,),P(2,c),点B(0,2),分三种情况:(Ⅰ)当以BM,BP为邻边构成菱形时,(Ⅱ)当以BP为对角线,BM为边构成菱形时,(Ⅲ)当以BM为对角线,BP为边构成菱形时,由菱形的性质可得出方程组,解方程组即可得出答案.【解答】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,∴x=0时,y=2,y=0时,x=2,∴A(2,0),B(0,2),∴OB=AO=2,在Rt△COB中,∠BOC=90°,∠BCA=30°,∴OC=2,∴C(﹣2,0),设直线BC的解析式为y=kx+b,代入B,C两点的坐标得,,∴k=,b=2,∴直线BC的解析式为y=x+2;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.(Ⅰ)如图1,当点M在线段AB上运动时,∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,∴∠BAO=∠ABO=45°,∵∠BCO=30°,∴NP=MQ=t,∵MQ⊥x轴,NP⊥x轴,∴∠NPQ=∠MQA=90°,NP∥MQ,∴四边形NPQM是矩形,∴NS∥x轴,∵AD⊥x轴,∴AS∥MQ∥y轴,∴四边形MQAS是矩形,∴AS=MQ=NP=t,∵NS∥x轴,AS∥MQ∥y轴,∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,∴当DS=BO=2时,△DSN≌△BOC(AAS),∵D(2,+2),∴DS=+2﹣t,∴+2﹣t=2,∴t=(秒);(Ⅱ)当点M在线段AB的延长线上运动时,如图2,同理可得,当DS=BO=2时,△DSN≌△BOC(AAS),∵DS=t﹣(+2),∴t﹣(+2)=2,∴t=+4(秒),综合以上可得,t=秒或t=+4秒时,△DSN≌△BOC.(3)存在以M、B、N、P为顶点的四边形是菱形:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).∵M是直线AB在第二象限上的一点,点N,P分别在直线BC,直线AD上,∴设点M(a,﹣a+2),N(b,b+2),P(2,c),点B(0,2),(Ⅰ)当以BM,BP为邻边构成菱形时,如图3,∵∠CBO=60°,∠OBA=∠OAB=∠P AF=45°,∴∠DBA=∠MBN=∠PBN=75°,∴∠MBE=45°,∠PBF=30°,∴MB=ME,PF=AP,PB=2PF=AP,∵四边形BMNP是菱形,∴,解得,a=﹣2﹣2,∴M(﹣2﹣2,2+4)(此时点N与点C重合),(Ⅱ)当以BP为对角线,BM为边构成菱形时,如图4,过点B作EF∥x轴,ME⊥EF,NF⊥EF,同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,由四边形BMNP是菱形和BM=BN得:,解得:a=﹣2﹣4,∴M(﹣2﹣4,2+6),(Ⅲ)当以BM为对角线,BP为边构成菱形时,如图5,作NE⊥y轴,BF⊥AD,∴∠BNE=30°,∠PBF=60°,由四边形BMNP是菱形和BN=BP得,,解得:a=﹣2+2,∴M(﹣2+2,2).综合上以得出,当以M、B、N、P为顶点的四边形是菱形时,点M的坐标为:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).。

(已整理)2018-2019学年成都市天府新区八年级(下)数学期末试卷(含解析)

(已整理)2018-2019学年成都市天府新区八年级(下)数学期末试卷(含解析)

2018-2019 学年成都市天府新区八年级(下)期末数学试卷(考试时间:120 分钟满分:150 分)A 卷(共 100 分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中只有一项是符合题目要求的)1.下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C .正六边形D.禁止标志2.已知a<b,下列不等式中正确的是()A.B.a﹣3<b﹣3 C.a+3>b+3 D.﹣3a<﹣3b 3.当x=2时,下列分式的值为0 的是()A.B.C.D .4.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)C.2x+4=2(x+2)B.x2+2x+1=x(x+2)+1 D.3mx﹣6my=3m(x﹣6y)5.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.在平面直角坐标系中,若直线 y=2x+k 经过第一、二、三象限,则 k 的取值范围是()A.k>0 B.k<0 C.k≤0 D.k≥07.如图,将△ABC 绕点A 按顺时针方向旋转120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE的度数为()11A.90° B.75° C.65°D.85°8.如图,在△ABC中,AB=AC,DE 是AC 的垂直平分线,△BCD 的周长为 24,BC=10,则 AC 等于()A.11 B.12 C.14 D.169.某农场开挖一条长 480 米的渠道,开工后每天比原计划多挖 20 米,结果提前 4 天完成任务,若设原计划每天挖 x 米,那么求 x 时所列方程正确的是()A.﹣=4 B.﹣=20C.﹣=4 D.﹣=410.如图,在△ABC中,D、E 分别是 AB、AC 的中点,BC=12,F 是DE 上一点,连接 AF、CF,DE=3DF,若∠AFC=90°,则 AC 的长度为()A.4 B.5 C.8 D.10二、填空题(本大题共 4 个小题,每小题 4 分,共16 分)11.一个多边形的内角和是1080°,这个多边形的边数是.12.若a+b=5,a﹣b=3,则a2﹣b2=.13.如图,直线 y=﹣x+m 与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于 x 的不等式﹣x+m>nx+4n 的解集是.14.如图,在平行四边形 ABCD 中,AB=6,BC=8,以 C 为圆心,适当长为半径画弧分别交 BC,CD 于M,N22 两点,分别以M,N 为圆心,以大于MN 的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP 并延长交AD 于E,交BA 的延长线于F,则AF 的值等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(6分)(1)分解因式:9a2(x﹣y)﹣4b2(x﹣y)(2)计算:16.(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解.3317.(8分)如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.18.(8分)如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形 DEBF 是菱形.44 19.(10分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购 A,B 两种型号的机器人共 20 台,要求每小时搬运材料不得少于 2800kg,则至少购进A 型机器人多少台?20.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=4cm,∠ADB=30°.(1)试探究线段 BD 与线段 MF 的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数.(3)若将△AF M沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB 时,求平移的距离.55B 卷(50 分)一、填空题(本大题共 5 个小题,每小题 4 分,共 20 分)21.已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是.22.有 6 张正面分别标有数字﹣2,0,2,4,6,8 的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为 a ,则使关于 x 不等式组 有实数解的 概 率为.23. 若分式= 方程有正数解,则 k .24. 如图,在平面直角坐标系中放置一菱形 OABC ,已知∠ABC =60°,OA =1.现将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60°,连续翻转 2024 次,点 B 的落点依次为B 1,B 2,B 3,B 4,…,则 B 2024 的坐标为 .25. 如图,在平行四边形 ABCD 中,点 E 为 AD 边的中点,将△ABE 沿 BE 翻折,得到△FBE ,连接 DF 并延长交 BC 于点 G ,若 BE =AD =3,平行四边形 ABCD 的面积为 6,则 FG = .二、解答题(本大题共 3 个小题,共 30 分,解答应写出必要的文字说明、证明过程或演步骤)元,且其中 A 种服装不少于 65 件,它们的进价和售价如表.其中购进 A 种服装为 x 件,如果购进的 A 、B 两种服装全部销售完,根据表中信息,解答下列问题.(1) 求获取总利润 y 元与购进 A 种服装 x 件的函数关系式,并写出 x 的取值范围;66(2) 该商场对 A 种服装以每件优惠 a (0<a <20)元的售价进行优惠促销活动,B 种服装售价不变,那么该商场应如何调整 A 、B 服装的进货量,才能使总利润 y 最大?27.(10 分)(1)【问题发现】如图 1,在 Rt △ABC 中,AB =AC =4,∠BAC =90°,点 D 为 BC 的中点,以 CD 为一边作正方形 CDEF ,点 E 恰好与点 A 重合,则线段 BE 与 AF 的数量关系为 ;服装 进价(元/件) 售价(元/件) A 80 120 B6090(2)【拓展研究】在(1)的条件下,如果正方形 CDEF 绕点C 旋转,当点 B,E,F 三点共线时,连接BE, CE,AF,线段 BE 与AF 的数量关系有无变化?请仅就图 2 的情形给出证明;(3)【问题发现】当正方形 CDEF 旋转到 B,E,F 三点共线时,求线段 AF 的长.77 28.(12分)如图1,直线y=﹣x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线 AB 折叠,点 O 恰好落在直线 AD 上的点 C 处.(1)求OB 的长;(2)如图 2,F,G 是直线 AB 上的两点,若△DFG 是以FG 为斜边的等腰直角三角形,求点 F 的坐标;(3)如图 3,点 P 是直线 AB 上一点,点 Q 是直线 AD 上一点,且 P,Q 均在第四象限,点 E 是x 轴上一点,若四边形 PQDE 为菱形,求点 E 的坐标.88 参考答案与试题解析一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中只有一项是符合题目要求的)1.【解答】解:A、图形是中心对称轴图形,也是轴对称图形,此选项错误; B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B.2.【解答】解:A、∵a<b,∴<,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项符合题意;C、∵a<b,∴a+3<b+3,故本选项不符合题意;D、∵a<b,∴﹣3a>﹣3b,故本选项不符合题意;故选:B.3.【解答】解:(A)当x=2时,原分式无意义,故本选项错误;(B)当x=2 时,原式==2≠0,故本选项错误;(C)当x=2 时,原分式无意义,故本选项错误;(D)当x=2 时,原式=0,故本选项正确;故选:D.4.【解答】解:A、原式=(x+2)(x﹣2),错误; B、原式=(x+1)2,错误;C、原式=2(x+2),正确;D、原式=3m(x﹣2y),错误,故选:C.5.【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;99 ∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.【解答】解:一次函数 y=2x+k 的图象经过第一、二、三象限,那么 k>0.故选:A.7.【解答】解:∵将△ABC绕点A 按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选:D.8.【解答】解:∵DE是AC 的垂直平分线,∴AD=CD,∵△BCD 的周长为 24,∴BD+CD+BC=24,∴AB+BC=24,∵BC=10,∴AC=AB=24﹣10=14.故选:C.9.【解答】解:设原计划每天挖x 米,那么原计划用时为:,实际用时为:.根据题意,得:﹣=4,故选:D.10.【解答】解:∵D、E 分别是 AB、AC 的中点,∴DE 是△ABC 的中位线,∴DE=BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E 是 AC 的中点,∴AC=2EF=8,故选:C.二、填空题(本大题共 4 个小题,每小题 4 分,共 16 分)1010 1.【解答】解:设多边形边数有 x 条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.12.【解答】解:∵a+b=5,a﹣b=3,∴a2﹣b2=(a+b)(a﹣b)=5×3=15,故答案为:15.13.【解答】解:当 x<﹣2 时,﹣x+m>nx+4n,∴关于 x 的不等式﹣x+m>nx+4n 的解集为 x<﹣2.故答案为:x<﹣2.14.【解答】解:由题意可知,CF 是∠BCD 的平分线,∴∠BCE=∠DCE.∵四边形 ABCD 是平行四边形,∴AB∥CD,AD∥BC,∴∠DCE=∠F,∠BCE=∠AEF,∴BF=BC=8,∵AB=6,∴AF=8﹣6=2.故答案为:2.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解答】解:(1)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);1111 (2)原式=÷=•=x+1.16.【解答】解:解不等式1﹣2(x﹣1)≤5得:x≥﹣1,解不等式得:x<3,不等式组的解集为:﹣1≤x<3,不等式组的解集在数轴上表示如下:符合不等式组解集的整数解为:﹣1,0,1,2.17.【解答】解:(1)如图所示,△A1B1C1即为所求,A1的坐标为(2,﹣3);(2)如图所示,△A2B2C2即为所求.18.【解答】(1)证明:∵四边形 ABCD 是平行四边形,∴AB=CD,AB∥CD,∵E、F 分别为边 AB、CD 的中点,∴DF=BE,又AB∥CD,∴四边形 DEBF 是平行四边形,∴DE∥BF;(2)∵AG∥DB,AD∥CG,∴四边形 AGBD 是平行四边形,1212 ∵∠G=90°,∴平行四边形 AGBD 是矩形,∴∠ADB=90°,又 E 为边 AB 的中点,∴ED=EB,又四边形 DEBF 是平行四边形,∴四边形 DEBF 是菱形.19.【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得 x=120.经检验,x=120 是所列方程的解.当 x=120 时,x+30=150.答:A 型机器人每小时搬运 150 千克材料,B 型机器人每小时搬运 120 千克材料;(2)设购进 A 型机器人 a 台,则购进 B 型机器人(20﹣a)台,根据题意,得 150a+120(20﹣a)≥2800,解得a≥.∵a 是整数,∴a≥14.答:至少购进 A 型机器人 14 台.20.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,1313由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠A FM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图 2,①当 AK=FK 时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK 时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图 3,1414由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=4,∠F=∠ADB=30°,∴A2M2=2,A2F2=2,∴AF2=2﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=2﹣x,∴PD=AD﹣AP=2 ﹣2+ x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,A=3﹣,解得x=3﹣,即A2∴平移的距离是(3﹣)cm.三、填空题(本大题共5个小题,每小题4分,共20分)21.【解答】解:当x=+5时,原式=(x﹣3﹣2)2=(x﹣5)2=(+5﹣5)2=()2=5,1515 故答案为:5.2.【解答】解:,解①得 x<2,解②得x>,不等式组有实数解,则2>,解得a<1,所以任取一张,将该卡片上的数字记为a,则使关于x 不等式组有实数解的概率==,故答案为:.23.【解答】解:方程两边都乘以(x﹣5),得 x﹣6=﹣k,解得 x=6﹣k,∵分式=方程有正数解,∴x=6﹣k>0,且 6﹣k≠5解得:k<6,且k≠1,∴k 的取值范围是 k<6 且k≠1.故答案为:<6 且k≠1.24.【解答】解:连接 AC,如图所示.∵四边形 OABC 是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC 是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第 5 次、第 6 次、第 7 次翻转后的图形,如图所示.由图可知:每翻转 6 次,图形向右平移 4.1616 ∵2024=337×6+2,∴点B2向右平移1348(即337×4)到点B2024.∵B2的坐标为(2,0),∴B2024的坐标为(2+1348,0),∴B2024的坐标为(1350,0).故答案为:(1350,0);25.【解答】解:∵把△ABE沿BE 翻折,得到△FBE,∴AE=EF,∠AEB=∠FEB,∴∠AEB =(180°﹣∠DEF ),∵E 为 AD 边的中点,∴AE=DE ,∴DE=EF ,∴∠EDF=∠EFD,∴∠EDF =(180°﹣∠DEF ),∴∠AEB=∠EDF,∴BE∥DG,∵四边形 ABCD 是平行四边形,∴DE∥BG,∴四边形 BEDG 为平行四边形;∴DE=BG ,DG =BE =3,∵四边形 ABCD 是平行四边形,AE =DE ,▱ ABCD 的面积等于 6,∴S △AB E =S 平行四边形ABCD =,连接 AF 交 BE 于 H ,则 AH⊥BE,AH =HF ,∵BE=3,∴AH=1,1717 ∴AF=2,∵BE∥DG,∴AF⊥DG,∴DF== = ,∴FG =DG ﹣FD =3﹣ ,故答案为:3﹣ .四、解答题(本大题共 3 个小题,共 30 分,解答应写出必要的文字说明、证明过程或演步骤)26.【解答】解:(1)∵80x+60(100﹣x )≤7500,解得:x≤75,∴y=40x+30(100﹣x)(65≤x≤75);(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,方案 1:当 0<a<10 时,10﹣a>0,y 随 x 的增大而增大,所以当 x=75 时,y 有最大值,则购进 A 种服装 75 件,B 种服装 25 件;方案 2:当 a=10 时,所有方案获利相同,所以按哪种方案进货都可以;方案 3:当 10<a<20 时,10﹣a<0,y 随 x 的增大而减小,所以当 x=65 时,y 有最大值,则购进A 种服装 65 件,B 种服装 35 件.27.【解答】解:(1)在Rt△ABC中,AB=AC=4,根据勾股定理得,BC=AB=4,点 D 为 BC 的中点,∴AD=BC=2 ,∵四边形 CDEF 是正方形,∴AF=EF=AD=2 ,∵BE=AB=4,∴B E=AF,1818 故答案为BE=AF;(2)无变化;如图 2,在Rt△ABC 中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF 中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴==,∴BE=AF,∴线段 BE 与 AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4 ,根据勾股定理得,BF=2 ,∴BE=BF﹣EF=2 ﹣2 ,由(2)知,BE=AF,∴AF=2 ﹣2,当点 E 在线段 BF 的延长线上时,如图 3,1919在Rt△ABC 中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF 中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴ ==,∴BE=AF,由(1)知,CF=EF=CD=2 ,在Rt△BCF中,CF=2,BC=4 ,根据勾股定理得,BF=2 ,∴BE=BF+EF=2 +2 ,由(2)知,BE=AF,∴AF=2 +2.即:当正方形CDEF 旋转到B,E,F 三点共线时候,线段AF 的长为2﹣2 或2+2.28.【解答】解:(1)对于直线y=﹣x+6,令x=0,得到y=6,可得A(0,6),令y=0,得到x=8,可得D(8,0),2020 ∴AC=AO=6,OD=8,AD==10,∴CD=AD﹣AC=4,设BC=OB=x,则BD=8﹣x,在Rt△BCD中,∵B C2+CD2=BD2,∴x2+42=(8﹣x)2,∴x=3,∴B(3,0).(2)设直线 AB 的解析式为 y=kx+6,∵B(3,0),∴3k+6=0,∴k=﹣2,∴直线 AB 的解析式为 y=﹣2x+6,作GM⊥x 轴于 M,FN⊥x轴于 N,∵△DFG 是等腰直角三角形,∴DG=FD,∠1=∠2,∠DMG=∠FND=90°,∴△DMG≌△FND(AAS),∴GM=DN,DM=FN,设 GM=DN=m,DM=FN=n,∵G、F 在直线 AB 上,则:m=﹣2(8﹣n)+6,﹣n=﹣2(8﹣m)+6,解得:m=2,n=6∴F(6,﹣6).(3)如图,设Q(a,﹣a+6),∵PQ∥x 轴,且点 P 在直线 y=﹣2x+6 上,2121∴P(a,﹣a+6),∴PQ=a,作QH⊥x轴于H.∴DH=a﹣8,QH=a﹣6,∴=,由勾股定理可知:QH:DH:DQ=3:4:5,∴QH=DQ=a,∴a=a﹣6,∴a=16,∴Q(16,﹣6),P(6,﹣6),∵ED∥PQ,ED=PQ,D(8,0),∴E(﹣2,0)2222。

