初中代数整体思想总结
《代数式》提升专题——整体思想求值

《代数式》提升专题——整体思想求值一、方法总述要利用整体思想解题,需要从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程(组)、几何求证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、几何中的补形等都是整体思想方法在解数学问题中的具体运用.二、例题探索1.直接代入例1:已知a-b=-3,求代数式(-a+b)²-a+6+b的值.分析:本题中,我们无需求出a,b的值,将a-b作为一个整体直接代入,需要注意的是-a+b是其相反数.解答:当a-b=-3时,原式=(-a+b)²-a+b+6=3²+3+6=18变式1:若ab=-3,a+b=-2,则ab-4a+a-3b=_______.分析:本题中,同样无需求出a,b的值,先将多项式化简,观察化简结果中的某几项,能否作为一个整体,与所给条件中的某个整体是对应的倍数关系,从而在求解时,将所给条件中的这个整体添上括号和系数,方便求值.解答:当ab=-3,a+b=-2时,原式=ab-3a-3b=ab-3(a+b)=-3-3×(-2)=32.部分代入例2:若代数式2a²-3a+1的值为5,(1)求代数式8+4a²-6a的值.(2)求代数式-6a²-4+9a的值.分析:本题中,我们可以把所给条件中的部分项组成一个整体,代入到要求的多项式中,一般来说,要求的多项式中,必然也有部分项可看作整体,是所给条件中部分项整体的倍数关系,同样,求解时,别忘给所给条件的部分项添上括号和系数.解答:(1)由题意得,2a²-3a=4原式=8+2(2a²-3a)=8+2×4=16(2)原式=-6a²+9a-4=-3(2a²-3a)-4=-3×4-4=-163.两次代入例3:分析:本题中,显然需要把-3代入这个代数式,但是仅代一次是不够的,我们只能得到关于m,n 的多项式作为整体,因此,需要把3再次代入,观察此时关于m,n的多项式的整体与之前的关系,并求值.解答:当x=-3时,原式=-27m-3n+1=-5∴-27m-3m=-6当x=3时,原式=27m+3n+1=6+1=74.特殊值代入例4:分析:本题中,我们需要思考,到底代哪个特殊值.(1)中,只有a0,则其他项为0,则x取0.(2)中,是求每项的系数的和,因此,x必须保证其任何次幂为1,则x取1.(3)中,x必须保证其奇次幂为-1,偶次幂为1,则x取-1.(4)中,不含奇数次的项,则这些项要设法消去,则(2)(3)式相加,除以2即可.(5)中,不含偶数次的项,则这些项要设法消去,则(2)(3)式相减,除以2即可.解答:三、高阶运用1.拆项重组代入例1:分析:这种类型的题目,显然是无法求出x,y具体的值,因此只能观察要求的代数式与所给的两个整体之间的联系,我们通常将中间同时含字母xy的项拆解,是其中一项与第一项合并后是所给第一个整体的倍数,另一项与最后一项合并后是所给第二个整体的倍数.(1)显然,2xy拆成xy+xy.(2)显然,0=xy-xy.(3)看到第一项为2x²,则有一项被拆成2xy,凑出第一个所给整体的2倍.(4)同上.解答:例2:分析:本题中,要求的代数式中含有三次项,而已知条件的多项式是二次的,因此,要降次,我们可以把三次项拆成一次项乘二次项,而把已知条件中除二次项以外的多项式看作是这个二次项的相反项,用来代替要求式子中拆出来的二次项,则整个所求的三次项就达到了降次的目的.解答:思考题。
初中数学数与代数知识点总结

别直方图,会分析图表,注重能力的培养,加大训练力度。
初中数学统计与概率知识点总结:
统计与概率知识点是初中学习数学时期的主要知识点之一,主要包括数据与图表、概率初步、等,以下是各具体知识点总结的理解和分析。
初中数学概率初步知识点总结:
概率:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。