四川成都2018-2019学度初二下年末数学试卷含解析解析

四川成都2018-2019学度初二下年末数学试卷含解析解析

四川成都 2018-2019 学度初二下年终数学试卷含分析分析【一】选择题〔本题共16 小题,每题 3 分,共 48 分、〕1、假定分式旳值为0,那么x旳值为〔〕A、 x=0B、 x=1C、 x=﹣ 2D、 x=﹣ 12、将分式中分子与分母旳各项系数都化成整数,正确旳选项是〔〕A、 B 、 C 、 D 、3、某种流感病毒旳直径是0.00000008m,那个数据用科学记数法表示为〔〕A、 8× 10﹣6mB、 8× 10﹣5mC、 8× 10﹣8 mD、8× 10﹣4m4、函数 y=﹣中旳自变量 x 旳取值范围是〔〕A、 x≥ 0B、x< 0 且 x≠ 1C、 x<0D、 x≥ 0 且 x≠ 15、一次函数 y=﹣ 2x﹣ 1 旳图象不经过〔〕A、第一象限B、第二象限C、第三象限D、第四象限6、如图, AD⊥ BC,D 是 BC旳中点,那么以下结论错误旳选项是〔〕A、△ ABD≌△ ACDB、∠ B=∠ CC、△ ABC是等腰三角形D、△ ABC是等边三角形7、假定点〔﹣3, y1〕,〔﹣ 2, y2〕,〔﹣ 1, y3〕在反比率函数y= ﹣图象上,那么以下结论正确旳选项是〔〕A、 y1>y2> y3B、 y2> y1> y3C、 y3> y1> y2D、 y3> y2> y18、如图,某中学制作了300 名学生选择棋类、拍照、书法、短跑四门校内课程状况旳扇形统计图,从图中可以看出选择短跑旳学生人数为〔〕A、 33B、 36C、 39D、42A、全等三角形旳对应角相等B、直角三角形两锐角互余C、全等三角形旳对应边相等D、两直线平行,同位角相等10、尺规作图作∠AOB旳均分线方法以下:以O为圆心,随意长为半径画弧交OA, OB于C, D,再分别以点 C, D 为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP、由作法得△OCP≌△ ODP旳依据是〔〕A、 SASB、 ASAC、 AASD、 SSS11、某校八年级 1 班一个学习小组旳7 名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据旳众数和中位数分别是〔〕A、 93、 89B、 93、 93C、 85、93D、 89、9312、将一张矩形纸对折再对折,而后沿着如图中旳虚线剪下,翻开,那个图形必定是一个〔A、三角形B、矩形C、菱形D、正方形13、等腰梯形两底旳差是 4,两腰旳长也是 4,那么那个等腰梯形旳两锐角差不多上〔〕A、75° B、60° C、 45° D、 30°14、如图,矩形 ABCD中, BE、CF 分别均分∠ ABC和∠ DCB,点 E、 F 都在 AD上,以下结论不正确旳选项是〔A、△ ABE≌△ DCFB、△ ABE和△ DCF差不多上等腰直角三角形C、四边形BCFE是等腰梯形D、 E、 F 是 AD旳三均分点15、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香、以下四个图象中,大概能表示蚊香节余长度y〔cm〕与所经过时辰x〔 h〕之间旳函数关系旳是〔〕A、B、C、D、16、如图,点 P 是菱形 ABCD内一点, PE⊥AB, PF⊥ AD,垂足分别是 E 和 F,假定 PE=PF,以下说法不正确旳选项是〔〕A、点 P 必定在菱形ABCD旳对角线 AC上B、可用 H?L 证明 Rt△ AEP≌Rt △ AFPC、 AP 均分∠ BADD、点 P 必定是菱形ABCD旳两条对角线旳交点【二】填空题17、计算:〔 a﹣3〕2〔 ab2〕﹣3=〔结果化为只含正整数指数幂旳形式〕18、把命题“平行四边形旳两组对边分别相等”改写成“若是,那么”旳形式是、19、点 P〔﹣ 4, 5〕对于 x 轴对称旳点P′旳坐标是、20、到三角形各极点距离相等旳点是三角形旳交点、21、四边形ABCD中, AD∥ BC,要使四边形ABCD成为平行四边形还需知足旳条件是〔横线只要填一个你认为适合旳条件即可〕22、小青在八年级上学期旳数学成绩以下表所示、平时测试期中考试期末考试成绩869081若是学期总评成绩依据以下列图旳权重计算,小青该学期旳总评成绩是分、23、若是对于x 旳方程=无解,那么m=、24、如图,双曲线与直线y=mx+n在第一象限内交于点A〔 1, 5〕和 B〔 5, 1〕,依据图象,在第一象限内,反比率函数值大于一次函数值时x 旳取值范围是、【三】解答题〔第 25 题 18 分,其他每题 8 分,共50 分〕25、〔 1〕计算:〔﹣2〕3+〔﹣〕﹣2?〔 1﹣〕0〔 2〕先化简,再求值:÷﹣,此中x=〔 3〕解方程:=+2、26、 2018 年 4 月 20,我省雅安市芦山县发生了里氏7.0 级激烈地震、为增援灾区,某中学八年级师生发起了自发捐钱活动、第一天捐钱4800 元,翌日捐钱6000 元,翌日捐钱人数比第一天捐钱人数多50 人,且两天人均捐钱数相等,那么两天共参加捐钱旳人数是多少?27、:如图,在△ABC中, AB=AC,∠ B=36°、〔1〕尺规作图:作 AB旳垂直均分线交 BC于点 D,垂足为 F,连结 AD;〔保存作图印迹,不写作法〕〔2〕求证:△ ACD是等腰三角形、28、如图,直线y=kx+b 与反比率函数y= 〔 x< 0〕旳图象订交于点A、点B,与x 轴交于点C,此中点A 旳坐标为〔﹣2, 4〕,点B 旳横坐标为﹣4、〔1〕试确立反比率函数旳关系式;〔2〕求△ AOC旳面积、29、经市场检查,某种优良西瓜质量为〔5± 0.25 〕kg 旳最为热销、为了操控西瓜旳质量,农科所采用A、B 两各栽种技术进行试验,现从这两种技术栽种旳西瓜中各随机抽取10 颗,记录它们旳质量以下〔单位:kg〕:A: 5.5 4.8 5.0 5.2 4.9 5.2 4.5 4.8 5.1 5.0B: 4.7 5.0 4.5 4.9 5.1 5.3 4.6 4.9 5.1 4.9〔 1〕假定质量为〔5± 0.25 〕 kg 旳为优等品,依据以上信息达成如表:栽种技术优等品数目〔颗〕均匀数〔 kg〕方差A 0.068B 4.9〔2〕请分别从优良品数目、均匀数与方差三方面对 A、 B 两种技术作出评论;从市场销售旳角度看,你以为推行哪各栽种技术较好、【四】能力展现题30、某商场预备购进A、 B 两种品牌旳饮料共100 件,两种饮料每件收益分别是15 元和 13 元、设购进种饮料 x 件,且所购进旳两种饮料能所有卖出,获取旳总收益为y 元、〔 1〕求 y 与 x 旳函数关系式;〔 2〕依据两种饮料历次销量记录: A 种饮料起码购进30 件, B 种饮料购进数目很多于 A 种饮料件数旳A 2倍、问: A、 B 两种饮料进货方案有几种?哪一种方案能使商场所获收益最高?最高收益是多少?31、如图,在△ ABC中∠ ACB=90°,D 是 AC旳中点,过点 A 旳直线 l ∥ BC,将直线 AC绕点 D 逆时针旋转〔旋转角α<∠ ACB〕,分别交直线 l 于点 F 与 BC旳延伸线交于点 E,连结 AE、CF、〔1〕求证:△ CDE≌△ ADF;〔2〕求证:四边形 AFCE是平行四边形;AFCE成为正方形?请说明原因;〔 3〕当∠ B=22.5 °, AC=BC时,请研究:能否存在这样旳α 能使四边形假定能,求出这时旳旋转角α旳度数和 BC与 CE旳数目关系、2018-2016 学年四川省成都市八年级〔下〕期末数学试卷参照【答案】与试题【分析】【一】选择题〔本题共16 小题,每题 3 分,共 48 分、〕1、假定分式旳值为0,那么x旳值为〔〕A、 x=0B、 x=1C、 x=﹣ 2D、 x=﹣ 1【考点】分式旳值为零旳条件、【专题】计算题、【剖析】分式旳值是0 旳条件是:分子为0,分母不为0、【解答】解:∵x﹣ 1=0 且 x+2≠ 0,∴x=1、应选 B、【评论】分式是0 旳条件中特意需要注意旳是分母不可以是0,这是常常考察旳知识点、2、将分式中分子与分母旳各项系数都化成整数,正确旳选项是〔〕A、B、C、D、【考点】分式旳差不多性质、【剖析】依据分式旳分子分母都乘或除以同一个不为零旳整式,分式旳值不变,可得【答案】、【解答】解:分式中分子与分母旳各项系数都化成整数,正确旳选项是,应选: A、【评论】本题考察了分式旳差不多性质,利用了分式旳差不多性质、3、某种流感病毒旳直径是 0.00000008m,那个数据用科学记数法表示为〔〕A、 8× 10﹣6mB、 8× 10﹣5mC、 8× 10﹣8 mD、8× 10﹣4m【考点】科学记数法—表示较小旳数、【剖析】绝对值小于 1 旳正数也可以利用科学记数法表示,一般形式为a× 10﹣n,与较大数旳科学记数法不一样旳是其所使用旳是负指数幂,指数由原数左侧起第一个不为零旳数字前面旳0 旳个数所决定、【解答】解: 0.00000008=8 × 10﹣8、应选: C、【评论】本题考察用科学记数法表示较小旳数、一般形式为a× 10﹣n,此中 1≤ |a| <10, n 为由原数左侧起第一个不为零旳数字前面旳0 旳个数所决定、4、函数y=﹣中旳自变量x 旳取值范围是〔〕A、 x≥ 0B、x< 0 且x≠ 1C、 x<0D、 x≥ 0 且x≠ 1【考点】函数自变量旳取值范围;分式存心义旳条件;二次根式存心义旳条件、【剖析】依据二次根式旳性质和分式旳意义,被开方数大于等于0,分母不等于【解答】解:依据二次根式旳性质和分式旳意义,被开方数大于等于0,可知:0,就可以求解、 x≥ 0;分母不等于0,可知: x﹣ 1≠0,即 x≠1、所以自变量x 旳取值范围是x≥0 且 x≠ 1、应选 D、【评论】本题考察旳是函数自变量取值范围旳求法、函数自变量旳范围一般从三个方面考虑:〔 1〕当函数表达式是整式时,自变量可取全体实数;〔 2〕当函数表达式是分式时,考虑分式旳分母不可以为0;〔 3〕当函数表达式是二次根式时,被开方数非负、5、一次函数y=﹣ 2x﹣ 1 旳图象不经过〔〕A、第一象限B、第二象限C、第三象限D、第四象限【考点】一次函数图象与系数旳关系、【剖析】由于 k=﹣2< 0, b=﹣ 1< 0,依据一次函数 y=kx+b 〔 k≠ 0〕旳性质获取图象经过第【二】四象限,图象与 y 轴旳交点在 x 轴下方,所以可推测一次函数 y=﹣ 2x﹣ 1 旳图象不经过第一象限、【解答】解:对于一次函数y=﹣ 2x﹣ 1,∵k=﹣ 2< 0,∴图象经过第【二】四象限;又∵ b=﹣ 1< 0,∴一次函数旳图象与 y 轴旳交点在 x 轴下方,即函数图象还经过第三象限,∴一次函数y=﹣ 2x﹣ 1 旳图象不经过第一象限、应选 A、【评论】本题考察了一次函数y=kx+b〔 k≠ 0〕旳性质:当k<0,图象经过第【二】四象限,y 随 x 旳增大而减小;当k> 0,经图象第【一】三象限,y 随 x 旳增大而增大;当b> 0,一次函数旳图象与y 轴旳交点在 x 轴上方;当b<0,一次函数旳图象与y 轴旳交点在x 轴下方、6、如图, AD⊥ BC,D 是 BC旳中点,那么以下结论错误旳选项是〔〕A、△ ABD≌△ ACDB、∠ B=∠ CC、△ ABC是等腰三角形D、△ ABC是等边三角形【考点】全等三角形旳判断与性质;等腰三角形旳判断与性质;等边三角形旳判断、【剖析】依据垂直旳定义可得∠ADB=∠ ADC=90°,依据线段中点旳定义可得BD=CD,而后利用“边角边”证明△ ABD和△ ACD全等,依据全等三角形对应角相等可得∠B=∠ C,全等三角形对应边相等可得AB=AC,而后选择【答案】即可、【解答】解:∵AD⊥BC,∴∠ ADB=∠ADC=90°,∵ D 是 BC旳中点,∴ BD=CD,在△ ABD和△ ACD中,,∴△ ABD≌△ ACD〔 SAS〕,∴∠ B=∠ C, AB=AC,故 A、 B、C 选项结论都正确,只有 AB=BC时,△ ABC是等边三角形,故 D 选项结论错误、应选 D、【评论】本题考察了全等三角形旳判断与性质,等腰三角形旳判断与性质,等边三角形旳判断,娴熟掌握三角形全等旳判断方法是解题旳重点、7、假定点〔﹣3, y1〕,〔﹣ 2, y2〕,〔﹣ 1, y3〕在反比率函数y= ﹣图象上,那么以下结论正确旳选项是〔〕A、 y1>y2> y3B、 y2> y1> y3C、 y3> y1> y2D、 y3> y2> y1【考点】反比率函数图象上点旳坐标特色、【专题】计算题、【剖析】依据反比率函数图象上点旳坐标特色获取﹣ 3?y1=﹣ 1,﹣2?y2=﹣ 1,﹣ 1?y3=﹣ 1,而后分别计算出y1、 y2、 y3旳值后比较大小即可、【解答】解:依据题意得﹣3?y1=﹣ 1,﹣ 2?y2=﹣ 1,﹣ 1?y3=﹣ 1,解得y1= , y2 = , y3=1,所以 y1< y2< y3、应选 D、y=xk 〔 k 为常数,k≠ 0〕旳图象是双曲【评论】本题考察了反比率函数图象上点旳坐标特色:反比率函数线,图象上旳点〔x, y〕旳横纵坐标旳积是定值k,即 xy=k 、8、如图,某中学制作了300 名学生选择棋类、拍照、书法、短跑四门校内课程状况旳扇形统计图,从图中可以看出选择短跑旳学生人数为〔〕A、 33B、 36C、 39D、42【考点】扇形统计图、【剖析】先求出选择短跑旳学生所占旳百分比,再乘以总人数即可、【解答】解:依据题意得:300×〔 1﹣33%﹣ 26%﹣ 28%〕=39〔名〕、答:选择短跑旳学生有39 名、应选 C、【评论】本题考察了扇形统计图,扇形统计图斩钉截铁反应部分占整体旳百分比大小,重点是求出选择短跑旳学生所占旳百分比、9、以下命题中,抗命题是假命题旳是〔〕A、全等三角形旳对应角相等B、直角三角形两锐角互余C、全等三角形旳对应边相等D、两直线平行,同位角相等【考点】命题与定理、【剖析】把一个命题旳条件和结论交换就获取它旳抗命题,再进行推测即可、【解答】解: A、全等三角形旳对应角相等旳抗命题是对应角相等旳三角形全等,是假命题;B、直角三角形两锐角互余旳抗命题是两锐角互余旳三角形是直角三角形,是真命题;C、全等三角形旳对应边相等旳抗命题是对应边相等旳三角形全等,是真命题;D、两直线平行,同位角相等旳抗命题是同位角相等,两直线平行,是真命题;应选 A、【评论】本题考察了命题与定理,两个命题中,若是第一个命题旳条件是第二个命题旳结论,而第一个命题旳结论又是第二个命题旳条件,那么这两个命题叫做互抗命题、此中一个命题称为另一个命题旳抗命题、10、尺规作图作∠AOB旳均分线方法以下:以O为圆心,随意长为半径画弧交OA, OB于C, D,再分别以点 