考察内容:①简答事件的概率求解,图表法和数形图法②利用概率解决实际,公平性问题等③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。
突破方法:①牢固掌握概率的求解思想和方法。
注意面积比②注重概率在实际问题中的应用③要关注概率与方程相结合的综合性试题,加大训练力度,形成能力。
初中数学综合题知识点总结: 综合题知识点是初中学习数学时期的主要知识点之一,主要包括综合题、等,以下是各具体知识点总结的理解和分析。
人教版初中数学代数部分知识点总结
一、实数的分类:正整数整数零
有理数负整数有限小数或无限循环小实数数正分数分数负分数正无理数无理数负无理数无限不循环小数1、有理数:任何一个有理数总可以写成pq(分数)的形......。
整体思想在初中数学中的应用-最新教育文档

整体思想在初中数学中的应用整体思想是初中数学中的一种严重思想,贯穿于初中数学教学的各个阶段,是解决好数学问题的一种严重策略.所谓整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.整体思想涉及的形式较多,这里就通过整体思想在初中数学解题过程中的几种多见应用方法加以举例分析,让我们进一步感受、理解和掌握整体思想的解题技巧,以提高自己的解题能力.一、整体思想在求代数式的值中的应用例1:已知a-a-1=0,求a+2a+2012的值.分析:此题若先从已知条件a-a-1=0中解出a的值,然后代入代数式求解,尽管理论上是正确的,但解答相当麻烦且很困难.若注意到所求代数式与方程的关系,将a-a-1=0转化为a-a=1,再把a-a看做一个整体,用整体思想进行分析求解,则解题会变得简单、简易.解:∵a-a-1=0∴a-a=1∴a+2a+2012=a+a+(a+a)-a+2012=a(a+a)+(a+a)-a+2012=(a+a)(a+1)-a+2012=1×(a+1)-a+2012=2013例2:已知x=2时,ax+bx+cx-8=10.求当x=-2时,代数式ax+bx+cx-8的值.分析:由于ax+bx+cx中的x的指数均为奇数,故当x=2和x=-2时,它的值恰好互为相反数,从而可用整体代入的方法求得代数式的值.解:当x=2时,∵ax+bx+cx-8=10,∴32a+8b+2c=18.①当x=-2时,ax+bx+cx-8=(-2)a+(-2)b+(-2)c-8=-(32a+8b+2c)-8.将①式整体代入,得到-(32a+8b+2c)-8=-18-8=-26.故当x=2时,代数式ax+bx+cx-8的值为-26.二、整体思想在因式分解中的应用例3:因式分解:(a+2a+2)(a+2a+4)+1.分析:对于这类题目,学生很简易先做整式乘法,把式子(a+2a+2)(a+2a+4)+1展开后得到a+4a+10a+12a+9,要把这个多项式进行因式分解,就必须恰当地运用拆项和乘法公式,这是何等的困难.仔细观察可以发现式子中前一项的两个因式中都含有式子a+2a,如果我们把a+2a看成一个整体,展开后就可以得到一个关于a+2a的二次三项式,问题就迎刃而解了.解:(a+2a+2)(a+2a+4)+1=[(a+2a)+2][(a+2a)+4]+1=(a+2a)+4(a+2a)+2(a+2a)+8+1=(a+2a)+6(a+2a)+9=(a+2a+3)三、整体思想在解方程或方程组中的应用例4:解方程:(x-1)-5(x-1)+4=0.分析:如果我们去括号,整理后得到的将是关于x的高次方程x-7x+10=0,要直接解这个方程难度很大.这时我们可以将x-1视为一个整体,设x-1=y,运用整体思想来分析,就可以化难为易.解:设x-1=y,则原方程可化为y-5y+4=0解得y=1,y=4.当y=1时,x-1=1,解得x=±;当Y=4时,x-1=4,解得x=±.∴原方程的解为x=,x=-,x=,x=-.例5:解方程组:x+y=5 ①y+z=4 ②z+x=5 ③分析:解三元一次方程组的基本思路是消元,本题完全可以通过带入消元法或加减消元法将三元一次方程组转化为二元一次方程组来解,但这样比较麻烦.如果我们把三个式子相加,就可以得到x+y+z的值,再把x+y+z看成一个整体分别与方程组中的三个式子相减,就可以求得方程组的解.解:①+②+③,得2(x+y+z)=12 ④④-①,得z=9④-②,得x=8④-③,得y=7∴原方程组的解是x=8y=7z=9.四、整体思想在解应用题中的应用例6:若买铅笔4支,日记本3本,圆珠笔2支,共需10元;若买铅笔9支,日记本7本,圆珠笔5支,共需25元,则购买铅笔、日记本、圆珠笔各一样共需多少元?分析:本题是要求购买铅笔、日记本、圆珠笔各一样共需多少元.如果设铅笔每支x元,日记本每本y元,圆珠笔每支z元,需要有三个等量关系,才能列出三个方程分别求出x,y,z的值,但本应用题只有两个等量关系,只能列出两个方程,这就需要应用整体思想,直接求出的值.解:设铅笔每支x元,日记本每本y元,圆珠笔每支z元,依题意得:4x+3y+2z=10 ①9x+7y+5z=25 ②②-①,得5x+4y+3z=15 ③③-①,得x+y+z=5.答:购买铅笔、日记本、圆珠笔各一样共需5元.五、整体思想在几何问题中的应用例6:在如图所示的星形图中,求∠A、∠B、∠C、∠D、∠E的和.分析:显然,我们无法分别求出∠A、∠B、∠C、∠D、∠E的度数,但仔细审题后可以发现,题目中并不是分别求出这五个角的值,而是要求“∠A+∠B+∠C+∠D+∠E”这一整体的值,因此我们可以利用三角形的一个外角等于和它不相邻的两个内角和,把这些角集中到一个三角形内,再利用三角形的内角和定理,就可以使问题得以解决.解:∠AMN,∠ANM分别是△MCE和△NBD的一个外角.∴∠AMN=∠C+∠E,∠ANM=∠B+∠D.在△AMN中,∠A+∠AMN+∠ANM=180°,∴∠A+∠C+∠E+∠B+∠D=180°,即∠A+∠B+∠C+∠D+∠E=180°.通过举例,我们可以看出,整体思想在初中数学中的作用及严重性.在解答某些数学题时,若能用整体思想去考虑,把整体思想渗透到解题中去,就能做到有的放矢,提高数学思维能力及数学解题能力.。
初中数学整体代入思想

解 析 仔 细 观 察 已知 式 所 求 式 ,它 们 当 中都 含 有 0 ; 2 一n , 可 以将 a 2 一n 一4=0转 化 为 0 ; 2 一n =4 , 再把 0 ; 2 一 。的值 直 接 代
入 所 求式 即可 .
1
一
5 . 若 买 铅 笔 4支 , 日记 本 3本 , 圆 珠 笔 2支 共 需 1 1元 , 若 买 铅 笔 9支 , 日记 本 7本 , 圆 珠 笔 5支 共 需 2 5元 , 则 购 买
二、 转 化 已 知 式后 再 代 入
椤0 2 已知 0 ; 2 一n一4=0, 求 0 , 2 —2 ( 一0+3) 一— ( 一。一
4)一0的 值 .
时, 代 数 式 似 +b x+7的 值 为
—
—
4 . 如图, 在 高 2米 , 底 为 3米
的楼梯表面铺地毯 , 则 地 毯 长 度 至
三、 综 合题 1 . 已知 ( 一1 ) 一( 一 Y ) =一 3 , 求 + 一 2 x y的值 .
2 .已 知 r z= 2 0 0 x+2 0 0 7, b= 2 0 0 x+2 0 0 8, c= 2 0 0 x+
却 存 在着 非 常 紧 密 的 内 在联 系 , 所 求 式 是 已 知式 的 相 反 数 的
的值 是 .
.
1
2 . 若 3 n 一 2 b = 9 , 则 代 数 式 争 6 一 3 ; 0 - I - 2 的 值 是 — —.
3 . 当 =3时 , 代 数 式 鲫 - 4 4 -7的 值 为 5 , 则 =一 3当
2 . 已知 3 x=0 , 3 y=6, 么 3 +Y=
2倍 . 我 们 可 作 简 单 的 变形 : 由P C 一3 x=6 , 可得 3 一3 x=一 6 , 两边 再 乘 以 2 , 即得 一2 x =一 1 2 .