C, D 为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP、由作法得△OCP≌△ ODP旳依据是〔〕A、 SASB、 ASAC、 AASD、 SSS【考点】作图—差不多作图;全等三角形旳判断、【剖析】仔细阅读作法,从角均分线旳作法得出△OCP与△ ODP旳两边分别相等,加上公共边相等,所以两个三角形切合SSS判断方法要求旳条件,【答案】可得、【解答】解:∵以O为圆心,随意长为半径画弧交OA, OB于 C, D,即 OC=OD;以点C, D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△ OCP和△ ODP中,,∴△ OCP≌△ ODP〔 SSS〕、应选 D、【评论】本题考察三角形全等旳判断方法,判断两个三角形全等旳一般方法有:SSS、SAS、ASA、AAS、HL、注意: AAA、SSA不可以判断两个三角形全等,判断两个三角形全等时,一定有边旳参加,假定有两边一角对应相等时,角一定是两边旳夹角11、某校八年级 1 班一个学习小组旳7 名同学在半期考试中数学成绩分别是85,93,62,99,56,93,89,这七个数据旳众数和中位数分别是〔〕A、 93、 89B、 93、 93C、 85、93D、 89、93【考点】众数;中位数、【剖析】依据众数旳定义即众数是一组数据中出现次数最多旳数和中位数旳定义即中位数是将一组数据从小到大〔或从大到小〕从头摆列后,最中间旳那个数〔最中间两个数旳均匀数〕,即可得出【答案】、【解答】解:∵ 85,93, 62, 99, 56,93, 89 中, 93 出现了 2 次,出现旳次数最多,∴这七个数据旳众数是 93,把 85, 93, 62, 99, 56, 93, 89 从小到大摆列为:56,62, 85,89, 93,93, 99,最中旳数是89,那么中位数是89;应选 A、【评论】本题考察了众数与中位数,中位数是将一组数据从小到大〔或从大到小〕从头摆列后,最中间旳那个数〔最中间两个数旳均匀数〕,叫做这组数据旳中位数,众数是一组数据中出现次数最多旳数、12、将一张矩形纸对折再对折,而后沿着如图中旳虚线剪下,翻开,那个图形必定是一个〔A、三角形B、矩形C、菱形D、正方形【考点】剪纸问题、【剖析】依据折叠可得剪得旳四边形四条边都相等,依据此特色可得那个图形是菱形、【解答】解:依据折叠方法可知:所获取图形旳 4 条边差不多上所剪直角三角形旳斜边,同时相等,依据四条边相等旳四边形是菱形可得那个图形是菱形,应选: C、【评论】本题重要考察学生旳着手能力及空间想象能力,重点是正确理解剪图旳方法、13、等腰梯形两底旳差是 4,两腰旳长也是 4,那么那个等腰梯形旳两锐角差不多上〔〕A、75° B、60° C、 45° D、 30°【考点】等腰梯形旳性质、【剖析】依据题意画出图形,过点 A 作 AE∥ CD交 BC于点 E,依据等腰梯形旳性质,易得四边形AECD是平行四边形,依据平行四边形旳对边相等,可得△ABE是等边三角形,即可得∠ B 旳值、【解答】解:以下列图:梯形 ABCD是等腰梯形,且 AD∥ BC,过点 A 作 AE∥ CD交 BC于点 E,∵ AD∥ BC,∴四边形AECD是平行四边形,∴AE=CD, AD=EC,∵BE=BC﹣ CE=BC﹣ AD=AB=CD=4,∴∠ B=60°、∴那个等腰梯形旳锐角为 60°、应选 B、【评论】本题考察了等腰梯形旳性质、平行四边形旳判断与性质以及等边三角形旳性质,依据题意作出协助线,结构出平行四边形是解答本题旳重点、14、如图,矩形 ABCD中, BE、CF 分别均分∠ ABC和∠ DCB,点 E、 F 都在 AD上,以下结论不正确旳选项是〔A、△ ABE≌△ DCFB、△ ABE和△ DCF差不多上等腰直角三角形C、四边形BCFE是等腰梯形D、 E、 F 是 AD旳三均分点【考点】矩形旳性质、【剖析】 A、由 AAS证得△ ABE≌△ DCF;B、依据矩形旳性质、角均分线旳性质推知△ABE和△ DCF差不多上等腰直角三角形;C、由 A 中旳全等三角形旳性质获取BE=CF、联合矩形旳对边平行获取四边形BCFE是等腰梯形;D、依据 A 在全等三角形旳性质只好获取AE=DF,点E、 F 不必定是AD旳三均分点、【解答】解:如图,∵四边形ABCD是矩形 ABCD,∴∠ A=∠ D=∠ DCB=∠ABC=90°、又 BE、 CF分别均分∠ ABC和∠ DCB,∴∠ ABE=∠DCF=45°,∴∠ AEB=∠ABE=45°,∠ DFC=∠ DCF=45°,∴AB=AE, DF=DC,∴△ ABE和△ DCF差不多上等腰直角三角形、故 B正确;在△ ABE与△ DCF中,、那么△ ABE≌△ DCF〔AAS〕,故A正确;∵△ ABE≌△ DCF,∴BE=CF、又 BE 与 FC不平行,且 EF∥BC, EF≠BC,∴四边形 BCFE是等腰梯形、故 C正确;∵△ ABE≌△DCF,∴ AE=DF、但是不可以确立 AE=EF=FD建立、即点 E、 F 不必定是 AD旳三均分点、故 D错误、应选: D、【评论】本题考察了矩形旳性质,全等三角形旳性质和判断,平行线旳性质旳应用,重要考察学生旳推理能力、15、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香、以下四个图象中,大概能表示蚊香节余长度y〔cm〕与所经过时辰x〔 h〕之间旳函数关系旳是〔〕A、B、C、D、【考点】函数旳图象、【专题】压轴题、【剖析】由于该盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h 后将它熄灭,过了2h,他再次点燃了蚊香,所以蚊香节余长度y 随所经过时辰x 旳增添而减少,又中间熄灭了2h,由此即可求出【答案】、【解答】解:由于蚊香节余长度y 随所经过时辰x 旳增添而减少,又中间熄灭了2h、应选 C、【评论】解决此类识图题,同学们要注意剖析此中旳“重点点”,还要擅长剖析各图象旳变化趋向、16、如图,点 P 是菱形 ABCD内一点, PE⊥AB, PF⊥ AD,垂足分别是 E 和 F,假定 PE=PF,以下说法不正确旳选项是〔〕A、点 P 必定在菱形ABCD旳对角线 AC上B、可用 H?L 证明 Rt△ AEP≌Rt △ AFPC、 AP 均分∠ BADD、点 P 必定是菱形ABCD旳两条对角线旳交点【考点】菱形旳性质;全等三角形旳判断;角均分线旳性质、【剖析】依据到角旳两边距离相等旳点在角旳均分线上推测出 AP均分∠ BAD,依据菱形旳对角线均分一组对角线可得 AC均分∠ BAD,而后对各选项剖析推测利用清除法求解、【解答】解:∵PE⊥AB, PF⊥ AD, PE=PF,∴AP均分∠ BAD,∵四边形 ABCD是菱形,∴对角线 AC均分∠ BAD,故 A、C 选项结论正确;可以利用“ HL”证明 Rt △ AEP≌ Rt △ AFP,故 B 选项正确;点 P 在 AC上,但不必定在 BD上,所以,点 P必定是菱形 ABCD旳两条对角线旳交点不必定正确、应选 D、【评论】本题考察了菱形旳性质,到角旳两边距离相等旳点在角旳均分线上旳性质,全等三角形旳判断与性质,娴熟掌握各性质是解题旳重点、【二】填空题17、计算:〔a﹣3〕2〔 ab2〕﹣3=\frac{1}{{a}^{9}{b}^{6}} 〔结果化为只含正整数指数幂旳形式〕【考点】负整数指数幂、【剖析】依据负整数指数幂旳运算法那么分别进行计算,即可得出【答案】、【解答】解:〔 a﹣3〕2〔 ab2〕﹣3=〔〕2〔=? = ;故【答案】为:、【评论】本题考察了负整数指数幂,掌握负整数指数幂旳法那么:任何不等于零旳数旳﹣n〔 n 为正整数〕次幂,等于那个数旳n 次幂旳倒数是本题旳重点、18、把命题“平行四边形旳两组对边分别相等”改写成“若是,那么”旳形式是若是一个四边形是平行四边形,那么它两组对边分别相等、【考点】命题与定理、【剖析】若是后边应是命题中旳条件,那么后边是由条件获取旳结论、【解答】解:原命题旳条件是:四边形是平行四边形,结论是两组对边分别相等;改写成“若是,那么”旳形式是:若是一个四边形是平行四边形,那么它两组对边分别相等,故【答案】为:若是一个四边形是平行四边形,那么它两组对边分别相等、【评论】本题考察了命题与定理旳知识,解决本题旳重点是正确找到所给命题旳条件和结论、19、点 P〔﹣ 4, 5〕对于 x 轴对称旳点P′旳坐标是〔﹣4,﹣ 5〕、【考点】对于x 轴、 y 轴对称旳点旳坐标、【剖析】对于 x 轴对称点旳坐标特色:横坐标不变,纵坐标互为相反数可得【答案】、【解答】解:点 P〔﹣ 4, 5〕对于 x 轴对称旳点 P′旳坐标是〔﹣ 4,﹣ 5〕,故【答案】为:〔﹣ 4,﹣ 5〕、【评论】本题重要考察了对于x 轴对称点旳坐标,重点是掌握点旳坐标旳变化规律、20、到三角形各极点距离相等旳点是三角形三条边旳垂直均分线旳交点、【考点】线段垂直均分线旳性质、【剖析】依据线段旳垂直均分线旳性质理解到三角形旳一边旳两个端点距离相等旳点应当在这边旳垂直均分线上,第一知足到两个极点即到一条线段〔边〕,再知足到另一个极点即可,所以到三角形各极点距离相等旳点应当在三边旳垂直均分线上,由此可以获取结论、【解答】解:∵到三角形旳一边旳两个端点距离相等旳点应当在这边旳垂直均分线,到三角形旳另一边旳两个端点距离相等旳点应当在这边旳垂直均分线,二垂直均分线有一个交点,由等量代换可知到三角形各极点距离相等旳点是三角形三条边旳垂直均分线旳交点、故填空【答案】:三条边旳垂直均分线、【评论】本题重要考察线段旳垂直均分线旳性质等几何知识、分别知足所要求旳条件是正确解答本题旳重点、21、四边形 ABCD中,AD∥ BC,要使四边形A BCD成为平行四边形还需知足旳条件是AD=BC〔或 AD∥BC〕〔横线只要填一个你以为适合旳条件即可〕【考点】平行四边形旳判断、【专题】开放型、【剖析】在一组对边平行旳基础上,要判断是平行四边形,那么需要增添另一组对边平行,或平行旳这组对边相等,或一组对角相等均可、【解答】解:依据平行四边形旳判断方法,知需要增添旳条件是 AD=BC或 AB∥ CD或∠ A=∠ C 或∠ B=∠D、故【答案】为 AD=BC〔或 AB∥ CD〕、【评论】本题考察了平行四边形旳判断,为开放性试题,【答案】不独一,要掌握平行四边形旳判断方法、两组对边分别平行旳四边形是平行四边形;两组对边分别相等旳四边形是平行四边形;一组对边平行且相等旳四边形是平行四边形;两组对角相等旳四边形是平行四边形;对角线相互均分旳四边形是平行四边形、22、小青在八年级上学期旳数学成绩以下表所示、平时测试期中考试期末考试成绩 86 90 81若是学期总评成绩依据以下列图旳权重计算,小青该学期旳总评成绩是84.2 分、【考点】加权均匀数;扇形统计图、【剖析】依据总成绩中由三次成绩构成并且所占比率不一样,运用加权均匀数旳计算公式求出即可、【解答】解:总评成绩为:86×10%+90×30%+81×60%=84.2〔分〕、故【答案】为84.2 、【评论】本题重要考察了加权均匀数旳应用,注意学期旳总评成绩是依据平时成绩,期中成绩,期末成绩旳权重计算得出,注意加权均匀树算法旳正确运用,在考试中是易错点、23、若是对于x 旳方程=无解,那么m=﹣ 5、【考点】分式方程旳解、【剖析】分式方程无解旳条件是:去分母后所得整式方程无解,或解那个整式方程获取旳解使原方程旳分母等于 0、【解答】解:去分母得:x﹣3=m,解得: x=m+3,∵原方程无解,∴最简公分母:x+2=0,解得: x=﹣2,即可得: m=﹣ 5、故【答案】为﹣5、【评论】本题考察了分式方程旳解,分式方程无解分两种状况:整式方程自己无解;分式方程产生增根、24、如图,双曲线与直线y=mx+n在第一象限内交于点A〔 1, 5〕和 B〔 5, 1〕,依据图象,在第一象限内,反比率函数值大于一次函数值时x 旳取值范围是0<x< 1 或 x> 5、【考点】反比率函数与一次函数旳交点问题、【剖析】依据图象观看,反比率函数图象在一次函数图象上方时,即反比率函数旳值大于一次函数旳值、【解答】解:从图象可知反比率函数图象在一次函数图象上方时,即反比率函数旳值大于一次函数旳值,所以 x 旳取值范围是0< x<1 或 x> 5、故【答案】为:0< x< 1 或 x>5、【评论】本题考察了由图象确立两函数旳大小问题,斩钉截铁由图象下手较为简单、【三】解答题〔第25 题 18 分,其他每题8 分,共 50 分〕25、〔 1〕计算:〔﹣ 2〕3+〔﹣〕﹣2?〔 1﹣〕0〔 2〕先化简,再求值:÷﹣,此中x=〔 3〕解方程:= +2、【考点】分式旳化简求值;零指数幂;负整数指数幂;解分式方程、【专题】计算题、【剖析】〔 1〕原式第一项利用乘方旳意义化简,第二项利用负指数幂、零指数幂法那么计算即可获取结果;〔 2〕原式第一项利用除法法那么变形,约分后利用同分母分式旳减法法那么计算获取最简结果,将x 旳值代入计算即可求出值;〔 3〕分式方程去分母转变为整式方程,求出整式方程旳解获取x 旳值,经查验即可获取分式方程旳解、【解答】解:〔1〕原式 =﹣ 8+9× 1=﹣ 8+9=1;〔 2〕原式 = ? ﹣=﹣= ,当 x=时,原式==﹣ 3;〔3〕去分母得: 2x〔 x+1〕 =1+2x2﹣2,去括号得: 2x 2+2x=2x2﹣ 1,解得: x=﹣,经查验 x=﹣是分式方程旳解、【评论】本题考察了分式旳化简求值,娴熟掌握运算法那么是解本题旳重点、26、 2018 年 4 月 20,我省雅安市芦山县发生了里氏7.0 级激烈地震、为增援灾区,某中学八年级师生发起了自发捐钱活动、第一天捐钱4800 元,翌日捐钱6000 元,翌日捐钱人数比第一天捐钱人数多50 人,且两天人均捐钱数相等,那么两天共参加捐钱旳人数是多少?【考点】分式方程旳应用、【剖析】设第一天捐钱旳人数为x 人,翌日捐钱旳人数为〔x+50 〕人,依据两天人均捐钱数相等,列方程求解、【解答】解:设第一天捐钱旳人数为x 人,翌日捐钱旳人数为〔x+50〕人,由题意得,= ,解得: x=200,经查验, x=200 是原分式方程旳解,且切合题意、那么两天共参加旳捐钱人数为: 2× 200+50=450〔人〕、答:两天共参加捐钱旳人数是 450 人、【评论】本题考察了分式方程旳应用,解答本题旳重点是读懂题意,设出未知数,找出适合旳等量关系,列方程求解,注意查验、。

2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级下期末数学试卷及答案

2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。

2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷(解析版)

2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷(解析版)

2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志2.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣3<b﹣3C.a+3>b+3D.﹣3a<﹣3b 3.(3分)当x=2时,下列分式的值为0的是()A.B.C.D.4.(3分)下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.2x+4=2(x+2)D.3mx﹣6my=3m(x﹣6y)5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0B.k<0C.k≤0D.k≥07.(3分)如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90°B.75°C.65°D.85°8.(3分)如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11B.12C.14D.169.(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4B.﹣=20C.﹣=4D.﹣=410.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4B.5C.8D.10二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)一个多边形的内角和是1080°,这个多边形的边数是.12.(4分)若a+b=5,a﹣b=3,则a2﹣b2=.13.(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m>nx+4n的解集是.14.(4分)如图,在平行四边形ABCD中,AB=6,BC=8,以C为圆心,适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AF的值等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(6分)(1)分解因式:9a2(x﹣y)﹣4b2(x﹣y)(2)计算:16.(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解.17.(8分)如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.18.(8分)如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.19.(10分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?20.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=4cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数.(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.三、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是.22.(4分)有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为.23.(4分)若分式=方程有正数解,则k.24.(4分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2024次,点B的落点依次为B1,B2,B3,B4,…,则B2024的坐标为.25.(4分)如图,在平行四边形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,得到△FBE,连接DF并延长交BC于点G,若BE=AD=3,平行四边形ABCD的面积为6,则FG=.四、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26.(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?27.(10分)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长.28.(12分)如图1,直线y=﹣x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.(1)求OB的长;(2)如图2,F,G是直线AB上的两点,若△DFG是以FG为斜边的等腰直角三角形,求点F的坐标;(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A、图形是中心对称轴图形,也是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣3<b﹣3C.a+3>b+3D.﹣3a<﹣3b 【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴<,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项符合题意;C、∵a<b,∴a+3<b+3,故本选项不符合题意;D、∵a<b,∴﹣3a>﹣3b,故本选项不符合题意;故选:B.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.(3分)当x=2时,下列分式的值为0的是()A.B.C.D.【分析】根据分式的值为零的条件即可求出答案.【解答】解:(A)当x=2时,原分式无意义,故本选项错误;(B)当x=2时,原式==2≠0,故本选项错误;(C)当x=2时,原分式无意义,故本选项错误;(D)当x=2时,原式=0,故本选项正确;故选:D.【点评】本题考查分式的值为0的条件:分子等于零且分母不等于零,解题的关键是熟练运用分式的运算,本题属于基础题型.4.(3分)下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.2x+4=2(x+2)D.3mx﹣6my=3m(x﹣6y)【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=2(x+2),正确;D、原式=3m(x﹣2y),错误,故选:C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【分析】由菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;即可求得答案.【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意熟记定理是解此题的关键.6.(3分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0B.k<0C.k≤0D.k≥0【分析】根据一次函数的性质求解.【解答】解:一次函数y=2x+k的图象经过第一、二、三象限,那么k>0.故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.(3分)如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90°B.75°C.65°D.85°【分析】由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.【解答】解:∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选:D.【点评】本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.8.(3分)如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11B.12C.14D.16【分析】根据线段垂直平分线的性质可得AD=CD,再根据△BCD的周长为24可得AB+BC=24,进而得到AC的长.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∵△BCD的周长为24,∴BD+CD+BC=24,∴AB+BC=24,∵BC=10,∴AC=AB=24﹣10=14.故选:C.【点评】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.9.(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4B.﹣=20C.﹣=4D.﹣=4【分析】本题的关键描述语是:“提前4天完成任务”;等量关系为:原计划用时﹣实际用时=4.【解答】解:设原计划每天挖x米,那么原计划用时为:,实际用时为:.根据题意,得:﹣=4,故选:D.【点评】本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4B.5C.8D.10【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)一个多边形的内角和是1080°,这个多边形的边数是8.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n ≥3).12.(4分)若a+b=5,a﹣b=3,则a2﹣b2=15.【分析】先根据平方差公式分解因式,再代入求出即可.【解答】解:∵a+b=5,a﹣b=3,∴a2﹣b2=(a+b)(a﹣b)=5×3=15,故答案为:15.【点评】本题考查了平方差公式,能够正确分解因式是解此题的关键.13.(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m>nx+4n的解集是x<﹣2.【分析】利用给出函数图象写出直线y=﹣x+m在直线y=nx+4n(n≠0)上方所对应的自变量x的范围即可.【解答】解:当x<﹣2时,﹣x+m>nx+4n,∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2.故答案为:x<﹣2.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.(4分)如图,在平行四边形ABCD中,AB=6,BC=8,以C为圆心,适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AF的值等于2.【分析】先根据角平分线的性质得出∠BCE=∠DCE,再由平行四边形的性质得出AB∥CD,AD∥BC,故可得出∠DCE=∠F,∠BCE=∠AEF,故可得出BF=BC=8,进而可得出结论.【解答】解:由题意可知,CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠DCE=∠F,∠BCE=∠AEF,∴BF=BC=8,∵AB=6,∴AF=8﹣6=2.故答案为:2.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法以及平行四边形的性质是解答此题的关键.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(6分)(1)分解因式:9a2(x﹣y)﹣4b2(x﹣y)(2)计算:【分析】(1)先提取公因式x﹣y,再利用平方差公式变形可得;(2)先计算括号内分式的减法,再将除法转化为乘法、同时因式分解,最后约分即可得.【解答】解:(1)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)原式=÷=•=x+1.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及平方差公式.16.(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解.【分析】分别解两个一元一次不等式,找出其公共部分,就是不等式组的解集,再将解集在数字上表示出来,并找出其整数解即可.【解答】解:解不等式1﹣2(x﹣1)≤5得:x≥﹣1,解不等式得:x<3,不等式组的解集为:﹣1≤x<3,不等式组的解集在数轴上表示如下:符合不等式组解集的整数解为:﹣1,0,1,2.【点评】本题考查一元一次不等式组的整数解,在数轴上表示不等式的解集,解一元一次不等式组,正确掌握解一元一次不等式组的方法是解题的关键.17.(8分)如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.【分析】(1)依据△A1B1C1与△ABC关于原点O成中心对称,即可得到,△A1B1C1.(2)依据P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),即可得到平移的方向和距离,进而得出平移后的△A2B2C2.【解答】解:(1)如图所示,△A1B1C1即为所求,A1的坐标为(2,﹣3);(2)如图所示,△A2B2C2即为所求.【点评】本题主要考查了利用平移变换以及旋转变换进行作图,平移作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.18.(8分)如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.【分析】(1)根据平行四边形的性质得到DF=BE,AB∥CD,根据平行四边形的判定定理证明四边形DEBF是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形AGBD是矩形,根据直角三角形的性质得到ED=EB,证明结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE∥BF;(2)∵AG∥DB,AD∥CG,∴四边形AGBD是平行四边形,∵∠G=90°,∴平行四边形AGBD是矩形,∴∠ADB=90°,又E为边AB的中点,∴ED=EB,又四边形DEBF是平行四边形,∴四边形DEBF是菱形.【点评】本题考查的是平行四边形的判定和性质、菱形的判定和性质,注意:平行四边形的对边平行且相等,题目是一道比较好的题目,难度适中.19.(10分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.当x=120时,x+30=150.答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.20.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=4cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数.(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM =30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=4,∠F=∠ADB=30°,∴A2M2=2,A2F2=2,∴AF2=2﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=2﹣x,∴PD=AD﹣AP=2﹣2+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=3﹣,即A2A=3﹣,∴平移的距离是(3﹣)cm.【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.三、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是5.【分析】将x=+5代入原式=(x﹣3﹣2)2=(x﹣5)2计算可得.【解答】解:当x=+5时,原式=(x﹣3﹣2)2=(x﹣5)2=(+5﹣5)2=()2=5,故答案为:5.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.22.(4分)有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为.【分析】分别解两个不等式得到x<2和x>,若不等式组有实数解,则2>,解得a<1,然后根据概率公式求解.【解答】解:,解①得x<2,解②得x>,不等式组有实数解,则2>,解得a<1,所以任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率==,故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了解一元一次不等式组.23.(4分)若分式=方程有正数解,则k<6且k≠1.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【解答】解:方程两边都乘以(x﹣5),得x﹣6=﹣k,解得x=6﹣k,∵分式=方程有正数解,∴x=6﹣k>0,且6﹣k≠5解得:k<6,且k≠1,∴k的取值范围是k<6且k≠1.故答案为:<6且k≠1.【点评】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.24.(4分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2024次,点B的落点依次为B1,B2,B3,B4,…,则B2024的坐标为(1350,0).【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2024=336×7+2,因此点B2向右平移1348(即337×4)即可到达点B2024,根据点B2的坐标就可求出点B2024的坐标.【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2024=337×6+2,∴点B2向右平移1348(即337×4)到点B2024.∵B2的坐标为(2,0),∴B2024的坐标为(2+1348,0),∴B2024的坐标为(1350,0).故答案为:(1350,0);【点评】本题考查了翻折变换(折叠问题),菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.25.(4分)如图,在平行四边形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,得到△FBE,连接DF并延长交BC于点G,若BE=AD=3,平行四边形ABCD的面积为6,则FG=3﹣.【分析】根据折的性质得到AE=EF,∠AEB=∠FEB,由平角的定义得到∠AEB=(180°﹣∠DEF),由三角形的内角和得到∠EDF=(180°﹣∠DEF),根据平行四边形的判定定理即可得到结论;由平行四边形的性质得到DE=BG,DG=BE=10,S△ABE =S平行四边形ABCD=,连接AF交BE于H,于是得到AH⊥BE,AH=HF,根据勾股定理即可得到结论.【解答】解:∵把△ABE沿BE翻折,得到△FBE,∴AE=EF,∠AEB=∠FEB,∴∠AEB=(180°﹣∠DEF),∵E为AD边的中点,∴AE=DE,∴DE=EF,∴∠EDF=∠EFD,∴∠EDF=(180°﹣∠DEF),∴∠AEB=∠EDF,∴BE∥DG,∵四边形ABCD是平行四边形,∴DE∥BG,∴四边形BEDG为平行四边形;∴DE=BG,DG=BE=3,∵四边形ABCD是平行四边形,AE=DE,▱ABCD的面积等于6,∴S△ABE =S平行四边形ABCD=,连接AF交BE于H,则AH⊥BE,AH=HF,∵BE=3,∴AH=1,∴AF=2,∵BE∥DG,∴AF⊥DG,∴DF===,∴FG=DG﹣FD=3﹣,故答案为:3﹣.【点评】本题考查了翻折变换(折叠问题),平行四边形的判定和性质,勾股定理,熟练正确折叠的性质是解题的关键.四、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26.(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?【分析】(1)根据题意列出函数解析式解答即可;(2)找出利润关于购进A种服装a之间的关系式,分a的情况讨论.【解答】解:(1)∵80x+60(100﹣x)≤7500,解得:x≤75,∴y=40x+30(100﹣x)(65≤x≤75);(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据题意列出一次函数解析式;(2)找出利润关于购进A种服装x的关系式,由函数的性质分a的情况讨论.本题属于中档题,(1)难度不大,(2)需要分a的情况讨论.27.(10分)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为BE=AF;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长.【分析】(1)先利用等腰直角三角形的性质得出AD=,再得出BE=AB=4,即可得出结论;(2)先利用三角函数得出=,同理得出=,夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF =AD=2,BF=2,即可得出BE=2﹣2,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)在Rt△ABC中,AB=AC=4,根据勾股定理得,BC=AB=4,点D为BC的中点,∴AD=BC=2,∵四边形CDEF是正方形,∴AF=EF=AD=2,∵BE=AB=4,∴BE=AF,故答案为BE=AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,。

(已整理)2019-2020学年成都市天府新区八年级(下)期末数学试卷(含解析)(1)

(已整理)2019-2020学年成都市天府新区八年级(下)期末数学试卷(含解析)(1)