“整体”思想在解题中的应用

“整体”思想在解题中的应用“整体”思想是数学的重要解题思想,也是中考考查的重要内容之一。
运用“整体”思想解题在初中数学的很多方面都有体现。
下面结合初三中考复习的一些教学内容谈谈我对“整体”思想解题的一点体会。
“整体”思想解题主要体现在以下五个方面:一、求代数式的值此类题型一般是已知一个代数式的值,求另一个代数式的值。
解这类题时若先把已知代数式中的未知数求出来往往行不通,一般的方法就是运用 “整体”思想来解决。
例1:已知x 2+3x+1=0,求x 3+2x 2-2x+9的值。
分析:把已知条件中的“x 2+3x+1”看成一个整体,设法把所求的代数式化为由“x 2+3x+1”组成的式子即可。
解:x 3+2x 2-2x+9= x 3+3x 2+x - x 2-3x -1+10=x(x 2+3x+1) –(x 2+3x+1)+10=10 例2:若a 2-a+1=2,则a-a 2+1=________.解:由a 2-a+1=2得a 2-a=1,移项得a-a 2+1=0例3:已知:a+2b+3c=10,4a+5b+6c=19,则a+b+c=________。
分析:此题的关键是把a+b+c 看作一个整体,而不能当成三个未知数。
解:由已知得(4a+5b+6c )-(a+2b+3c )=19-10,所以3a+3b+3c=9,故a+b+c=3 跟例3类似的题还有“若3a+4b-c=5,2a+b+6c=15,则a+b+c=________.” 例4:当a+b=3,x-y=1时代数式a 2+2ab+ b 2-x+y 的值等于_______.(2003年广东省中考题)解:a 2+2ab+ b 2-x+y=(a+b)2-(x-y)= 32-1=8(注:分别把a+b 和x-y 当成一个整体)。
这类题型在中考中很常见,除上面的例子外还有很多,如:1、(04年山西)已知x+y=1,那么221x +xy+221y 的值为________, 2、(02年哈尔滨)已知a+a 1=3,那么a 2+21a= ,3、(04年天津)已知x 2+y 2=25,x+y=7,且x>y ,则x-y 的值等于 ,4、(03年河南)如果(2a+2b+1)(2a+2b-1)=63,那么a+b 的值是 ,5、(00年广东)已知x+2y+3z=10,4x+3y+2z=15,则x+y+z= 。
七年级数学培优专题:整体思想

目 录
• 整体思想概述 • 整体思想的基本概念 • 整体思想在解题中的应用 • 整体思想的培养与提高 • 整体思想在数学竞赛中的应用 • 总结与展望
01
整体思想概述
整体思想的定义
01
整体思想是指从整体的角度出发 ,将多个部分或要素视为一个整 体,对其进行全面、系统的分析 和处理。
促进知识整合
整体思想有助于学生将所 学知识进行整合,形成完 整的知识体系,加深对数 学本质的理解。
整体思想在数学中的应用
代数问题
在代数问题中,整体思想常用于因式 分解、方程组的求解等,通过将问题 看作一个整体,简化计算过程。
几何问题
函数问题
在函数问题中,整体思想常用于分析 函数的性质和图像,通过从整体角度 把握函数的规律,更好地理解函数的 本质。
03
整体思想在解题中的应 用
代数题中的应用
代数方程组的求解
通过将方程组视为一个整 体,利用消元法或代入法 求解,避免了逐一解每个 方程的繁琐过程。
代数式的化简
将复杂的代数式视为一个 整体,运用合并同类项、 提取公因式等技巧进行化 简,简化了解题过程。
代数式的变形
通过观察代数式的整体结 构,运用整体代换、整体 约简等方法,快速找到解 题思路。
06
总结与展望
总结整体思想的内容与意义
整体思想概述
整体思想是一种重要的数学思维方式 ,它强调从整体的角度看待问题,通 过全面分析、综合运用知识点,寻找 解题的突破口。
整体思想的意义
整体思想有助于培养学生的逻辑思维 、创新思维和问题解决能力,对于提 高学生的数学素养和应对复杂问题的 能力具有重要意义。
对未来学习的展望
中考数学复习《整体思想解析》

方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。