2019-2020 学年成都市天府新区八年级(下)期末数学试卷(考试时间:120 分钟满分:150 分)A 卷(共 100 分)一、选择题(每小题 3 分,共 30 分)1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.C.D.3.若代数有意义,则实数x 的取值范围是()A.x=0 B.x=2 C.x≠0D.x≠24.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25 B.t≤25C.25<t<33 D.25≤t≤335.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3 个单位B.向右平移3 个单位C.向上平移3 个单位D.向下平移3 个单位6.将分中的x,y 的值同时扩大为原来的3 倍,则分式的值()A.扩大6 倍B.扩大9 倍C.不变D.扩大3 倍7.能判定四边形ABCD 是平行四边形的是() A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB8.若解分式方程=产生增根,则m=()A.1 B.0 C.﹣4 D.﹣59.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,四边形 ABCD 是平行四边形,点 E 是边CD 上一点,且 BC=EC,CF⊥BE交AB 于点F,P 是EB 延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(每小题 4 分,共 16 分)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.12.若分的值为0,则x 的值为.13.如图,在△ABC中,点D,E,F 分别是AB,AC,BC 的中点,已知∠ADE=65°,则∠CFE的度数为.14.如图,△ABC是等腰直角三角形,BC 是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′ 重合,如果AP=3,那么线段PP′的长等于.三、解答题(共 54 分)15.(12分)(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.16.(6分)先化简,再求值:(﹣1)÷,其中x=2020.17.(8 分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为 A (1,3),B (2,5),C (4,2)(每个方格的边长均为 1 个单位长度)(1)将△ABC 平移,使点 A 移动到点 A 1,请画出△A 1B 1C 1;(2)作出△AB C 关于 O 点成中心对称的△A 2B 2C 2,并直接写出 A 2,B 2,C 2 的坐标;(3)△A 1B 1C 1 与△A 2B 2C 2 是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.18.(8 分)如图,在四边形 ABCD 中,AB =CD ,BF =DE ,AE ⊥BD ,CF ⊥BD ,垂足分别为 E 、F .(1)求证:△ABE≌△CDF;(2)若 AC 与 BD 交于点 O ,求证:AO =CO .19.(10分)某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少 1 个,且制成一个甲种边框比制成一个乙种边框需要多用 20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共 640 米,要求制作乙种边框的数量不少于甲种边框数量的 2 倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)20.(10分)如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C重合),连接AP,将线段 AP 绕点P 逆时针旋转 60°,得到线段 PD,连接 MD,BD.(1)如图①,当点 P 在线段 BC 上时,求证:BP=MD;(2)如图②,当点 P 在线段 BC 的延长线上时,求证:BP=MD;(3)若点 P 在线段 BC 的延长线上,且∠BDM=30°时,请直接写出线段 AP 的长度.B 卷(50 分)一、填空题(每小题 4 分,共 20 分)21.若m2+4=3n,则m3﹣3mn+4m=.22.关于x 的不等式的整数解共有6 个,则a 的取值范围是.23.有六张大小形状相同的卡片,分别写有1~6 这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a 的值使得关于x 的分式方﹣1=有整数解的概率为.24.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB∥x轴.直线y=﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么平行四边形ABCD 的面积为.25.如图,在△ABC中,点P 是AC 上的动点,连接BP,以BP 为边作等边△BPQ,连接CQ,则点P 在运动过程中,线段CQ 长度的最小值是.二 . 解答题(共 30 分)26.(8分)为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将 200 件该产品运往 A,B,C 三地进行销售,已知运往 A 地的运费为 30 元/件,运往 B 地的运费为 8 元/件,运往 C 地的运费为 25 元/件,要求运往 C 地的件数是运往A 地件数的 2 倍,设安排 x 件产品运往 A 地.(1)试用含 x 的代数式表示总运费 y 元;(2)若运往 B 地的件数不多于运往 C 地的件数,总运费不超过 4000 元,则有几种运输方案?A,B,C 三地各运多少件时总运费最低?最低总运费是多少元?27.(10分)已知点E,F分别是平行四边形ABCD的边BC,CD 上的点,∠EAF=60°.(1)如图 1,若 AB=2,AF=5,点 E 与点 B,点 F 与点 D 分别重合,求平行四边形 ABCD 的面积;(2)如图 2,若 AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图 3,若 BE=CE,CF=3DF,AB=4,AF=6,求 AE 的长度.28.(12分)如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB 的面积;(2)如图 2,直线 AC 交y 轴负半轴于点 C,AB=BC,P 为线段 AB(不含 A,B 两点)上一点,过点 P 作y 轴的平行线交线段 AC 于点Q,设点 P 的横坐标为 t,线段 PQ 的长为 d,求 d 与t 之间的函数关系式;(3)在(2)的条件下,M 为线段 CA 延长线上一点,且 AM=CQ,在直线 AC 上方的直线 AB 上是否存在点 N,使△QMN是以QM 为斜边的等腰直角三角形?若存在,请求出点 N 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:A、分母中不含有字母,不是分式,故本选项不符合题意;B、分母中不含有字母,不是分式,故本选项不符合题意;C、分母中含有字母,是分式,故本选项符合题意;D、分母中不含有字母,不是分式,故本选项不符合题意;故选:C.2.【解答】解:A、是轴对称图形,但不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:A.3.【解答】解:由题意的,2﹣x≠0,解得,x≠2,故选:D.4.【解答】解:当天气温t(℃)的变化范围是25≤t≤33,故选:D.5.【解答】解:在平面直角坐标系中,将三角形各点的横坐标都加上3,纵坐标保持不变,所得图形与原图形相比,向右平移了 3 个单位.故选:B.6.【解答】解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为==9×,∴这个分式的值扩大 9倍.故选:B.7.【解答】解:∵AB∥CD,AB=CD,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故选:A.8.【解答】解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为 x=﹣4,∴把 x=﹣4 代入整式方程,得 m=﹣5,故选:D.9.【解答】解:根据题意得当x≤﹣1时,y1≤y2,所以不等式x+b≤kx﹣1 的解集为x≤﹣1.故选:D.10.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形 ABCD 是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE 平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF 平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B 点一定在 FC 的垂直平分线上,即 PB 垂直平分 FC,∴PF=PC,故④正确.故选:D.二、填空题11.【解答】解:360÷40=9,即这个多边形的边数是9.12.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得 x=2,由x+1≠0,得x≠﹣1.综上,得 x=2,即 x 的值为2.故答案为:2.13.【解答】解:∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠B=65°,∵AE=EC.CF=BF,∴EF∥AB,∴∠CFE=∠B=65°,故答案为65°.14.【解答】解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴△ABP≌△ACP′,即线段 AB 旋转后到 AC,∴旋转了90°,∴∠PAP′=∠BAC=90°,AP=AP′=3,∴PP′=3.三、解答题15.【解答】解:(1)ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2;(2),解不等式①得,x≥﹣1,解不等式②得,x<3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x<3:∴非负整数解有:0,1,2.16.【解答】解:原式=[﹣1]÷=(﹣)÷=•=﹣,当 x=2020 时,原式=﹣.17.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).18.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即 BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形 ABCD 是平行四边形,∴AO=CO.19.【解答】解:(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,由题意,﹣1=,解得:x=2,经检验 x=2 是原方程的解,∴(1+20%)x=2.4(米),答:制作每个甲种用 2.4 米材料;制作每个乙种用 2 米材料.(2)设应安排制作甲种边框需要 a 米,则安排制作乙种边框需要(640﹣a)米,由题意,≥×2.解得a≤240,答:最多安排 240 米材料制作甲种边框.20.【解答】解:(1)如图①,连接AD,∵△AMB 是等边三角形,∴AB=AM,∠BAM=60°由旋转的性质可得:AP=DP,∠APD=60°,∴△APD 是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC﹣∠CAP,∠MAD=∠PAD﹣∠CAP,∴∠BAP=∠MAD,在△BAP 与△MAD 中,,∴△BAP≌△MAD(SAS),∴BP=MD;(2)如图②,连接 AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°=∠AMB,由旋转的性质可得:AP=DP,∠APD=60°,∴△APD 是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC+∠CAP,∠MAD=∠PAD+∠CAP,∴∠BAP=∠MAD,在△BAP 与△MAD 中,,∴△BAP≌△MAD(SAS),∴BP=MD;(3)∵BC 为等边△ABM 的高,∴∠ABC=30°,∵△BAP≌△MAD,∴∠ABP=∠AMD=30°,∴∠BMD=∠AMB+∠AMD=90°,∴∠BMD=90°,∵∠BDM=30°,∴∠DBM=60°,∴点 D 在BA 的延长线上,如图③,∵∠BDM=30°,∠BMD=90°,∴BD=2BM=10,∴AD=BD﹣AB=5∵PA=PD=AD,∴AP=AD=5 .一、填空题21.【解答】解:∵m2+4=3n,∴m3﹣3mn+4m=m(m2﹣3n+4)=m(3n﹣3n)=0.故答案为:0.22.【解答】解:解不等式x﹣a>0,得:x>a,解不等式 3﹣3x>0,得:x<1,则不等式组的解集为 a<x<1,∵不等式组的整数解有 6 个,∴不等式组的整数解为 0、﹣1、﹣2、﹣3、﹣4、﹣5,则﹣6≤a<﹣5,故答案为:﹣6≤a<﹣5.23.【解答】解:把分式方程﹣1=去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x=且x≠2,∴a=2 或 3,∴a的值使得关于x 的分式方﹣1=有整数解的概率=.故答案.24.【解答】解:作DM⊥AB于点M,如右图1所示,由图象和题意可得, AE=7﹣4=3,EB=8﹣7=1,DE=3,∴AB=3+1=4,∵直线 DE 平行直线 y=﹣x,∴DM=ME,∴DM=DE•sin45°=,∴平行四边形ABCD 的面积是=.故答案为:.25.【解答】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE 是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC 的值最小,在Rt△AEP中,∠A=30°,∴PE=AE=,∴CQ的最小值为.二.解答题26.【解答】解:(1)∵安排x件产品运往A地,∴安排 2x 件产品运往 C 地,安排(200﹣x﹣2x)件产品运往 B 地,∴总运费 y=30x+8(200﹣x﹣2x)+25×2x=56x+1600.(2)依题意,得:,解得:40≤x≤42.又∵x 为正整数,∴x 可以取 40,41,42,∴共有 3 种运输方案.∵在 y=56x+1600 中 k=56>0,∴y 随 x 的增大而增大,∴当 x=40 时,y 取得最小值,最小值=56×40+1600=3840,此时 2x=80,200﹣x﹣2x=80.即当运往 A 地40 件、运往 B 地80 件、运往 C 地80 件时,总运费最低,最低总运费是 3840 元.27.【解答】(1)解:过点B作BH⊥AD于H,如图1所示:在Rt△ABH 中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH===,=AD×BH=AF×BH=5×=5;∴S▱ABCD(2)证明:连接 AC,如图 2 所示:∵AB=BC,∠B=∠EAF=60°,∴△ABC 是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠BAE=∠CAF,∵四边形 ABCD 是平行四边形,AB=AC,∴四边形 ABCD 是菱形,∴∠ACF=∠ACB=60°,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF;(3)解:延长 AE 交 DC 延长线于 P,过点 F 作FG⊥AP 于 G,如图 3 所示:∵四边形 ABCD 是平行四边形,∴AB∥CD,∴∠B=∠ECP,在△ABE和△PCE中,,∴△ABE≌△PCE(ASA),∴AE=PE,PC=AB=CD=4,∵CF=3DF,∴CF=3,∴PF=7,在Rt△AFG 中,AF=6,∠EAF=60°,∴∠AFG=30°,∴AG=AF=3,FG===3在Rt△PFG中,由勾股定理得==,∴AP=AG+PG=3+,∴AE=PE=AP=.,28.【解答】解:(1)∵y =﹣x+m 交 x 轴于点 A (4,0), ∴0=﹣×4+m,解得 m =3,∴直线 AB 解析式为 x+3, 令 x=0,y =3,B (0,3);∵A (4,0),B (0,3),∴OA=4,OB =3,∵∠AOB=90°,∴ = =6;(2)∵OA=4,OB =3,∴AB ═=5=BC ,∴OC=2,∴点 C (0,﹣2),设直线 AC 解析式为 y =kx+n ,∴,∴∴直线 AC 解析式为 x ﹣2,∵P 在直线 x+3 上,∴可设点 P (t ,﹣t+3),∵PQ∥y 轴,且点 Q 在 y = x ﹣2 上,∴Q(t,t﹣2),∴d=(﹣t+3)﹣(t﹣2)=﹣t+5(0<t<4);(3)过点 M 作MG⊥PQ 于 G,∴∠QGM=90°=∠COA,∵PQ∥y 轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC 与△GMQ 中,,∴△OAC≌△GMQ(AAS),∴QG=OC=2,GM=OA=4,过点 N 作NH⊥PQ 于 H,过点 M 作MR⊥NH 于点 R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形 GHRM 是矩形,∴HR=GM=4,可设 GH=RM=k,∵△MNQ 是等腰直角三角形,∴∠QNM=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN(AAS),∴HN=RM=k,NR=QH=2+k,∵HR=HN+NR,∴k+2+k=4,∴k=1,∴GH=NH=RM=1,∴HQ=3,∵Q(t,t﹣2),∴N(t+1,t﹣2+3)即N(t+1,t+1),∵N在直线x+3 上,∴t+1=﹣(t+1)+3,∴t=1,∴P(1,),N(2,)。

2018-2019学年 人教版八年级数学下学期期末测试题(含答案)

2018-2019学年 八年级(下)期末数学试卷一、精心选一选:本大题共10小题,每小题4分,共40分;每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分 1.下列关系式中,不是函数关系的是( )A .y =(x <0)B .y =±(x >0)C .y =(x >0) D .y =﹣(x >0)2.计算的结果是( )A .3B .﹣3C .9D .﹣93.在Rt △ABC 中,∠C =90°.如果BC =3,AC =5,那么AB =( )A .B .4C .4或D .以上都不对4.的倒数是( )A .B .C .﹣3D .5.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S 甲2、S 乙2,下列关系正确的是( )A .S 甲2<S 乙2B .S 甲2>S 乙2C .S 甲2=S 乙2D .无法确定6.设正比例函数y =mx 的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m =( ) A .2B .﹣2C .4D .﹣47.如图,要测定被池塘隔开的A ,B 两点的距离.可以在AB 外选一点C ,连接AC ,BC ,并分别找出它们的中点D ,E ,连接DE .现测得AC =30m ,BC =40m ,DE =24m ,则AB =( )A.50m B.48m C.45m D.35m8.若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限9.直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10B.8C.6D.510.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC 的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y (cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A.2cm B.3cm C.4cm D.5cm二、细心填一填:本大题共6小题,每小题4分,共24分,请填在答题卡的相应位置上11.当x时,二次根式有意义.12.若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是.13.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为米.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是.15.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为16.如图,直线y=﹣x+4分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是.三、耐心做一做:本大题共9小题,共86分,请解答在答题卡的相应位置上,解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:×+÷﹣|﹣2|18.(8分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.19.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.20.(8分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y 与x的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为.21.(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.22.(10分)如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,点E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.(1)如图1,①请画出满足题意的点F,保留痕迹,不写作法;②依据你的作图,证明:DF=BE.(2)如图2,若点E是BC边中点,请只用一把无刻度的直尺作线段FG,使得FG∥BD,分别交AD、AB于点F、点G.23.(10分)为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;②当买A型垃圾箱多少个时总费用最少,最少费用是多少??24.(12分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.(1)当点C横坐标为4时,求点E的坐标;(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.25.(14分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.(1)求该定点P的坐标;(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分;每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分1.下列关系式中,不是函数关系的是()A.y=(x<0)B.y=±(x>0)C.y=(x>0)D.y=﹣(x>0)【分析】在运动变化过程中,有两个变量x和y,对于x的每一个值y都有唯一确定的值与之对应,那么y是x的函数,x是自变量.【解答】解:A当x<0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x<0)是函数.B当x>0时,对于x的每一个值,y=±有两个互为相反数的值,而不是唯一确定的值,所以y =±(x>0)不是函数.C当x>0时,对于x的每一个值,y=都有唯一确定的值,所以y=(x>0)是函数.D当x>0时,对于x的每一个值,y=﹣都有唯一确定的值,所以y=﹣(x>0)是函数.故选:B.【点评】准确理解函数的概念,用函数的概念作出正确的判断.2.计算的结果是()A.3B.﹣3C.9D.﹣9【分析】根据二次根式的性质=|a|进行计算即可.【解答】解:原式=|﹣3|=3,故选:A.【点评】此题主要考查了二次根式的性质,关键是掌握=|a|.3.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A.B.4C.4或D.以上都不对【分析】直接利用勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,求出答案即可.【解答】解:∵在Rt△ABC中,∠C=90°.BC=3,AC=5,∴AB==.故选:A.【点评】此题主要考查了勾股定理,正确掌握勾股定理是解题关键.4.的倒数是()A.B.C.﹣3D.【分析】利用倒数定义得到结果,化简即可.【解答】解:的倒数为=.故选:D.【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键.5.甲和乙一起练习射击,第一轮10枪打完后两人的成绩如图所示.设他们这10次射击成绩的方差为S甲2、S乙2,下列关系正确的是()A.S甲2<S乙2B.S甲2>S乙2C.S甲2=S乙2D.无法确定【分析】结合图形,乙的成绩波动比较大,则波动大的方差就大.【解答】解:从图看出:甲选手的成绩波动较小,说明它的成绩较稳定,乙的波动较大,则其方差大,故选:A.【点评】此题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选:B.【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.7.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选:B.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.若bk<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限【分析】根据题意讨论k和b的正负情况,然后可得出直线y=kx+b一定通过哪两个象限.【解答】解:由bk<0,知①b>0,k<0;②b<0,k>0,①当b>0,k<0时,直线经过第一、二、四象限,②b<0,k>0时,直线经过第一、三、四象限.综上可得函数一定经过一、四象限.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9.直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10B.8C.6D.5【分析】利用勾股定理求出斜边的长度,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:两条直角边的边长分别为6和8,根据勾股定理得,斜边==10,所以,斜边上的中线的长=×10=5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,是基础题,熟练掌握性质是解题的关键.10.如图①,在边长为4cm的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC 的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y (cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,PQ的长是()A.2cm B.3cm C.4cm D.5cm【分析】根据运动速度乘以时间求得路程,可得点P的位置,根据线段的和差,可得CP的长,最后根据勾股定理,可得PQ的长度.【解答】解:由题可得:点P运动3秒时,P点运动了6cm,此时,点P在BC上,∴CP=8﹣6=2cm,Rt△PCQ中,由勾股定理,得PQ==2cm,故选:A.【点评】本题考查了动点问题的函数图象,依据点P的位置,利用勾股定理进行计算是解题关键.二、细心填一填:本大题共6小题,每小题4分,共24分,请填在答题卡的相应位置上11.当x≥时,二次根式有意义.【分析】根据二次根式的被开方数为非负数即可得出x的范围.【解答】解:由题意得:2x﹣3≥0,解得:x≥.故答案为:≥.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数这个知识点.12.若数据a1、a2、a3的平均数是3,则数据2a1、2a2、2a3的平均数是6.【分析】根据平均数的公式进行计算即可.【解答】解:∵数据a1、a2、a3的平均数是3,∴a1+a2+a3=9,∴(2a1+2a2+2a3)÷3=18÷3=6,故答案为:6.【点评】本题考查了算术平均数,掌握平均数的公式是解题的关键.13.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为1500米.【分析】根据已知条件得到∠BAC=90°,AB=900米,AC=1200米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAN=75°,SAC=15°,∴∠BAC=90°,∵AB=900米,AC=1200米,在Rt△ABC中,BC===1500米,故答案为:1500【点评】本题考查了解直角三角形的应用﹣方向角问题及勾股定理,会识别方向角是解题的关键.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是AB=CD (答案不唯一).【分析】由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.【解答】解:添加条件为:AB=DC(答案不唯一);理由如下:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∴AD=BC.【点评】本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.15.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为﹣【分析】由所给变量x的值所处的取值范围可确定函数关系式,从而可代入解得.【解答】解:∵当x=﹣时,y=x﹣1,∴y =﹣﹣1=﹣故答案为:﹣.【点评】本题主要考查了由分段函数的取值范围所确定的函数关系式.16.如图,直线y =﹣x +4分别与x 轴,y 轴相交于点A ,B ,点C 在直线AB 上,D 是坐标平面内一点,若以点O ,A ,C ,D 为顶点的四边形是菱形,则点D 的坐标是 (2,﹣2)或(6,2) .【分析】设点C 的坐标为(x ,﹣ x +4).分两种情况,分别以C 在x 轴的上方、C 在x 轴的下方做菱形,画出图形,根据菱形的性质找出点C 的坐标即可得出D 点的坐标.【解答】解:∵一次函数解析式为线y =﹣x +4,∴B (0,4),A (4,0), 如图一∵四边形OADC 是菱形,设C (x ,﹣x +4),∴OC =OA ==4,整理得:x 2﹣6x +8=0,解得x 1=2,x 2=4,∴C (2,2),∴D (6,2); 如图二,∵四边形OADC 是菱形,设C (x ,﹣x +4),∴AC =OA ==4,整理得:x 2﹣8x +12=0,解得x 1=2,x 2=6,∴C (6,﹣2),∴D (2,﹣2);故答案为(2,﹣2)或(6,2).【点评】本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.三、耐心做一做:本大题共9小题,共86分,请解答在答题卡的相应位置上,解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:×+÷﹣|﹣2|【分析】先根据二次根式的乘法、除法法则计算、去绝对值符号,再合并同类二次根式即可得.【解答】解:原式=2+﹣(2﹣)=3﹣2+=4﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及绝对值的性质.18.(8分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是40.(直接写出结果)(2)这次调查获取的样本数据的众数是30,中位数是50.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【解答】解:(1)样本容量是:6+12+10+8+4=40,故答案为:40;(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50,故答案为:30,50;(3)×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元.【点评】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.【分析】(1)根据“矩形的定义”证明结论;(2)连结AP.当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法来求GH的值.【解答】(1)证明∵AC=9 AB=12 BC=15,∴AC2=81,AB2=144,BC2=225,∴AC2+AB2=BC2,∴∠A=90°.∵PG⊥AC,PH⊥AB,∴∠AGP=∠AHP=90°,∴四边形AGPH是矩形;(2)存在.理由如下:连结AP.∵四边形AGPH是矩形,∴GH=AP.∵当AP⊥BC时AP最短.∴9×12=15•AP.∴AP=.【点评】本题考查了矩形的判定与性质.解答(2)题时,注意“矩形的对角线相等”和“面积法”的正确应用.20.(8分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y 与x的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为1≤a≤4.【分析】(1)根据描出的点,画出该函数的图象即可;(2)①当x=1时,求得y有最小值2;②根据函数图象即可得到结论;(3)根据x取不同值时,y所对应的取值范围即可得到结论.【解答】解:(1)函数图象如图所示;(2)①当x=1时,y有最小值2;②当x<1时,y随x的增大而减小;故答案为:x=1时,y有最小值2,当x<1时,y随x的增大而减小;(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为1≤a≤4,故答案为:1≤a≤4.【点评】本题考查了反比例函数的性质,函数图象的画法,画出函数图象是解本题的关键.21.(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB =AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.22.(10分)如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,点E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.(1)如图1,①请画出满足题意的点F,保留痕迹,不写作法;②依据你的作图,证明:DF=BE.(2)如图2,若点E是BC边中点,请只用一把无刻度的直尺作线段FG,使得FG∥BD,分别交AD、AB于点F、点G.【分析】(1)①连接AC,BD于O,连接EO并延长交AD于F,即可得到结果;②根据平行四边形的性质和已知条件易证△DFO≌△BEO即可得到结论;(2)连接EO并延长交AD于点F,连接BF交AO于点H,连接DH交AB于点G,连接GF,则线段GF为所求.【解答】解:(1)如图,连接EO并延长交AD于F,则点F即为所求;(2)连接BF,∵四边形ABCD是平行四边形,∴AD∥BC,OD=OB,∴∠FDO=∠EBO,∠DFO=∠BEO,在△DFO和△BEO中,,∴△DFO≌△BEO,∴DF=BE;(3)如图2所示,线段FG就是所求的线段.【点评】本题考查了平行四边形的判定和性质以及全等三角形的判断和性质,熟练掌握平行四边形的判定和性质是解题的关键.23.(10分)为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;②当买A型垃圾箱多少个时总费用最少,最少费用是多少??【分析】(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据“购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元”,即可得出关于m、n的二元一次方程组,解之即可得出结论;(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据总价=单价×购进数量,即可得出w关于x的函数关系式;②利用一次函数的性质解决最值问题.【解答】解:(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据题意得:,解得:.答:每个A型垃圾箱100元,每个B型垃圾箱120元.(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据题意得:w=100x+120(30﹣x)=﹣20x+3600(0≤x≤16且x为整数).②∵w=﹣20x+3600中k=﹣20<0,∴w随x值增大而减小,∴当x=16时,w取最小值,最小值=﹣20×16+3600=3280.答:买16个A型垃圾箱总费用最少,最少费用是3280元.【点评】本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量间的关系,找出w关于x的函数关系式;②利用一次函数的性质,解决最值问题.24.(12分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.(1)当点C横坐标为4时,求点E的坐标;(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.【分析】(1)作CF⊥OA于F,EG⊥x轴于G.只要证明△CFO≌△OGE即可解决问题;(2)只要证明△EOB≌△COA,可得BE=AC,∠OBE=∠OAC=45°,推出∠EBC=90°,即EB⊥AB,由C(t,﹣t+6),可得BC=t,AC=BE=(6﹣t),根据S=•BC•EB,计算即可;(3)由(1)可知E(t﹣6,t),设x=6﹣t,y=t,可得y=x+6.【解答】解:(1)作CF⊥OA于F,EG⊥x轴于G.∴∠CFO=∠EGO=90°,令x=4,y=﹣4+6=2,∴C(4,2),∴CF=2,OF=4,∵四边形OCDE是正方形,∴OC=OE,OC⊥OE,∵OC⊥OE,∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,∴∠EOG=∠OCF,∴△CFO≌△OGE,∴OG=OF=4,OG=CF=2,∴G(﹣2,4).(2)∵直线y=﹣x+6交y轴于B,∴令x=0得到y=6,∴B(0,6),令y=0,得到x=6,∴A(6,0),∴OA=OB=6,∠OAB=∠OBA=45°,∵∠AOB=∠EOC=90°,∴∠EOB=∠COA,∵OE=OC,∴△EOB≌△COA,∴BE=AC,∠OBE=∠OAC=45°,∴∠EBC=90°,即EB⊥AB,∵C(t,﹣t+6),∴BC=t,AC=BE=(6﹣t),∴S=•BC•EB=×t•(6﹣t)=﹣t2+6t.(3)当点C在线段AB上运动时,由(1)可知E(t﹣6,t),设x=6﹣t,y=t,∴t=x+6,∴y=x+6.【点评】本题考查一次函数综合题、全等三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.(14分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.(1)求该定点P的坐标;(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.【分析】(1)对题目中的函数解析式进行变形即可求得点P的坐标;(2)根据题意可以得到相应的不等式组,从而可以求得k的取值范围;(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得k的取值范围.【解答】解:(1)∵y=2kx﹣4k+3=2k(x﹣2)+3,∴y=2kx﹣4k+3(k≠0)恒过某一定点P的坐标为(2,3),即点P的坐标为(2,3);(2)∵点A、B坐标分别为(0,1)、(2,1),直线l与线段AB相交,直线l:y=2kx﹣4k+3(k ≠0)恒过某一定点P(2,3),∴,解得,k;(3)当k>0时,直线y=2kx﹣4k+3中,y随x的增大而增大,∴当0≤x≤2时,﹣4k+3≤y≤3,∵以y1、y2、y3为长度的3条线段能围成三角形,∴,得k<,∴0<k<;当k<0时,直线y=2kx﹣4k+3中,y随x的增大而减小,∴当0≤x≤2时,3≤y≤﹣4k+3,∵以y1、y2、y3为长度的3条线段能围成三角形,∴3+3>﹣4k+3,得k>﹣,∴﹣<k<0,由上可得,﹣<k<0或0<k<.【点评】本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.。