它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。
运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。
它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。
整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。
整体思想在初中数学中的应用-最新教育文档

整体思想在初中数学中的应用整体思想是初中数学中的一种重要思想,贯穿于初中数学教学的各个阶段,是解决好数学问题的一种重要策略.所谓整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.整体思想涉及的形式较多,这里就通过整体思想在初中数学解题过程中的几种常见应用方法加以举例分析,让我们进一步感受、理解和掌握整体思想的解题技巧,以提高自己的解题能力.一、整体思想在求代数式的值中的应用例1:已知a-a-1=0,求a+2a+2012的值.分析:此题若先从已知条件a-a-1=0中解出a的值,然后代入代数式求解,尽管理论上是正确的,但解答相当麻烦且很困难.若注意到所求代数式与方程的关系,将a-a-1=0转化为a-a=1,再把a-a看做一个整体,用整体思想进行分析求解,则解题会变得简单、容易.解:∵a-a-1=0∴a-a=1∴a+2a+2012=a+a+(a+a)-a+2012=a(a+a)+(a+a)-a+2012=(a+a)(a+1)-a+2012=1×(a+1)-a+2012=2013例2:已知x=2时,ax+bx+cx-8=10.求当x=-2时,代数式ax+bx+cx-8的值.分析:由于ax+bx+cx中的x的指数均为奇数,故当x=2和x=-2时,它的值恰好互为相反数,从而可用整体代入的方法求得代数式的值.解:当x=2时,∵ax+bx+cx-8=10,∴32a+8b+2c=18.①当x=-2时,ax+bx+cx-8=(-2)a+(-2)b+(-2)c-8=-(32a+8b+2c)-8.将①式整体代入,得到-(32a+8b+2c)-8=-18-8=-26.故当x=2时,代数式ax+bx+cx-8的值为-26.二、整体思想在因式分解中的应用例3:因式分解:(a+2a+2)(a+2a+4)+1.分析:对于这类题目,学生很容易先做整式乘法,把式子(a+2a+2)(a+2a+4)+1展开后得到a+4a+10a+12a+9,要把这个多项式进行因式分解,就必须恰当地运用拆项和乘法公式,这是何等的困难.仔细观察可以发现式子中前一项的两个因式中都含有式子a+2a,如果我们把a+2a看成一个整体,展开后就可以得到一个关于a+2a的二次三项式,问题就迎刃而解了.解:(a+2a+2)(a+2a+4)+1=[(a+2a)+2][(a+2a)+4]+1=(a+2a)+4(a+2a)+2(a+2a)+8+1=(a+2a)+6(a+2a)+9=(a+2a+3)三、整体思想在解方程或方程组中的应用例4:解方程:(x-1)-5(x-1)+4=0.分析:如果我们去括号,整理后得到的将是关于x的高次方程x-7x+10=0,要直接解这个方程难度很大.这时我们可以将x-1视为一个整体,设x-1=y,运用整体思想来分析,就可以化难为易.解:设x-1=y,则原方程可化为y-5y+4=0解得y=1,y=4.当y=1时,x-1=1,解得x=±;当Y=4时,x-1=4,解得x=±.∴原方程的解为x=,x=-,x=,x=-.例5:解方程组:x+y=5 ①y+z=4 ②z+x=5 ③分析:解三元一次方程组的基本思路是消元,本题完全可以通过带入消元法或加减消元法将三元一次方程组转化为二元一次方程组来解,但这样比较麻烦.如果我们把三个式子相加,就可以得到x+y+z的值,再把x+y+z看成一个整体分别与方程组中的三个式子相减,就可以求得方程组的解.解:①+②+③,得2(x+y+z)=12 ④④-①,得z=9④-②,得x=8④-③,得y=7∴原方程组的解是x=8y=7z=9.