2018-2019年八年级下期末数学试卷及答案

第二学期初二年级期末考试数 学 试 卷考 生 须 知1.本试卷共8页,共三道大题,27道小题,满分100分。

考试时间100分钟。

2.在试卷和答题纸上准确填写学校名称、班级、姓名和考号。

3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。

4.在答题纸上,选择题、画图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将试卷和答题纸一并交回。

一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.3的相反数是A .3B .-3C .±3D .132.京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法.由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”.右面的图案(1)是京剧《华容道》中关羽的脸谱图案.在下面左侧的四个图案中,可以通过平移图案(1)得到的是A .B .C .D . 图案(1) 3.一个三角形的两边长分别是3和7,则第三边长可能是A .2B .3C .9D .10 4.下列调查中,调查方式选择不合理...的是 A .调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式 B .调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式 C .调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查(普查)的方式 D .调查市场上一批LED 节能灯的使用寿命,采用全面调查(普查)的方式 5.下列各式中,运算正确的是A .2242a a a +=B .32a a a =-C .623a a a =÷D .236()a a =6.点A ,B ,C ,D 在数轴上的位置如图所示,则实数72-对应的点可能是D AB CA .点AB .点BC .点CD .点D7.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产——“抖空竹”引入阳光特色大课间.下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知AB ∥CD ,∠EAB =80°,∠ECD =110°,则∠E 的度数是 A .30° B .40° C .60° D .70°8.某小区居民利用“健步行APP ”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:①小文此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半; ③行走步数为4~8千步的人数为50人;④行走步数为12~16千步的扇形圆心角是72°. 根据统计图提供的信息,上述推断合理的是A .①②③B .①②④C .①③④D .②③④ 二、填空题(本题共16分,每小题2分) 9.4的算术平方根是 .10.若a b <,则3a 3b ;1a +- 1b +-. (用“>”,“<”,或“=”填空)11.x 的3倍与4的差是负数,用不等式表示为 .12.一个正多边形的每一个外角都是60°,则这个多边形的边数是 . 13.若点P (x -3,2)位于第二象限,则x 的取值范围是 . 14.如下图,AB ∥CD ,请写出图中一对相等的角: ;E ABC D35%20%16~20千步25%12~16千步4~8千步0~4千步8~12千步28126040200频数/人708012321ABCD E要使∠A =∠B 成立,需再添加的一个条件为: .15.根据《中华人民共和国2017年国民经济和社会发展统计公报》,我国2013-2017年农村贫困人口统计如上图所示.根据统计图中提供的信息,预估2018年年末全国农村贫困人口约为 万人,你的预估理由是 . 16.在一次数学活动课上,老师让同学们借助一副三角板画平行线AB ,CD .下面是小楠、小曼两位同学的作法:老师说:“小楠、小曼的作法都正确.”请回答:小楠的作图依据是 ;小曼的作图依据是 .三、解答题(本题共60分.17题~23题,每题各5分;24~26题,每题各6分;27题7分) 17.计算:+--1.18.解不等式组:23152(1)153x x x +⎧<⎪⎨⎪--≤+⎩,,并把它的解集在数轴上表示出来.人数/15题图14题图19.已知x =13y =,求代数式22(32)(2)3xy xy xy x -++÷的值.20.按照下列要求画图并作答:如图,已知△ABC . (1)画出BC 边上的高线AD ;(2)画∠ADC 的对顶角∠EDF ,使点E 在AD 的延长线上,DE =AD ,点F 在CD 的延长线上,DF =CD ,连接EF ,AF ;(3)猜想线段AF 与EF 的大小关系是: ; 直线AC 与EF 的位置关系是: .21.如图,AB ∥CD ,DE ⊥AC ,垂足为E ,∠A =105°,求∠D 的度数.22.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?23.天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x 轴,y 轴的正方向建立了平面直角坐标系描述各景点的位置.小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为(0,-2).” 请依据小惠同学的描述回答下列问题:(1)请在图中画出小惠同学建立的平面直角坐标系; (2)表示无梁殿的点的坐标为 ; 表示双环万寿亭的点的坐标为 ;(3)将表示祈年殿的点向右平移2个单位长度,再向下平移0.5个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是 .E DCBA AB C北24.为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况(单位:元),并对销售金额进行分组,整理成如下统计表:28,8,18,63,15,30,70,42,36,47,25,58,64,58,55,41,58,65,72,30销售金额x0≤x<20 20≤x<40 40≤x<60 60≤x<80划记频数 3 5(1)(2)用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;(3)根据绘制的频数分布直方图,你能获取哪些信息?(至少写出两条不同类型信息)25.阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到.例如,图1中阴影部分的面积可表示为22a b -;若将阴影部分剪下来,重新拼成一个矩形(如图2),它的长,宽分别是a b +,a b -,由图1,图2中阴影部分的面积相等,可得恒等式22()()a b a b a b +-=-.恒等式222()2a b a ab b +=++,画出你的拼图并标出相关数据;(3)利用前面推出的恒等式22()()a b a b a b +-=-和222()2a b a ab b +=++计算:①+-; ②+2x 2().26.△ABC 中,AD 是∠BAC 的平分线,AE ⊥BC ,垂足为E ,作CF AD ∥,交直线AE 于点F .设∠B =α,∠ACB =β.ABDC图1图2图3A BDC EFFE CDB A 图1图2(1)若∠B=30°,∠ACB=70°,依题意补全图1,并直接写出∠AFC的度数;(2)如图2,若∠ACB是钝角,求∠AFC的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC的度数(用含α,β的式子表示).27.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a 为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(-2,6)的“12级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.备用图初二数学试卷参考答案及评分标准说明: 与参考答案不同,但解答正确相应给分. 一、选择题(本题共24分,每小题3分)9. 2 10. <; > 11. 34x -<12. 6 13. x <314.答案不唯一:∠2=∠A ,或∠3=∠B ;∠2=∠B ,或∠3=∠A,或∠2=∠3,或CD 是∠ACE 的平分线…… 15.预估理由需包含统计图提供的信息,且支撑预估的数据.参考答案①:2000,按每年平均减少人数近似相等进行估算;参考答案②:1700,按 2016-2018 年贫困人口数呈直线下降进行估算. 16.同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.三、解答题(本题共60分.17题~23题,每题各5分;24~26题,每题各6分;27题7分) 17.解:原式=3+(2)---1 ……………………3分-6. ……………………5分18.解:解不等式①,得x <1, ……………………2分解不等式②,得x ≥-2, ……………………3分 ∴不等式组的解集是21x ≤<-.……………………4分 解集在数轴上表示如图:……………………5分19.解:原式=23243y x -++ ……………………3分=2431x y ++. ……………………4分当x =13y =时, 原式=214313⨯+⨯+=22.……………………5分20.解:(1)画高线AD ; ……………………1分(2)画图; ……………………3分 (3)猜想线段AF 与EF 的大小关系是:AF =EF ;AB C D EF直线AC与EF的位置关系是:AC∥EF.……………………5分21.解:∵AB∥CD,(已知)∴∠A+∠C=180°.(两直线平行,同旁内角互补)……………………1分∵∠A=105°,(已知)∴∠C=180°-105°=75°.(等量代换)……………………2分又∵DE⊥AC,(已知)∴∠DEC=90°,(垂直定义)……………………3分∴∠C+∠D=90°.(直角三角形的两个锐角互余)……………………4分∴∠D=90°-75°=15°.(等量代换)……………………5分22.解:设他需要跑步x分钟,由题意可得……………………1分200x+80(20-x)≥2200,……………………3分解得,x≥5.……………………4分答:小诚至少需要跑步5分钟.……………………5分23.解:(1)画出平面直角坐标系如下图;……………………2分y北O x(2)表示无梁殿的点的坐标为点(-4,0);表示双环万寿亭的点的坐标为(-4,4);……………………4分(3)表示七星石的点的坐标是(2,3.5).……………………5分24.(1) 补全表格如下:销售金额x0≤x<20 20≤x<40 40≤x<60 60≤x<80划记频数 3 5 7 5(2)画频数分布直方图如图:……………………4分 (3) 销售额在40≤x <60的饮料自动售货机最多,有7台; 销售额在0≤x <20的饮料自动售货机最少,只有3台; 销售额在20≤x <40和40≤x <80的饮料自动售货机的数量相同 ……销售额最高的为72元 ……………………6分 25.解:(1) 答案不唯一:22()(2)23a b a b a ab b ++++=,或222()2a b a ab b +++=, 2()a a b a ab ++=,2()b a b ab b ++=, 22()22a a b a ab ++=…………………………2分(2) 拼图如右图;……………………4分 (3) ①+-=22- =3-2 =1. ……………………5分②+2x 2()=+4+4x x 2. ……………………6分26.解:(1) 依题意补全图1; ……………………1分∠AFC =20°; ……………………2分(2) ∵△ABC 中,∠BAC +∠B ∴∠BAC =180°-(∠B +∠ACB )=180°-(α+β).∵AD 是∠BAC 的平分线, ∴∠BAD =21∠BAC =90°-21(α+β), ……………………3分 A BDCEF11∴∠ADE =∠B +∠BAD =α+90°-21(α+β)=90°-21(β-α). ∵AE ⊥BC ,∴∠DAE +∠ADE =90°,∴∠DAE =90°-∠ADE =21(β-α). ……………………4分 ∵CF ∥AD ,∴∠DAE +∠AFC =180°,∴∠AFC =180°-21(β-α). ……………………5分 (3) ∠AFC =21(α-β). ……………………6分 27.(1) ∵点A (-2,6)的“12级关联点”是点A 1, ∴A 1(-2×12+6,-2+12×6),即A 1(5,1). ……………………1分 设点B (x ,y ),∵点B 的“2级关联点”是B 1(3,3),∴2323x y x y +⎧⎨+⎩=,=,……………………2分 解得11.x y ⎧⎨⎩=,= ∴B (1,1). ……………………3分(2) ∵点M (m -1,2m )的“-3级关联点”为M ′(-3(m -1)+2m ,m -1+(-3)×2m ),M ′位于y 轴上,∴-3(m -1)+2m =0, ……………………4分 解得,m =3, ……………………5分 ∴m -1+(-3)×2m =-16,∴M ′(0,-16). ……………………6分(3) 1433n ≤≤-. ……………………7分。

2018至2019第二学期八年级数学试卷(含答案)

图3 2018—2019学年度第二学期期末教学质量检测试卷 八年级 数学(总分:100分 作答时间:100分钟)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的。

)1、下列式子中,是最简二次根式的是( )A. 21B. 313C. 51 D.8 2、已知一个直角三角形的两边长分别为3和5,则第三边的长是( ) A.5 B.4 C. 34 D.4或343.如图1,在□ABCD 中,O 是对角线AC ,BD 的交点,下列结论中错误的是( )A. AB ∥CDB.AB=CDC. AC=BDD.OA=OC4、如图2,函数3221+=-=ax y x y 与的图像相交于点 A (m ,2),则关于x 的不等式32+>-ax x 的解集是( )A.x>2B. x<2C.x>-1D.x<-15、在某次义务植树活动中,10名同学植树的棵数如图3所示.若他们植树的棵树的平均数是a 棵,中位数是b 棵,众数是c 棵,则下列结论中正确的是( )A. a=bB. b>aC. b=cD. c>b6、如图4,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠ACD=3∠AB 上的中点,则∠ECD 的度数是( )A. 30°B. 45°C. 50°D.55°7、小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地.他们离出发地的距离s(km)和行驶时间t(h)之间的函数关系如图5所示.根据图中提供的信息,有下列说法:①他们都行驶了20km;②小陆全程共用了1.5h ;③小李与小陆相遇后,小李的速度小于小陆的速度;④小李在途中停留了0.5h.其中正确的说法有几个( )A.1个B. 2个C. 3个D. 4个8、如图6,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC.P 为CE 上任意一图2 图1 图4点,PQ ⊥BC 于点Q ,PR ⊥BD 于点R.则PQ+PR 的值是( )A.22B. 2C. 32D.389、如图7,已知等腰△ABC 的底边BC=20,D 是腰AB 上一点,且CD=16,BD=12.则△ABC的周长是( )A. 56B. 40C. 3153 D. 5347 10、如图8,在锐角△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,有下列四个结论:①OE=OF ;②CE=CF ;③若CE=12,CF=5,则OC 的长为6;④当AO=CO 时,四边形AECF 是矩形.其中正确的有( )A. ①②B. ①④C. ①③④D.②③④二、填空题(本题共8小题,每小题3分,共24分)11、在函数72-=x y 中,自变量x 的取值范围是_______________.12、若0131=-++b a ,则___________20182017=+b a13、已知点A (2,0),B (0,2),C (-1,m )在同一条直线上,则m 的值为_____________14、甲、乙、丙、丁四位同学最近5次数学考试成绩的平均分分别是80、85、85、80,方差分别是42、42、54、59.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加即将举行的数学竞赛,那么应该选________.15、如图9,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,点G是CE 的中点,CF=2,则BC=___________.16、将矩形纸片ABCD 按图10的方式折叠,得到菱形AECF ,若AB=3,则BC 的长为_____.17、如图11,在平面直角坐标系中,有点A (1,6),B (5,0).点C 是y 轴上的一个动点.当△ABC 的周长最小时,点C 的坐标为____________.图5 图6 图8 图11 图9 图10 图718、 图12是一个“羊头”图案.其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②’……若正方形①的边长为64cm,则正方形⑦的边长为___________cm 。

2018-2019学年成都市天府新区八年级(下)数学期末试卷(含解析)

2018-2019学年成都市天府新区八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志2.已知a<b,下列不等式中正确的是()A.B.a﹣3<b﹣3 C.a+3>b+3 D.﹣3a<﹣3b3.当x=2时,下列分式的值为0的是()A.B.C.D.4.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.2x+4=2(x+2)D.3mx﹣6my=3m(x﹣6y)5.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0 B.k<0 C.k≤0 D.k≥07.如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90°B.75°C.65°D.85°8.如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11 B.12 C.14 D.169.某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4 B.﹣=20C.﹣=4 D.﹣=410.如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4 B.5 C.8 D.10二、填空题(本大题共4个小题,每小题4分,共16分)11.一个多边形的内角和是1080°,这个多边形的边数是.12.若a+b=5,a﹣b=3,则a2﹣b2=.13.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n的解集是.14.如图,在平行四边形ABCD中,AB=6,BC=8,以C为圆心,适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AF的值等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(6分)(1)分解因式:9a2(x﹣y)﹣4b2(x﹣y)(2)计算:16.(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解.17.(8分)如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.18.(8分)如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.19.(10分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?20.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=4cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数.(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB 时,求平移的距离.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是.22.有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为.23.若分式=方程有正数解,则k .24.如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2024次,点B的落点依次为B1,B2,B3,B4,…,则B2024的坐标为.25.如图,在平行四边形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,得到△FBE,连接DF并延长交BC于点G,若BE=AD=3,平行四边形ABCD的面积为6,则FG=.二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26.(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A 80 120B 60 90其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?27.(10分)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为BC的中点,以CD 为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长.28.(12分)如图1,直线y=﹣x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.(1)求OB的长;(2)如图2,F,G是直线AB上的两点,若△DFG是以FG为斜边的等腰直角三角形,求点F的坐标;(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.【解答】解:A、图形是中心对称轴图形,也是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B.2.【解答】解:A、∵a<b,∴<,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项符合题意;C、∵a<b,∴a+3<b+3,故本选项不符合题意;D、∵a<b,∴﹣3a>﹣3b,故本选项不符合题意;故选:B.3.【解答】解:(A)当x=2时,原分式无意义,故本选项错误;(B)当x=2时,原式==2≠0,故本选项错误;(C)当x=2时,原分式无意义,故本选项错误;(D)当x=2时,原式=0,故本选项正确;故选:D.4.【解答】解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=2(x+2),正确;D、原式=3m(x﹣2y),错误,故选:C.5.【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.【解答】解:一次函数y=2x+k的图象经过第一、二、三象限,那么k>0.故选:A.7.【解答】解:∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选:D.8.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∵△BCD的周长为24,∴BD+CD+BC=24,∴AB+BC=24,∵BC=10,∴AC=AB=24﹣10=14.故选:C.9.【解答】解:设原计划每天挖x米,那么原计划用时为:,实际用时为:.根据题意,得:﹣=4,故选:D.10.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分)11.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.12.【解答】解:∵a+b=5,a﹣b=3,∴a2﹣b2=(a+b)(a﹣b)=5×3=15,故答案为:15.13.【解答】解:当x<﹣2时,﹣x+m>nx+4n,∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2.故答案为:x<﹣2.14.【解答】解:由题意可知,CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠DCE=∠F,∠BCE=∠AEF,∴BF=BC=8,∵AB=6,∴AF=8﹣6=2.故答案为:2.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解答】解:(1)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)原式=÷=•=x+1.16.【解答】解:解不等式1﹣2(x﹣1)≤5得:x≥﹣1,解不等式得:x<3,不等式组的解集为:﹣1≤x<3,不等式组的解集在数轴上表示如下:符合不等式组解集的整数解为:﹣1,0,1,2.17.【解答】解:(1)如图所示,△A1B1C1即为所求,A1的坐标为(2,﹣3);(2)如图所示,△A2B2C2即为所求.18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE∥BF;(2)∵AG∥DB,AD∥CG,∴四边形AGBD是平行四边形,∵∠G=90°,∴平行四边形AGBD是矩形,∴∠ADB=90°,又E为边AB的中点,∴ED=EB,又四边形DEBF是平行四边形,∴四边形DEBF是菱形.19.【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.当x=120时,x+30=150.答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.20.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=4,∠F=∠ADB=30°,∴A2M2=2,A2F2=2,∴AF2=2﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=2﹣x,∴PD=AD﹣AP=2﹣2+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=3﹣,即A2A=3﹣,∴平移的距离是(3﹣)cm.三、填空题(本大题共5个小题,每小题4分,共20分)21.【解答】解:当x=+5时,原式=(x﹣3﹣2)2=(x﹣5)2=(+5﹣5)2=()2=5,故答案为:5.22.【解答】解:,解①得x<2,解②得x>,不等式组有实数解,则2>,解得a<1,所以任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率==,故答案为:.23.【解答】解:方程两边都乘以(x﹣5),得x﹣6=﹣k,解得x=6﹣k,∵分式=方程有正数解,∴x=6﹣k>0,且6﹣k≠5解得:k<6,且k≠1,∴k的取值范围是k<6且k≠1.故答案为:<6且k≠1.24.【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2024=337×6+2,∴点B2向右平移1348(即337×4)到点B2024.∵B2的坐标为(2,0),∴B2024的坐标为(2+1348,0),∴B2024的坐标为(1350,0).故答案为:(1350,0);25.【解答】解:∵把△ABE沿BE翻折,得到△FBE,∴AE=EF,∠AEB=∠FEB,∴∠AEB=(180°﹣∠DEF),∵E为AD边的中点,∴AE=DE,∴DE=EF,∴∠EDF=∠EFD,∴∠EDF=(180°﹣∠DEF),∴∠AEB=∠EDF,∴BE∥DG,∵四边形ABCD是平行四边形,∴DE∥BG,∴四边形BEDG为平行四边形;∴DE=BG,DG=BE=3,∵四边形ABCD是平行四边形,AE=DE,▱ABCD的面积等于6,∴S△ABE=S平行四边形ABCD=,连接AF交BE于H,则AH⊥BE,AH=HF,∵BE=3,∴AH=1,∴AF=2,∵BE∥DG,∴AF⊥DG,∴DF===,∴FG=DG﹣FD=3﹣,故答案为:3﹣.四、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26.【解答】解:(1)∵80x+60(100﹣x)≤7500,解得:x≤75,∴y=40x+30(100﹣x)(65≤x≤75);(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.27.【解答】解:(1)在Rt△ABC中,AB=AC=4,根据勾股定理得,BC=AB=4,点D为BC的中点,∴AD=BC=2,∵四边形CDEF是正方形,∴AF=EF=AD=2,∵BE=AB=4,∴BE=AF,故答案为BE=AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴==,∴BE=AF,∴线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4,根据勾股定理得,BF=2,∴BE=BF﹣EF=2﹣2,由(2)知,BE=AF,∴AF=2﹣2,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴==,∴BE=AF,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4,根据勾股定理得,BF=2,∴BE=BF+EF=2+2,由(2)知,BE=AF,∴AF=2+2.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为2﹣2或2+2.28.【解答】解:(1)对于直线y=﹣x+6,令x=0,得到y=6,可得A(0,6),令y=0,得到x=8,可得D(8,0),∴AC=AO=6,OD=8,AD==10,∴CD=AD﹣AC=4,设BC=OB=x,则BD=8﹣x,在Rt△BCD中,∵BC2+CD2=BD2,∴x2+42=(8﹣x)2,∴x=3,∴B(3,0).(2)设直线AB的解析式为y=kx+6,∵B(3,0),∴3k+6=0,∴k=﹣2,∴直线AB的解析式为y=﹣2x+6,作GM⊥x轴于M,FN⊥x轴于N,∵△DFG是等腰直角三角形,∴DG=FD,∠1=∠2,∠DMG=∠FND=90°,∴△DMG≌△FND(AAS),∴GM=DN,DM=FN,设GM=DN=m,DM=FN=n,∵G、F在直线AB上,则:m=﹣2(8﹣n)+6,﹣n=﹣2(8﹣m)+6,解得:m=2,n=6∴F(6,﹣6).(3)如图,设Q(a,﹣a+6),∵PQ∥x轴,且点P在直线y=﹣2x+6上,∴P(a,﹣a+6),∴PQ=a,作QH⊥x轴于H.∴DH=a﹣8,QH=a﹣6,∴=,由勾股定理可知:QH:DH:DQ=3:4:5,∴QH=DQ=a,∴a=a﹣6,∴a=16,∴Q(16,﹣6),P(6,﹣6),∵ED∥PQ,ED=PQ,D(8,0),∴E(﹣2,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志2.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣3<b﹣3C.a+3>b+3D.﹣3a<﹣3b 3.(3分)当x=2时,下列分式的值为0的是()A.B.C.D.4.(3分)下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.2x+4=2(x+2)D.3mx﹣6my=3m(x﹣6y)5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0B.k<0C.k≤0D.k≥07.(3分)如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90°B.75°C.65°D.85°8.(3分)如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11B.12C.14D.169.(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4B.﹣=20C.﹣=4D.﹣=410.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4B.5C.8D.10二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)一个多边形的内角和是1080°,这个多边形的边数是.12.(4分)若a+b=5,a﹣b=3,则a2﹣b2=.13.(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m>nx+4n的解集是.14.(4分)如图,在平行四边形ABCD中,AB=6,BC=8,以C为圆心,适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AF的值等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(6分)(1)分解因式:9a2(x﹣y)﹣4b2(x﹣y)(2)计算:16.(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解.17.(8分)如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.18.(8分)如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.19.(10分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?20.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=4cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数.(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.三、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是.22.(4分)有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为.23.(4分)若分式=方程有正数解,则k.24.(4分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2024次,点B的落点依次为B1,B2,B3,B4,…,则B2024的坐标为.25.(4分)如图,在平行四边形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,得到△FBE,连接DF并延长交BC于点G,若BE=AD=3,平行四边形ABCD的面积为6,则FG=.四、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26.(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?27.(10分)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长.28.(12分)如图1,直线y=﹣x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,△AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.(1)求OB的长;(2)如图2,F,G是直线AB上的两点,若△DFG是以FG为斜边的等腰直角三角形,求点F的坐标;(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.2018-2019学年四川省成都市天府新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A、图形是中心对称轴图形,也是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)已知a<b,下列不等式中正确的是()A.B.a﹣3<b﹣3C.a+3>b+3D.﹣3a<﹣3b 【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴<,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项符合题意;C、∵a<b,∴a+3<b+3,故本选项不符合题意;D、∵a<b,∴﹣3a>﹣3b,故本选项不符合题意;故选:B.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.(3分)当x=2时,下列分式的值为0的是()A.B.C.D.【分析】根据分式的值为零的条件即可求出答案.【解答】解:(A)当x=2时,原分式无意义,故本选项错误;(B)当x=2时,原式==2≠0,故本选项错误;(C)当x=2时,原分式无意义,故本选项错误;(D)当x=2时,原式=0,故本选项正确;故选:D.【点评】本题考查分式的值为0的条件:分子等于零且分母不等于零,解题的关键是熟练运用分式的运算,本题属于基础题型.4.(3分)下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.2x+4=2(x+2)D.3mx﹣6my=3m(x﹣6y)【分析】各项分解得到结果,即可作出判断.【解答】解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=2(x+2),正确;D、原式=3m(x﹣2y),错误,故选:C.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【分析】由菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;即可求得答案.【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意熟记定理是解此题的关键.6.(3分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是()A.k>0B.k<0C.k≤0D.k≥0【分析】根据一次函数的性质求解.【解答】解:一次函数y=2x+k的图象经过第一、二、三象限,那么k>0.故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.(3分)如图,将△ABC绕点A按顺时针方向旋转120°得到△ADE,点B的对应点是点E,点C的对应点是点D,若∠BAC=35°,则∠CAE的度数为()A.90°B.75°C.65°D.85°【分析】由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.【解答】解:∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选:D.【点评】本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.8.(3分)如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11B.12C.14D.16【分析】根据线段垂直平分线的性质可得AD=CD,再根据△BCD的周长为24可得AB+BC=24,进而得到AC的长.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∵△BCD的周长为24,∴BD+CD+BC=24,∴AB+BC=24,∵BC=10,∴AC=AB=24﹣10=14.故选:C.【点评】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.9.(3分)某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4B.﹣=20C.﹣=4D.﹣=4【分析】本题的关键描述语是:“提前4天完成任务”;等量关系为:原计划用时﹣实际用时=4.【解答】解:设原计划每天挖x米,那么原计划用时为:,实际用时为:.根据题意,得:﹣=4,故选:D.【点评】本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,F是DE上一点,连接AF、CF,DE=3DF,若∠AFC=90°,则AC的长度为()A.4B.5C.8D.10【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)一个多边形的内角和是1080°,这个多边形的边数是8.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n ≥3).12.(4分)若a+b=5,a﹣b=3,则a2﹣b2=15.【分析】先根据平方差公式分解因式,再代入求出即可.【解答】解:∵a+b=5,a﹣b=3,∴a2﹣b2=(a+b)(a﹣b)=5×3=15,故答案为:15.【点评】本题考查了平方差公式,能够正确分解因式是解此题的关键.13.(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m>nx+4n的解集是x<﹣2.【分析】利用给出函数图象写出直线y=﹣x+m在直线y=nx+4n(n≠0)上方所对应的自变量x的范围即可.【解答】解:当x<﹣2时,﹣x+m>nx+4n,∴关于x的不等式﹣x+m>nx+4n的解集为x<﹣2.故答案为:x<﹣2.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.(4分)如图,在平行四边形ABCD中,AB=6,BC=8,以C为圆心,适当长为半径画弧分别交BC,CD于M,N两点,分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P,连接CP并延长交AD于E,交BA的延长线于F,则AF的值等于2.【分析】先根据角平分线的性质得出∠BCE=∠DCE,再由平行四边形的性质得出AB∥CD,AD∥BC,故可得出∠DCE=∠F,∠BCE=∠AEF,故可得出BF=BC=8,进而可得出结论.【解答】解:由题意可知,CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠DCE=∠F,∠BCE=∠AEF,∴BF=BC=8,∵AB=6,∴AF=8﹣6=2.故答案为:2.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法以及平行四边形的性质是解答此题的关键.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(6分)(1)分解因式:9a2(x﹣y)﹣4b2(x﹣y)(2)计算:【分析】(1)先提取公因式x﹣y,再利用平方差公式变形可得;(2)先计算括号内分式的减法,再将除法转化为乘法、同时因式分解,最后约分即可得.【解答】解:(1)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)原式=÷=•=x+1.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及平方差公式.16.(6分)解不等式组,把解集在所给数轴上表示出来,并写出其整数解.【分析】分别解两个一元一次不等式,找出其公共部分,就是不等式组的解集,再将解集在数字上表示出来,并找出其整数解即可.【解答】解:解不等式1﹣2(x﹣1)≤5得:x≥﹣1,解不等式得:x<3,不等式组的解集为:﹣1≤x<3,不等式组的解集在数轴上表示如下:符合不等式组解集的整数解为:﹣1,0,1,2.【点评】本题考查一元一次不等式组的整数解,在数轴上表示不等式的解集,解一元一次不等式组,正确掌握解一元一次不等式组的方法是解题的关键.17.(8分)如图,在平面直角坐标系中,已知点A(﹣2,3),B(﹣3,1),C(﹣1,2).且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),请画出平移后的△A2B2C2.【分析】(1)依据△A1B1C1与△ABC关于原点O成中心对称,即可得到,△A1B1C1.(2)依据P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点P′(a+3,b+1),即可得到平移的方向和距离,进而得出平移后的△A2B2C2.【解答】解:(1)如图所示,△A1B1C1即为所求,A1的坐标为(2,﹣3);(2)如图所示,△A2B2C2即为所求.【点评】本题主要考查了利用平移变换以及旋转变换进行作图,平移作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.18.(8分)如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.【分析】(1)根据平行四边形的性质得到DF=BE,AB∥CD,根据平行四边形的判定定理证明四边形DEBF是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形AGBD是矩形,根据直角三角形的性质得到ED=EB,证明结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE∥BF;(2)∵AG∥DB,AD∥CG,∴四边形AGBD是平行四边形,∵∠G=90°,∴平行四边形AGBD是矩形,∴∠ADB=90°,又E为边AB的中点,∴ED=EB,又四边形DEBF是平行四边形,∴四边形DEBF是菱形.【点评】本题考查的是平行四边形的判定和性质、菱形的判定和性质,注意:平行四边形的对边平行且相等,题目是一道比较好的题目,难度适中.19.(10分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.当x=120时,x+30=150.答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.20.(10分)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD,MF,若BD=4cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;(2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1交FM 于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求β的度数.(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM =30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=4,∠F=∠ADB=30°,∴A2M2=2,A2F2=2,∴AF2=2﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=2﹣x,∴PD=AD﹣AP=2﹣2+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=3﹣,即A2A=3﹣,∴平移的距离是(3﹣)cm.【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.三、填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是5.【分析】将x=+5代入原式=(x﹣3﹣2)2=(x﹣5)2计算可得.【解答】解:当x=+5时,原式=(x﹣3﹣2)2=(x﹣5)2=(+5﹣5)2=()2=5,故答案为:5.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.22.(4分)有6张正面分别标有数字﹣2,0,2,4,6,8的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率为.【分析】分别解两个不等式得到x<2和x>,若不等式组有实数解,则2>,解得a<1,然后根据概率公式求解.【解答】解:,解①得x<2,解②得x>,不等式组有实数解,则2>,解得a<1,所以任取一张,将该卡片上的数字记为a,则使关于x不等式组有实数解的概率==,故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了解一元一次不等式组.23.(4分)若分式=方程有正数解,则k<6且k≠1.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【解答】解:方程两边都乘以(x﹣5),得x﹣6=﹣k,解得x=6﹣k,∵分式=方程有正数解,∴x=6﹣k>0,且6﹣k≠5解得:k<6,且k≠1,∴k的取值范围是k<6且k≠1.故答案为:<6且k≠1.【点评】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.24.(4分)如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.现将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2024次,点B的落点依次为B1,B2,B3,B4,…,则B2024的坐标为(1350,0).【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2024=336×7+2,因此点B2向右平移1348(即337×4)即可到达点B2024,根据点B2的坐标就可求出点B2024的坐标.【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2024=337×6+2,∴点B2向右平移1348(即337×4)到点B2024.∵B2的坐标为(2,0),∴B2024的坐标为(2+1348,0),∴B2024的坐标为(1350,0).故答案为:(1350,0);【点评】本题考查了翻折变换(折叠问题),菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.25.(4分)如图,在平行四边形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,得到△FBE,连接DF并延长交BC于点G,若BE=AD=3,平行四边形ABCD的面积为6,则FG=3﹣.【分析】根据折的性质得到AE=EF,∠AEB=∠FEB,由平角的定义得到∠AEB=(180°﹣∠DEF),由三角形的内角和得到∠EDF=(180°﹣∠DEF),根据平行四边形的判定定理即可得到结论;由平行四边形的性质得到DE=BG,DG=BE=10,S△ABE =S平行四边形ABCD=,连接AF交BE于H,于是得到AH⊥BE,AH=HF,根据勾股定理即可得到结论.【解答】解:∵把△ABE沿BE翻折,得到△FBE,∴AE=EF,∠AEB=∠FEB,∴∠AEB=(180°﹣∠DEF),∵E为AD边的中点,∴AE=DE,∴DE=EF,∴∠EDF=∠EFD,∴∠EDF=(180°﹣∠DEF),∴∠AEB=∠EDF,∴BE∥DG,∵四边形ABCD是平行四边形,∴DE∥BG,∴四边形BEDG为平行四边形;∴DE=BG,DG=BE=3,∵四边形ABCD是平行四边形,AE=DE,▱ABCD的面积等于6,∴S△ABE =S平行四边形ABCD=,连接AF交BE于H,则AH⊥BE,AH=HF,∵BE=3,∴AH=1,∴AF=2,∵BE∥DG,∴AF⊥DG,∴DF===,∴FG=DG﹣FD=3﹣,故答案为:3﹣.【点评】本题考查了翻折变换(折叠问题),平行四边形的判定和性质,勾股定理,熟练正确折叠的性质是解题的关键.四、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演步骤)26.(8分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.服装进价(元/件)售价(元/件)A80120B6090其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?【分析】(1)根据题意列出函数解析式解答即可;(2)找出利润关于购进A种服装a之间的关系式,分a的情况讨论.【解答】解:(1)∵80x+60(100﹣x)≤7500,解得:x≤75,∴y=40x+30(100﹣x)(65≤x≤75);(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据题意列出一次函数解析式;(2)找出利润关于购进A种服装x的关系式,由函数的性质分a的情况讨论.本题属于中档题,(1)难度不大,(2)需要分a的情况讨论.27.(10分)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为BE=AF;(2)【拓展研究】在(1)的条件下,如果正方形CDEF绕点C旋转,当点B,E,F三点共线时,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)【问题发现】当正方形CDEF旋转到B,E,F三点共线时,求线段AF的长.【分析】(1)先利用等腰直角三角形的性质得出AD=,再得出BE=AB=4,即可得出结论;(2)先利用三角函数得出=,同理得出=,夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF =AD=2,BF=2,即可得出BE=2﹣2,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)在Rt△ABC中,AB=AC=4,根据勾股定理得,BC=AB=4,点D为BC的中点,∴AD=BC=2,∵四边形CDEF是正方形,∴AF=EF=AD=2,∵BE=AB=4,∴BE=AF,故答案为BE=AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=4,∴∠ABC=∠ACB=45°,∴sin∠ABC==,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC==,∴=,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,。

相关文档
最新文档