四、整体思想在解应用题中的应用例6:若买铅笔4支,日记本3本,圆珠笔2支,共需10元;若买铅笔9支,日记本7本,圆珠笔5支,共需25元,则购买铅笔、日记本、圆珠笔各一样共需多少元?分析:本题是要求购买铅笔、日记本、圆珠笔各一样共需多少元.如果设铅笔每支x元,日记本每本y元,圆珠笔每支z元,需要有三个等量关系,才能列出三个方程分别求出x,y,z的值,但本应用题只有两个等量关系,只能列出两个方程,这就需要应用整体思想,直接求出的值.解:设铅笔每支x元,日记本每本y元,圆珠笔每支z元,依题意得:4x+3y+2z=10 ①9x+7y+5z=25 ②②-①,得5x+4y+3z=15 ③③-①,得x+y+z=5.答:购买铅笔、日记本、圆珠笔各一样共需5元.五、整体思想在几何问题中的应用例6:在如图所示的星形图中,求∠A、∠B、∠C、∠D、∠E的和.分析:显然,我们无法分别求出∠A、∠B、∠C、∠D、∠E的度数,但仔细审题后可以发现,题目中并不是分别求出这五个角的值,而是要求“∠A+∠B+∠C+∠D+∠E”这一整体的值,因此我们可以利用三角形的一个外角等于和它不相邻的两个内角和,把这些角集中到一个三角形内,再利用三角形的内角和定理,就可以使问题得以解决.解:∠AMN,∠ANM分别是△MCE和△NBD的一个外角.∴∠AMN=∠C+∠E,∠ANM=∠B+∠D.在△AMN中,∠A+∠AMN+∠ANM=180°,∴∠A+∠C+∠E+∠B+∠D=180°,即∠A+∠B+∠C+∠D+∠E=180°.通过举例,我们可以看出,整体思想在初中数学中的作用及重要性.在解答某些数学题时,若能用整体思想去考虑,把整体思想渗透到解题中去,就能做到有的放矢,提高数学思维能力及数学解题能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中代数整体思想总结
代数是数学的一个重要分支,它以符号和符号组成的式子为研究对象,研究数与数之间的关系。
初中代数主要包括方程、不等式、函数等内容,是学生数学学习的重点难点。
那么初中代数整体思想有哪些呢?
初中代数的整体思想主要分为以下几个方面:
1. 抽象思维:代数是一种抽象的数学工具,它通过使用符号和变量来表达数学问题。
初中代数要求学生从具体问题中抽象出代数式,通过符号进行概括和表示,从而更好地理解和解决问题。
抽象思维是初中代数思维的核心,它要求学生具备将具体问题转化为抽象表达的能力。
2. 模型建立:初中代数在解决实际问题时,常常需要建立数学模型。
模型是对实际问题的简化和抽象,它能够捕捉问题的本质和规律。
初中代数要求学生通过观察问题、提炼问题的关键信息,然后将其转化为代数表达式或方程式,从而建立数学模型。
模型建立不仅有助于提高学生的问题解决能力,还培养了学生的逻辑思维能力。
3. 认识符号:代数中的符号是一种特殊的工具,学会正确地使用符号是初中代数的重要内容。
初中代数要求学生认识代数中常用的符号,并理解它们所代表的含义,例如“+”代表加法,“-”代表减法,“=”代表等于。
通过熟悉符号的使用,学生可以更好地理解和运用代数概念。
此外,初中代数还要求学生掌握符号运算的规则,如加法与乘法的分配律、绝对值的性质等。
4. 方程思想:方程是初中代数的核心内容之一,方程思想是初中代数思维的重要组成部分。
初中代数要求学生学会通过列方程来解决实际问题,例如解决字母运算、几何问题、数量关系问题等。
通过方程思想,学生能够将实际问题转化为代数问题,并通过解方程来求解未知数的值。
5. 推理能力:初中代数要求学生具备一定的推理能力。
代数中常常涉及转化式子、移项、消元等推理过程。
初中代数要求学生通过观察和抽象分析,运用数学规律和定理进行推理,从而得到结论。
推理能力的培养有利于培养学生的逻辑思维和分析能力。
总之,初中代数的整体思想是培养学生的抽象思维、建立数学模型、认识符号、掌握方程思想和发展推理能力。
代数思想是学生数学学习的基础,也是进一步学习高中数学和大学数学的基础。
通过初中代数的学习,可以提高学生的数学思维能力,培养学生的逻辑思维和问题解决能力。